
WP516 (v1.0) December 12, 2019 www.xilinx.com 1

© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, UltraScale, Versal, Virtex, Vivado, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, Arm1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks
of Arm in the EU and other countries. All other trademarks are the property of their respective owners.

Security across all markets is becoming more critical.
Using a Trusted Execution Environment (TEE) on the Zynq®
UltraScale+™ platform provides a major security advantage
by isolating security-critical elements from the rest of the
system.

WP516 (v1.0) December 12, 2019

Isolate Security-Critical Applications
on Zynq UltraScale+ Devices

ABSTRACT
Implementing a TEE on the Zynq® UltraScale+™ platform (RFSoCs and s)
greatly reduces the attack surface of security-critical applications.
Explore this white paper to find out
• What a TEE is
• How the requirements for a TEE are easily met on the Zynq® UltraScale+™

platform
• Why a TEE is needed, even if hypervisors are used
• An example architecture of Prove & Run’s ProvenCore TEE [Ref 1] running

on the Zynq® UltraScale+™ platform
• Real-world TEE usage examples in automotive and data center applications

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 2

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

Introduction
What is a Trusted Execution Environment?

A trusted execution environment (TEE), also known as a secure execution environment (SEE), is an
environment dedicated to running security-critical tasks. The TEE includes both trusted hardware
and trusted software, referred to as the trusted world. The untrusted or non-secure world refers to
both untrusted hardware and untrusted software. Because the TEE is isolated from the untrusted
world, an extremely high level of security is provided. Normally, a TEE runs alongside the untrusted
world on the same processor or system-on-a-chip (SoC) and provides trusted services on behalf of
the untrusted world.

Compared to external security modules such as the trusted platform module (TPM) or smart cards,
which encapsulate security inside a highly secure separate physical device, a TEE has much higher
computational performance (gigahertz vs. megahertz), access to a much larger set of RAM
(gigabytes vs. kilobytes), and access to a much richer set of peripherals (gigabit Ethernet,
programmable logic (PL), hardware accelerators, etc.). The resources to which the TEE has access
are limited only by the processor on which the TEE is running. Additionally, external security
modules still face a security vulnerability because they are normally controlled and accessed from
untrusted systems, making them prone to attack. For example, if an external module needs a
password to access a certain security feature, that password goes through the untrusted system,
exposing the password to numerous types of attacks. On the other hand, using a TEE with a trusted
input device—fingerprint reader, pin pad, etc.—the password is only read in and processed by
trusted hardware and software, minimizing the likelihood of any possible attacks, and greatly
minimizing the attack surface. This simple example shows why a TEE provides greater security
through isolation, and is illustrated in Figure 1.

To run any security-critical software in the TEE, a trusted OS is used to handle the scheduling and
operation of the secure software. The trusted OS is different than a typical OS—Linux, Windows,
etc.—because the code base is extremely small, on the order of kilobytes. The small code base of
the trusted OS is important because the entire operating system can be inspected and tested

X-Ref Target - Figure 1

Figure 1: Attack Surface Reduction of a TEE Compared to a Typical Untrusted System

Untrusted Input
(unsecure)

Untrusted System

Untrusted Processing
(unsecure)

Password
(unsecure)

Password
(secure)

Controller
(unsecure)

Security Module
(secure)

Attacks

Trusted Input
(secure)

Trusted Execution Environment

Trusted Processing
(secure)

WP516_01_092219

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 3

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

against any known vulnerabilities. This greatly minimizes the trusted OS’s attack surface while
providing a mechanism of software isolation from any untrusted software.

Trusted applications (TA) run inside the trusted OS and provide any security-critical functionality
needed by a system. Just like untrusted applications, trusted applications are portable across
multiple architectures running the same secure OS, meaning that TA developers do not need to
rewrite their TA for every platform they want to use. In addition to the trusted OS providing
isolation from any untrusted software, using a trusted OS also provides further isolation by
isolating trusted applications from each other.

There is no reason that a TA with access to a particular AES encryption key needs access to a
particular RSA key used by another TA. Even though TA to TA isolation is enforced by the secure OS,
a TA still has the ability to call another TA if needed, which allows for keeping trusted application
code small and modular.

TEE Requirements
This section of the white paper describes all the architecture level components required for running
a trusted execution environment on a system and covers:

• Hardware Enforced Isolation
• Software Enforced Isolation
• Secure Monitor
• Shared Memory
• Trusted Boot

Any single component by itself does not facilitate the use of a TEE, but these components must be
used together.

Hardware Enforced Isolation
One mechanism for isolating the trusted world from the untrusted world is by using physically
separate processors. This is similar to using the external hardware module mentioned above, but
different, because both processors are usually in the high-performance category. The drawback to
using this type of architecture is that the use of multiple processors increases the overall cost, and
it uses much more board space. On multi-core processors, a single core can be dedicated to the
trusted world, and another core can be dedicated to the untrusted world. This type of architecture
saves cost and board space compared to the multi-processor architecture. However, the major
drawback to both these architectures is that they still need access to external peripherals such as
dynamic random access memory (DRAM), Ethernet, etc. Physically separate peripherals can be used
at an increased cost and board size to achieve physical isolation between the two worlds;
otherwise, the peripherals have to be shared, and the isolation between peripherals can only be
achieved through a weaker software-isolated mechanism—not strong enough for a highly secure
TEE.

To use a single processor with a single set of peripherals and still achieve hardware isolation, the
Xilinx® Zynq® UltraScale+™ platform uses Arm® TrustZone technology [Ref 2] as one form of

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 4

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

hardware isolation. TrustZone not only provides hardware-enforced isolation between processors
and their individual cores, but enforces hardware isolation across the entire platform, providing
system-wide security. When TrustZone is enabled, all AXI transactions, memory locations,
peripherals, interrupt controllers, hardware accelerators, caches, and processor execution states
are automatically stored in physical registers with a single bit indicating whether the resource is
accessible from either the secure or non-secure world. When the bit is set, the resource is non-
secure; when the bit is clear, the resource is secure.

The trusted world has access to the untrusted world, but not the other way around. If a non-secure
resource tries to gain access to a secure resource, a security exception is thrown, immediately
stopping any potential threats at the physical hardware level. For example, a processor executing in
the non-secure state is denied access to any secure memory. On the other hand, the secure world
might need access to untrusted resources for register configuration or for reading untrusted
memory buffers.

Another important feature that TrustZone entails is the ability to use the same resource in both a
secure state as well as a non-secure state. This is most commonly implemented in processors where
some processing occurs in the secure state, and then the processor is switched over to execute in
the non-secure state. Since the processor’s caches and other associated memories are TrustZone
aware, a context switch between the trusted world and untrusted world is extremely fast. Caches
and other associated memories do not need to get flushed and reloaded when switching between
worlds.

Isolation Enhancements on the Zynq UltraScale+ Platform
On the Zynq UltraScale+ platform, hardware-enforced isolation is further enhanced by Xilinx’s
Peripheral Protection Unit (XPPU) [Ref 3] and Xilinx’s Memory Protection Unit (XMPU) [Ref 3]. The
use of the XMPU and XPPU on the Zynq UltraScale+ platform allows the system to be isolated even
further, since these protection units use the incoming master AXI identification (ID) to filter any
request in addition to checking the TrustZone status of the incoming transaction. With this
additional enhancement, not only can the Zynq UltraScale+ platform be split in two worlds—secure
and non-secure—but it can be split into numerous domains. The XMPU is specifically used for
isolating the DDR, on-chip memory (OCM), and any full-power domain (FPD) [Ref 3] peripherals.
The XPPU is specifically used for isolating the low-power domain (LPD) [Ref 3] peripherals, QSPI,
inter-processor interrupt (IPI) message buffers, and the Arm® Cortex®-R5 processor’s tightly
coupled memory (TCM) banks. Extensive details of how to set up and use TrustZone, the XMPU, and
the XPPU are outlined in XAPP1320 [Ref 4]. Proper isolation configuration of a system, like the Zynq
UltraScale+ platform, is an important requirement of a TEE.

With respect to the master IDs, all four cores of the Arm Cortex-A53 processor are grouped
together into one master ID instead of four separate IDs, meaning that all four cores can operate
only in the secure or non-secure mode at any one time. On the other hand, each of the Arm
Cortex-R5 processors is assigned a unique ID while operating in split mode, and a single ID is
assigned while operating in lock-step mode. Multiple IDs are assigned to the PL and can be
designed into IP in the PL so that hardware isolation is not limited to just the processing units.

The Arm Cortex-A53 cores implement a memory management unit (MMU) [Ref 5] to provide virtual
addressing while the Arm Cortex-R5 processor implements a memory protection unit (MPU) [Ref 6]
to control access to and from L1-cache as well as external memory. To extend the functionality of

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 5

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

the MMU to the SoC level, the Zynq UltraScale+ platform implements a system MMU (SMMU)
[Ref 3]. Additionally, Advanced eXtensible Interface (AXI) and Advanced Peripheral Bus (APB)
isolation blocks (AIB) are implemented throughout the Zynq UltraScale+ platform to prevent
undesired access by an AXI/APB master to an AXI/APB slave. The device also implements an AXI
timeout block (ATB) that prevents an AXI master from hanging when no response is received from
an AXI slave. ATB is not necessarily an additional form of isolation, but it is an important Zynq
UltraScale+ platform security feature, because an AXI master can recover if one of its AXI slaves
locks up, preventing a simple denial of service (DoS) attack.

Software Enforced Isolation and the Secure Monitor
Just as TrustZone is used as a hardware-enforced mechanism to isolate a system into two separate
worlds, an additional software-enforced mechanism called exception levels(1) is present on Armv8-
A processors, such as the Zynq UltraScale+ platform Arm Cortex-A53 processors [Ref 7].

There are non-secure exception levels (EL) when operating in the untrusted world and secure
exception levels (SEL) when operating in the trusted world. Table 1 summarizes the exception levels
and their normal use case. Notice that there is no SEL2 when operating in the trusted world, and
that EL3 resides in the secure world, even though the name is not specified as SEL3.

For a processor to switch from executing in the untrusted world to the trusted world, a mechanism
called the secure monitor handles this switching. In Arm systems, the secure monitor can only be
executed out of EL3. This naming convention might seem to suggest that EL3 is not secure;
however, EL3 is only accessible by issuing the secure monitor call (SMC) instruction [Ref 7] while the
processor is operating in EL1, SEL1, or EL2. Arm has its own open-source secure monitor software
called Arm Trusted Firmware (ATF) [Ref 8], and Xilinx supports the version of ATF for use with the
Zynq UltraScale+ platform.

Figure 2 summarizes the use of hardware and software isolation in a TEE architecture highlighting
the use of TrustZone and Arm exception levels.

For comparison, Figure 3 illustrates an enhanced TEE system architecture, showing the additional
layers of hardware isolation mechanisms in place, as implemented in the Zynq UltraScale+
platform. The architecture view is as seen from the Arm Cortex-A53 processors; for simplicity, the
RPU and PL are treated as peripherals of the processor.

1. The 32-bit software enforcement mechanism is called processor mode for the 32-bit operation of the Arm Cortex-A53 and Arm
Cortex-R5 processors, described in Arm’s technical documents [Ref 7].

Table 1: Arm Exception Level Summary

EL Untrusted World Use Case Trusted World Use Case SEL
EL0 Execution of user applications Execution of trusted applications SEL0

EL1 Execution of an operating system Execution of a trusted operating system SEL1

EL2 Execution of a hypervisor --- ---

EL3 Used for switching between the non-secure and secure worlds

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 6

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

X-Ref Target - Figure 2

Figure 2: A Generic Armv8-A TEE Architecture with Hardware Isolation through TrustZone
Software Isolated through Arm Exception Levels

X-Ref Target - Figure 3

Figure 3: Zynq UltraScale+ Platform Armv8-A TEE Architecture with Enhanced Isolation

WP516_02_092219

ApplicationEL0

EL1

EL2

EL3

SEL0

SEL1

S
ec

ur
e

E
L

(S
E

L)

E
xc

ep
tio

n
Le

ve
l (

E
L)

OS

Hypervisor

ATF (Secure Monitor Firmware)

TrustZone

OS

Application Application Application

SVC SVC

HVC

SMC

Non-Secure Secure

Trusted OS

Trusted
Application

Trusted
Application

SMC

T
ru

st
Z

on
e

Memory System
Registers

Peripherals

WP516_03_092219

ApplicationEL0

Configuration Security Unit (CSU)
Programmable Logic (PL)
Platform Management Unit (PMU)
Real-time Processing Unit (RPU)

EL1

EL2

EL3

SEL0

SEL1

S
ec

ur
e

E
L

(S
E

L)

E
xc

ep
tio

n
Le

ve
l (

E
L)

H
ar

dw
ar

e
S

ec
ur

ity
 W

al
l

OS

Hypervisor

ATF (Secure Monitor Firmware)

OS

Application Application Application

Non-Secure Secure

Trusted OS

Trusted
Application

Trusted
Application

H
W

 S
ec

ur
ity

 W
al

l

T
ru

st
Z

on
e

A
IB

A
T

B

S
M

M
U

X
P

P
U

X
M

P
U

RPUMemory

Peripherals PL CSU

PMU

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 7

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

The key to switching between the non-secure world and the secure world is the SCR_EL3 register
[Ref 9], which can only be accessed while a processor is operating at the EL3 level. This is why the
secure monitor is required to operate out of EL3. SCR stands for Secure Control Register; bits 3
through 0 of the register are shown in Table 2.

The most important bit in this register is the NS bit. When this bit is set, a processor operates in the
untrusted world. When this bit gets cleared, the processor operates in the trusted world. To change
worlds, a processor enters the secure monitor software via the SMC instruction, changes the NS bit,
and then returns from the secure monitor to operate in either the trusted or untrusted world.

Three additional bit fields in the SCR_EL3 register are important: fast interrupt request (FIQ),
interrupt request (IRQ), and external abort (EA) bits. These bits indicate whether interrupts are
routed through the secure monitor or if they are routed through the hypervisor or operating
system, depending on the processor’s configuration. Normally, FIQs are reserved for secure
interrupts and IRQs are reserved for non-secure interrupts. Interrupt routing is also controlled by
the GICv2 registers in the Zynq UltraScale+ platform [Ref 10], and access to the GICv2 registers is
TrustZone-aware so that the interrupt registers can only be modified in the secure world. Passing
interrupts through the secure monitor code in EL3 not only allows a flexible interrupt scheme, but
ensures either secure or non-secure interrupts are handled in a timely manner. For example, if
operating in the non-secure world, secure interrupts can route through the secure monitor and get
handled immediately instead of being handled when the processor switches to the trusted world.
Passing non-secure interrupts through the secure monitor allows checking of interrupt validity and
possibly stopping any malicious interrupts from disrupting a system. These are just simple
examples of interrupt routing, which is ultimately handled by the system architecture.

Table 2: SCR_EL3 Bit Assignments [3:0]

Bit Name Function

[3] EA

EA External Abort and SError Interrupt Routing. This bit controls which mode takes
external aborts. The possible values are:
0: External Aborts and SError Interrupts while executing at exception levels other than EL3
are not taken in EL3. This is the reset value.
1: External Aborts and SError Interrupts while executing at all exception levels are taken in
EL3.

[2] FIQ

Physical FIQ Routing. The possible values are:
0: Physical FIQ while executing at exception levels other than EL3 are not taken in EL3. This
is the reset value.
1: Physical FIQ while executing at all exception levels are taken in EL3.

[1] IRQ
Physical IRQ Routing. The possible values are:
0: Physical IRQ while executing at exception levels other than EL3 are not taken in EL3.
1: Physical IRQ while executing at all exception levels are taken in EL3.

[0] NS

Non-secure Bit. The possible values are:
0: EL0 and EL1 are in Secure state, memory accesses from those exception levels can access
Secure memory. This is the reset value.
1: EL0 and EL1 are in Non-secure state, memory accesses from those exception levels cannot
access Secure memory.

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 8

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

Shared Memory
If a trusted application is to provide trusted services to the non-secure world, a mechanism for
passing data back and forth is needed as well as TEE access to the non-secure memory. Non-secure
memory access by a TEE is already accomplished on a TrustZone-aware system like the Zynq
UltraScale+ platform. The most common way to pass data back and forth between the trusted and
untrusted worlds is to designate a portion of memory for sharing. When operating in the non-
secure world, memory can be loaded, a TA called, and then read back when the TA is complete.
While in the secure world, the secure OS or TA can place a copy of the memory into a portion of
secure memory, operate directly on the non-secure memory, or change the state of the shared
memory from non-secure to secure and then back to non-secure. Memory sharing operations are
completely dependent on the TEE architecture.

Trusted Boot
For a TEE to operate in a secure manner, the TEE must be loaded in a secure manner; otherwise, any
operations in the TEE cannot be considered secure. Xilinx provides all the necessary tools [Ref 11],
and the Zynq UltraScale+ platform supports both authenticated and/or encrypted boot modes
[Ref 3] [Ref 11].

TEE Compared to a Hypervisor
Background

There are two types of hypervisors:

• Type 1 hypervisors execute directly on the hardware
• Type 2 hypervisors execute as applications on top of an OS

In this white paper, only Type 1 hypervisors are considered, as the security of Type 2 hypervisors is
highly dependent on the underlying OS they run on.

A hypervisor is a piece of software running at EL2 that emulates hardware systems and makes them
available as virtual machines (VMs). As hypervisors can usually execute several VMs in parallel by
allocating processor time and memory to each VM, hypervisors sometimes provide VM-to-VM
communication, either by emulating traditional communication peripherals or by implementing a
custom interface.

Hypervisors and TEEs both enable independent execution environments, VMs, and secure
applications, respectively. This implies that they both manage the allocation of resources. However,
they differ greatly in the services they provide and in the interfaces they present to their execution
environments. Hypervisors expose the low-level interfaces of the hardware systems they emulate,
unlike OSes that expose high-level interfaces for application development. To develop applications
on a VM, the applications are installed on the VM’s OS as needed.

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 9

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

Security Functions Benefit from a Secure OS
Hardware interfaces are very low-level, and application developers usually rely on an OS to provide
high-level services such as control of interrupts, memory management, and inter-process
communication. Applications can be directly developed using low-level hardware, but this involves
dealing with the complexity of the hardware interfaces. In the case of security functions,
implementing them in bare-metal amounts to implementing high-level abstractions directly inside
the security functions for every security function required in a system. Aside from the fact that this
is unrealistically difficult, especially in the case of SoCs, developing the high-level abstractions
required by each security function is prone to error, which greatly increases a system’s attack
surface.

Hypervisors Do Not Replace the Use of a TEE
Even with secure hypervisors such as ProvenVisor [Ref 1], a hypervisor developed using deductive
formal methods, there is no secure way of implementing security functions on the hypervisor itself.
Developing security functions on individual bare-metal VMs to mitigate non-secure OS issues is
possible, but the security function still has all the issues described above. The correct
implementation of security functions depends on the correct implementation of the underlying OS,
and developing secure applications on a non-secure OS in one of the VMs makes the security
function vulnerable. The only viable solution is to resort to a TEE to host the security functions in a
secure manner. However, a TEE does not replace the use of a hypervisor if virtualization needs to be
implemented. It should be noted that a TEE can be used with or without the use a hypervisor.

ProvenCore TEE Running on the Zynq UltraScale+
Platform

Xilinx and Prove & Run have partnered together to port the EAL7 certified ProvenCore TEE [Ref 1]
onto Zynq UltraScale+ devices. This enables the device to run a diverse set of security applications
while reducing possible attacks. ProvenCore running on the Zynq UltraScale+ platform is shown in
Figure 4. As with every port of ProvenCore, ProvenRun carefully designed the secure boot on the
device. During boot, the first-stage boot loader (FSBL) loads ATF, which then loads ProvenCore in a
secure mode. After the initial setup of ProvenCore, ProvenCore returns to ATF, which then boots
Linux by launching U-Boot in non-secure mode.

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 10

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

ProvenCore embeds a security driver that sets up security rules for peripheral access. On the Zynq
UltraScale+ platform, this driver configures Arm TrustZone, the XMPU, and the XPPU to match the
given security policy. The XMPU is used to guarantee that only ProvenCore can access its secure
memory area. The XPPU is used to reserve either completely, or temporarily, at ProvenCore’s
request, peripherals that the secure environment would like to use. The eMMC controller is
dedicated to secure storage in the secure world, and the Ethernet controller is completely operated
from the secure world. If Linux crashes or gets corrupted, ProvenCore’s secure peripherals continue
to operate as normal and recover the system. ProvenCore also relies on the Zynq UltraScale+
platform’s cryptographic cores for accelerating cryptographic functionality.

Communication between Linux and ProvenCore is provided by the Linux TrustZone driver and
enables communication between a Linux user space application and trusted application running
inside of ProvenCore. The driver shares a common DRAM area to exchange requests and responses
between the secure and non-secure world. Every connection through the driver between a user
space application and a TA is known as a session in Prove & Run’s TEE terminology. Each session has
a dedicated shared memory area and establishes its own communication protocol. World change
requests are sent using two dedicated SMC calls and are dispatched using two reserved software-
generated interrupts managed by the Secure Monitor. One SMC call is required to switch from the
untrusted world, normally Linux, into ProvenCore. The other SMC call is used to switch back from
ProvenCore into the untrusted world. In addition to receiving SMC calls from the untrusted world
to switch into the trusted world, ProvenCore implements a user-configurable timer so that
ProvenCore can be run periodically without being called by the untrusted world. Most TEEs are
scheduled to run when time is allocated by the non-secure OS.

X-Ref Target - Figure 4

Figure 4: ProvenCore Running on Zynq UltraScale+ Platform
WP516_04_092219

ApplicationEL0

EL1

EL2

EL3

SEL0

SEL1

S
ec

ur
e

E
L

(S
E

L)

E
xc

ep
tio

n
Le

ve
l (

E
L)

H
ar

dw
ar

e
S

ec
ur

ity
 W

al
l

Linux

ProvenVisor

ATF (Secure Monitor Firmware)

Linux

Application Application Application

Non-Secure Secure

ProvenCore

Trusted
Application

Trusted
Application

H
W

 S
ec

ur
ity

 W
al

l

T
ru

st
Z

on
e

A
IB

A
T

B

S
M

M
U

X
P

P
U

X
M

P
U

RPUMemory

Peripherals PL CSU

PMU
Configuration Security Unit (CSU)
Programmable Logic (PL)
Platform Management Unit (PMU)
Real-time Processing Unit (RPU)

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 11

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

Since the PL of the Zynq UltraScale+ platform can propagate the secure status of a transaction
through the TrustZone bit in the interconnect IP, ProvenCore also manages peripherals
implemented in the PL through the combination of a driver running inside of ProvenCore as well as
a Prove & Run hardware block running inside of the PL. This allows Prove & Run's TEE architecture
to ban any non-secure access to any secure hardware running inside of the PL.

TEE Usage Examples
Increasing Security in Automotive

Increasingly, cars are connected to the outside environment. Many car manufacturers are opting for
security architectures with multiple security domains that are compartmentalized using either
hardware virtualization or multiple hardware devices. Some of these domains manage
communications with untrusted environments and therefore are at the forefront when remote
attacks occur. In some automotive architectures, an intrusion protection system (IPS) is deployed
which scrutinizes all incoming traffic to detect possible attacks on the different communication
layers. Unfortunately, communication stacks are complex and cannot be fully free from bugs.
Attackers use these vulnerabilities coupled with additional vulnerabilities on the underlying non-
secure OS, which the IPS is running on, to take control. From there, attackers can circumvent all
security functions intended to block malicious traffic from reaching the safety-critical domains of
the car.

However, if the IPS runs on a secure OS, most of the remote attack risk can be mitigated. The secure
OS alone has a much smaller attack surface than a typical non-secure OS, which mitigates the
secure OS from being compromised. While the IPS operates in the secure world, the IPS can
perform re-encapsulation of messages for the different layers of the communication protocol
stack. This prevents attacks that use vulnerabilities in the implementation of communication stacks
and decreases the attack surface even further. Additionally, an initial check of the conformity of the
message’s payload can be implemented. In the end, messages from the secure OS that are
transmitted to applications running on a non-secure OS have a reduced probability of being
compromised.

In this example, using a secure hypervisor does not, on its own, solve the issue. A hypervisor
architecture can dedicate a VM for hosting the IPS, but if the OS running on this VM can be
compromised by incoming messages, then the OS is unable to mitigate being attacked. Messages
transmitted from a VM containing the IPS to the other parts of the car can be as malicious as those
coming directly from the outside. Therefore, a secure OS is necessary for the VM on which the IPS
is running on.

Increasing Security in a Data Center
Applying algorithms for medical diagnostics can be computationally intensive, which motivates the
use of cloud computing for offering these services. However, patient data, which is often very
valuable to hackers, must be sent to a data center to be analyzed. Encrypted communication and
storage help against data theft and usually rely on hardware security modules (HSM) for key
management and cryptographic computations.

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 12

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

In the typical architecture, as shown in Figure 5, a Linux server is in charge of establishing secure
communication with the client by using the cryptographic services of an HSM. The server then
performs the computations on the unencrypted patient’s data, which can involve using FPGA
peripherals for increased speed. Afterwards, the server sends the data back to the client using the
secure communication channel. The Linux server now has access to unencrypted patient data and
diagnosis. A hacker can install back doors in the server or exploit common vulnerabilities to steal
the data. A TEE, however, can run a secure OS like ProvenCore and keep all confidential patient data
out of the non-secure Linux server. While inside the TEE, the patient data is securely decrypted,
confidentially processed, securely re-encrypted, and then sent back safely through the Linux server
without compromise. Moreover, any high-performance processing can be securely computed
inside of the TEE because the PL on the Zynq UltraScale+ platform is TrustZone aware.

Conclusion
This white paper explored how a TEE running on the Zynq UltraScale+ platform greatly reduces the
attack surface of security-critical applications and greatly increases system-wide security. By taking
advantage of all the security features implemented on the Zynq UltraScale+ platform—including
TrustZone, XMPU, XPPU, SMMU, AIB, Arm Exception Levels, Xilinx ATF, and trusted boot—a strong
trusted execution environment can be created using only a single SoC. This white paper showed
why a hypervisor still requires the use of a TEE to isolate security critical tasks, since those tasks
might be running on potentially non-secure operating systems. The TEE architecture designed by
Prove & Run showed how their secure OS (ProvenCore) was implemented using the Zynq
UltraScale+ platform. Not only can a TEE be used across all markets, but an automotive application
and a data center application were described in detail to show how a TEE greatly increases security
in both applications.

Note: This white paper has been written in collaboration with our TEE partner Prove & Run.

X-Ref Target - Figure 5

Figure 5: A Typical Data Center Architecture Used for Analyzing Medical Data
WP516_05_092219

Client FPGA Accelerator

Hardware Security
Module (HSM)

Linux Server

Encrypted patient data

Encrypted results

Send: Encrypted patient data
Return: Unencrypted parient data

Send: Unencrypted results
Return: Encrypted results

http://www.xilinx.com

WP516 (v1.0) December 12, 2019 www.xilinx.com 13

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

References
1. Prove & Run website
2. Arm Technologies: TrustZone for Cortex-A, SoC and CPU System-Wide Approach to Security
3. Xilinx User Guide UG1085, Zynq UltraScale+ Device Technical Reference Manual
4. Xilinx Application Note XAPP1320, Isolation Methods in Zynq UltraScale+ s
5. Arm System Memory Management Unit Architecture Specification: SMMU Architecture 2.0
6. Arm Technical Reference Manual: Cortex-R5 and Cortex-R5F
7. Arm: Fundamentals of ARMv8-A
8. Arm: at GitHub, ARM Trusted Firmware-A (read-only mirror)
9. Arm: Cortex®-A53 MPCore Processor Technical Reference Manual, Rev. r0p4
10. Arm: Generic Interrupt Controller - Architecture version 2.0 - Architecture Specification
11. Xilinx User Guide UG1137, Zynq UltraScale+ Software Developer Guide

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
ahttps://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
http://www.xilinx.com
https://www.provenrun.com/
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf?_ga=2.26088382.243088287.1566325060-1177401497.1544043376
https://github.com/ARM-software/arm-trusted-firmware
https://www.xilinx.com/support/documentation/user_guides/ug1137-zynq-ultrascale-mpsoc-swdev.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500j/index.html
http://docs-api-peg.northeurope.cloudapp.azure.com/assets/ihi0048/b/IHI0048B_b_gic_architecture_specification.pdf

WP516 (v1.0) December 12, 2019 www.xilinx.com 14

Isolate Security-Critical Applications on Zynq UltraScale+ Devices

Revision History
The following table shows the revision history for this document:

Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults,
Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability)
for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your
use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even
if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx
assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to
product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s
Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/
legal.htm#tos.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR
(III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF
ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Date Version Description of Revisions
12/12/2019 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos

	Introduction
	What is a Trusted Execution Environment?

	TEE Requirements
	Hardware Enforced Isolation
	Isolation Enhancements on the Zynq UltraScale+ Platform
	Software Enforced Isolation and the Secure Monitor
	Shared Memory
	Trusted Boot

	TEE Compared to a Hypervisor
	Background
	Security Functions Benefit from a Secure OS
	Hypervisors Do Not Replace the Use of a TEE

	ProvenCore TEE Running on the Zynq UltraScale+ Platform
	TEE Usage Examples
	Increasing Security in Automotive
	Increasing Security in a Data Center

	Conclusion
	References
	Revision History
	Disclaimer
	Automotive Applications Disclaimer

