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Security across all markets is becoming more critical. 
Using a Trusted Execution Environment (TEE) on the Zynq® 
UltraScale+™ platform provides a major security advantage 
by isolating security-critical elements from the rest of the 
system.
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Isolate Security-Critical Applications 
on Zynq UltraScale+ Devices

ABSTRACT
Implementing a TEE on the Zynq® UltraScale+™ platform (RFSoCs and s) 
greatly reduces the attack surface of security-critical applications. 
Explore this white paper to find out 
• What a TEE is
• How the requirements for a TEE are easily met on the Zynq® UltraScale+™ 

platform
• Why a TEE is needed, even if hypervisors are used
• An example architecture of Prove & Run’s ProvenCore TEE [Ref 1] running 

on the Zynq® UltraScale+™ platform
• Real-world TEE usage examples in automotive and data center applications
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Introduction
What is a Trusted Execution Environment?

A trusted execution environment (TEE), also known as a secure execution environment (SEE), is an 
environment dedicated to running security-critical tasks. The TEE includes both trusted hardware 
and trusted software, referred to as the trusted world. The untrusted or non-secure world refers to 
both untrusted hardware and untrusted software. Because the TEE is isolated from the untrusted 
world, an extremely high level of security is provided. Normally, a TEE runs alongside the untrusted 
world on the same processor or system-on-a-chip (SoC) and provides trusted services on behalf of 
the untrusted world.

Compared to external security modules such as the trusted platform module (TPM) or smart cards, 
which encapsulate security inside a highly secure separate physical device, a TEE has much higher 
computational performance (gigahertz vs. megahertz), access to a much larger set of RAM 
(gigabytes vs. kilobytes), and access to a much richer set of peripherals (gigabit Ethernet, 
programmable logic (PL), hardware accelerators, etc.). The resources to which the TEE has access 
are limited only by the processor on which the TEE is running. Additionally, external security 
modules still face a security vulnerability because they are normally controlled and accessed from 
untrusted systems, making them prone to attack. For example, if an external module needs a 
password to access a certain security feature, that password goes through the untrusted system, 
exposing the password to numerous types of attacks. On the other hand, using a TEE with a trusted 
input device—fingerprint reader, pin pad, etc.—the password is only read in and processed by 
trusted hardware and software, minimizing the likelihood of any possible attacks, and greatly 
minimizing the attack surface. This simple example shows why a TEE provides greater security 
through isolation, and is illustrated in Figure 1.

To run any security-critical software in the TEE, a trusted OS is used to handle the scheduling and 
operation of the secure software. The trusted OS is different than a typical OS—Linux, Windows, 
etc.—because the code base is extremely small, on the order of kilobytes. The small code base of 
the trusted OS is important because the entire operating system can be inspected and tested 

X-Ref Target - Figure 1

Figure 1: Attack Surface Reduction of a TEE Compared to a Typical Untrusted System
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against any known vulnerabilities. This greatly minimizes the trusted OS’s attack surface while 
providing a mechanism of software isolation from any untrusted software.

Trusted applications (TA) run inside the trusted OS and provide any security-critical functionality 
needed by a system. Just like untrusted applications, trusted applications are portable across 
multiple architectures running the same secure OS, meaning that TA developers do not need to 
rewrite their TA for every platform they want to use. In addition to the trusted OS providing 
isolation from any untrusted software, using a trusted OS also provides further isolation by 
isolating trusted applications from each other. 

There is no reason that a TA with access to a particular AES encryption key needs access to a 
particular RSA key used by another TA. Even though TA to TA isolation is enforced by the secure OS, 
a TA still has the ability to call another TA if needed, which allows for keeping trusted application 
code small and modular.

TEE Requirements
This section of the white paper describes all the architecture level components required for running 
a trusted execution environment on a system and covers:

• Hardware Enforced Isolation
• Software Enforced Isolation
• Secure Monitor
• Shared Memory
• Trusted Boot

Any single component by itself does not facilitate the use of a TEE, but these components must be 
used together.

Hardware Enforced Isolation
One mechanism for isolating the trusted world from the untrusted world is by using physically 
separate processors. This is similar to using the external hardware module mentioned above, but 
different, because both processors are usually in the high-performance category. The drawback to 
using this type of architecture is that the use of multiple processors increases the overall cost, and 
it uses much more board space. On multi-core processors, a single core can be dedicated to the 
trusted world, and another core can be dedicated to the untrusted world. This type of architecture 
saves cost and board space compared to the multi-processor architecture. However, the major 
drawback to both these architectures is that they still need access to external peripherals such as 
dynamic random access memory (DRAM), Ethernet, etc. Physically separate peripherals can be used 
at an increased cost and board size to achieve physical isolation between the two worlds; 
otherwise, the peripherals have to be shared, and the isolation between peripherals can only be 
achieved through a weaker software-isolated mechanism—not strong enough for a highly secure 
TEE.

To use a single processor with a single set of peripherals and still achieve hardware isolation, the 
Xilinx® Zynq® UltraScale+™ platform uses Arm® TrustZone technology [Ref 2] as one form of 
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hardware isolation. TrustZone not only provides hardware-enforced isolation between processors 
and their individual cores, but enforces hardware isolation across the entire platform, providing 
system-wide security. When TrustZone is enabled, all AXI transactions, memory locations, 
peripherals, interrupt controllers, hardware accelerators, caches, and processor execution states 
are automatically stored in physical registers with a single bit indicating whether the resource is 
accessible from either the secure or non-secure world. When the bit is set, the resource is non-
secure; when the bit is clear, the resource is secure.

The trusted world has access to the untrusted world, but not the other way around. If a non-secure 
resource tries to gain access to a secure resource, a security exception is thrown, immediately 
stopping any potential threats at the physical hardware level. For example, a processor executing in 
the non-secure state is denied access to any secure memory. On the other hand, the secure world 
might need access to untrusted resources for register configuration or for reading untrusted 
memory buffers.

Another important feature that TrustZone entails is the ability to use the same resource in both a 
secure state as well as a non-secure state. This is most commonly implemented in processors where 
some processing occurs in the secure state, and then the processor is switched over to execute in 
the non-secure state. Since the processor’s caches and other associated memories are TrustZone 
aware, a context switch between the trusted world and untrusted world is extremely fast. Caches 
and other associated memories do not need to get flushed and reloaded when switching between 
worlds.

Isolation Enhancements on the Zynq UltraScale+ Platform
On the Zynq UltraScale+ platform, hardware-enforced isolation is further enhanced by Xilinx’s 
Peripheral Protection Unit (XPPU) [Ref 3] and Xilinx’s Memory Protection Unit (XMPU) [Ref 3]. The 
use of the XMPU and XPPU on the Zynq UltraScale+ platform allows the system to be isolated even 
further, since these protection units use the incoming master AXI identification (ID) to filter any 
request in addition to checking the TrustZone status of the incoming transaction. With this 
additional enhancement, not only can the Zynq UltraScale+ platform be split in two worlds—secure 
and non-secure—but it can be split into numerous domains. The XMPU is specifically used for 
isolating the DDR, on-chip memory (OCM), and any full-power domain (FPD) [Ref 3] peripherals. 
The XPPU is specifically used for isolating the low-power domain (LPD) [Ref 3] peripherals, QSPI, 
inter-processor interrupt (IPI) message buffers, and the Arm® Cortex®-R5 processor’s tightly 
coupled memory (TCM) banks. Extensive details of how to set up and use TrustZone, the XMPU, and 
the XPPU are outlined in XAPP1320 [Ref 4]. Proper isolation configuration of a system, like the Zynq 
UltraScale+ platform, is an important requirement of a TEE.

With respect to the master IDs, all four cores of the Arm Cortex-A53 processor are grouped 
together into one master ID instead of four separate IDs, meaning that all four cores can operate 
only in the secure or non-secure mode at any one time. On the other hand, each of the Arm 
Cortex-R5 processors is assigned a unique ID while operating in split mode, and a single ID is 
assigned while operating in lock-step mode. Multiple IDs are assigned to the PL and can be 
designed into IP in the PL so that hardware isolation is not limited to just the processing units.

The Arm Cortex-A53 cores implement a memory management unit (MMU) [Ref 5] to provide virtual 
addressing while the Arm Cortex-R5 processor implements a memory protection unit (MPU) [Ref 6] 
to control access to and from L1-cache as well as external memory. To extend the functionality of 
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the MMU to the SoC level, the Zynq UltraScale+ platform implements a system MMU (SMMU) 
[Ref 3]. Additionally, Advanced eXtensible Interface (AXI) and Advanced Peripheral Bus (APB) 
isolation blocks (AIB) are implemented throughout the Zynq UltraScale+ platform to prevent 
undesired access by an AXI/APB master to an AXI/APB slave. The device also implements an AXI 
timeout block (ATB) that prevents an AXI master from hanging when no response is received from 
an AXI slave. ATB is not necessarily an additional form of isolation, but it is an important Zynq 
UltraScale+ platform security feature, because an AXI master can recover if one of its AXI slaves 
locks up, preventing a simple denial of service (DoS) attack.

Software Enforced Isolation and the Secure Monitor
Just as TrustZone is used as a hardware-enforced mechanism to isolate a system into two separate 
worlds, an additional software-enforced mechanism called exception levels(1) is present on Armv8-
A processors, such as the Zynq UltraScale+ platform Arm Cortex-A53 processors [Ref 7]. 

There are non-secure exception levels (EL) when operating in the untrusted world and secure 
exception levels (SEL) when operating in the trusted world. Table 1 summarizes the exception levels 
and their normal use case. Notice that there is no SEL2 when operating in the trusted world, and 
that EL3 resides in the secure world, even though the name is not specified as SEL3.

For a processor to switch from executing in the untrusted world to the trusted world, a mechanism 
called the secure monitor handles this switching. In Arm systems, the secure monitor can only be 
executed out of EL3. This naming convention might seem to suggest that EL3 is not secure; 
however, EL3 is only accessible by issuing the secure monitor call (SMC) instruction [Ref 7] while the 
processor is operating in EL1, SEL1, or EL2. Arm has its own open-source secure monitor software 
called Arm Trusted Firmware (ATF) [Ref 8], and Xilinx supports the version of ATF for use with the 
Zynq UltraScale+ platform.

Figure 2 summarizes the use of hardware and software isolation in a TEE architecture highlighting 
the use of TrustZone and Arm exception levels. 

For comparison, Figure 3 illustrates an enhanced TEE system architecture, showing the additional 
layers of hardware isolation mechanisms in place, as implemented in the Zynq UltraScale+ 
platform. The architecture view is as seen from the Arm Cortex-A53 processors; for simplicity, the 
RPU and PL are treated as peripherals of the processor.

1. The 32-bit software enforcement mechanism is called processor mode for the 32-bit operation of the Arm Cortex-A53 and Arm 
Cortex-R5 processors, described in Arm’s technical documents [Ref 7].

Table  1: Arm Exception Level Summary

EL Untrusted World Use Case Trusted World Use Case SEL
EL0 Execution of user applications Execution of trusted applications SEL0

EL1 Execution of an operating system Execution of a trusted operating system SEL1

EL2 Execution of a hypervisor --- ---

EL3 Used for switching between the non-secure and secure worlds
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X-Ref Target - Figure 2

Figure 2: A Generic Armv8-A TEE Architecture with Hardware Isolation through TrustZone
Software Isolated through Arm Exception Levels

X-Ref Target - Figure 3

Figure 3: Zynq UltraScale+ Platform Armv8-A TEE Architecture with Enhanced Isolation
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The key to switching between the non-secure world and the secure world is the SCR_EL3 register 
[Ref 9], which can only be accessed while a processor is operating at the EL3 level. This is why the 
secure monitor is required to operate out of EL3. SCR stands for Secure Control Register; bits 3 
through 0 of the register are shown in Table 2. 

The most important bit in this register is the NS bit. When this bit is set, a processor operates in the 
untrusted world. When this bit gets cleared, the processor operates in the trusted world. To change 
worlds, a processor enters the secure monitor software via the SMC instruction, changes the NS bit, 
and then returns from the secure monitor to operate in either the trusted or untrusted world.

Three additional bit fields in the SCR_EL3 register are important: fast interrupt request (FIQ), 
interrupt request (IRQ), and external abort (EA) bits. These bits indicate whether interrupts are 
routed through the secure monitor or if they are routed through the hypervisor or operating 
system, depending on the processor’s configuration. Normally, FIQs are reserved for secure 
interrupts and IRQs are reserved for non-secure interrupts. Interrupt routing is also controlled by 
the GICv2 registers in the Zynq UltraScale+ platform [Ref 10], and access to the GICv2 registers is 
TrustZone-aware so that the interrupt registers can only be modified in the secure world. Passing 
interrupts through the secure monitor code in EL3 not only allows a flexible interrupt scheme, but 
ensures either secure or non-secure interrupts are handled in a timely manner. For example, if 
operating in the non-secure world, secure interrupts can route through the secure monitor and get 
handled immediately instead of being handled when the processor switches to the trusted world. 
Passing non-secure interrupts through the secure monitor allows checking of interrupt validity and 
possibly stopping any malicious interrupts from disrupting a system. These are just simple 
examples of interrupt routing, which is ultimately handled by the system architecture.

Table  2: SCR_EL3 Bit Assignments [3:0]

Bit Name Function

[3] EA

EA External Abort and SError Interrupt Routing. This bit controls which mode takes 
external aborts. The possible values are: 
0: External Aborts and SError Interrupts while executing at exception levels other than EL3 
are not taken in EL3. This is the reset value. 
1: External Aborts and SError Interrupts while executing at all exception levels are taken in 
EL3.

[2] FIQ

Physical FIQ Routing. The possible values are: 
0: Physical FIQ while executing at exception levels other than EL3 are not taken in EL3. This 
is the reset value. 
1: Physical FIQ while executing at all exception levels are taken in EL3.

[1] IRQ
Physical IRQ Routing. The possible values are: 
0: Physical IRQ while executing at exception levels other than EL3 are not taken in EL3. 
1: Physical IRQ while executing at all exception levels are taken in EL3.

[0] NS

Non-secure Bit. The possible values are: 
0: EL0 and EL1 are in Secure state, memory accesses from those exception levels can access 
Secure memory. This is the reset value. 
1: EL0 and EL1 are in Non-secure state, memory accesses from those exception levels cannot 
access Secure memory.
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Shared Memory
If a trusted application is to provide trusted services to the non-secure world, a mechanism for 
passing data back and forth is needed as well as TEE access to the non-secure memory. Non-secure 
memory access by a TEE is already accomplished on a TrustZone-aware system like the Zynq 
UltraScale+ platform. The most common way to pass data back and forth between the trusted and 
untrusted worlds is to designate a portion of memory for sharing. When operating in the non-
secure world, memory can be loaded, a TA called, and then read back when the TA is complete. 
While in the secure world, the secure OS or TA can place a copy of the memory into a portion of 
secure memory, operate directly on the non-secure memory, or change the state of the shared 
memory from non-secure to secure and then back to non-secure. Memory sharing operations are 
completely dependent on the TEE architecture.

Trusted Boot
For a TEE to operate in a secure manner, the TEE must be loaded in a secure manner; otherwise, any 
operations in the TEE cannot be considered secure. Xilinx provides all the necessary tools [Ref 11], 
and the Zynq UltraScale+ platform supports both authenticated and/or encrypted boot modes 
[Ref 3] [Ref 11].

TEE Compared to a Hypervisor
Background

There are two types of hypervisors: 

• Type 1 hypervisors execute directly on the hardware
• Type 2 hypervisors execute as applications on top of an OS

In this white paper, only Type 1 hypervisors are considered, as the security of Type 2 hypervisors is 
highly dependent on the underlying OS they run on.

A hypervisor is a piece of software running at EL2 that emulates hardware systems and makes them 
available as virtual machines (VMs). As hypervisors can usually execute several VMs in parallel by 
allocating processor time and memory to each VM, hypervisors sometimes provide VM-to-VM 
communication, either by emulating traditional communication peripherals or by implementing a 
custom interface.

Hypervisors and TEEs both enable independent execution environments, VMs, and secure 
applications, respectively. This implies that they both manage the allocation of resources. However, 
they differ greatly in the services they provide and in the interfaces they present to their execution 
environments. Hypervisors expose the low-level interfaces of the hardware systems they emulate, 
unlike OSes that expose high-level interfaces for application development. To develop applications 
on a VM, the applications are installed on the VM’s OS as needed.
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Security Functions Benefit from a Secure OS
Hardware interfaces are very low-level, and application developers usually rely on an OS to provide 
high-level services such as control of interrupts, memory management, and inter-process 
communication. Applications can be directly developed using low-level hardware, but this involves 
dealing with the complexity of the hardware interfaces. In the case of security functions, 
implementing them in bare-metal amounts to implementing high-level abstractions directly inside 
the security functions for every security function required in a system. Aside from the fact that this 
is unrealistically difficult, especially in the case of SoCs, developing the high-level abstractions 
required by each security function is prone to error, which greatly increases a system’s attack 
surface.

Hypervisors Do Not Replace the Use of a TEE
Even with secure hypervisors such as ProvenVisor [Ref 1], a hypervisor developed using deductive 
formal methods, there is no secure way of implementing security functions on the hypervisor itself. 
Developing security functions on individual bare-metal VMs to mitigate non-secure OS issues is 
possible, but the security function still has all the issues described above. The correct 
implementation of security functions depends on the correct implementation of the underlying OS, 
and developing secure applications on a non-secure OS in one of the VMs makes the security 
function vulnerable. The only viable solution is to resort to a TEE to host the security functions in a 
secure manner. However, a TEE does not replace the use of a hypervisor if virtualization needs to be 
implemented. It should be noted that a TEE can be used with or without the use a hypervisor.

ProvenCore TEE Running on the Zynq UltraScale+ 
Platform

Xilinx and Prove & Run have partnered together to port the EAL7 certified ProvenCore TEE [Ref 1] 
onto Zynq UltraScale+ devices. This enables the device to run a diverse set of security applications 
while reducing possible attacks. ProvenCore running on the Zynq UltraScale+ platform is shown in 
Figure 4. As with every port of ProvenCore, ProvenRun carefully designed the secure boot on the 
device. During boot, the first-stage boot loader (FSBL) loads ATF, which then loads ProvenCore in a 
secure mode. After the initial setup of ProvenCore, ProvenCore returns to ATF, which then boots 
Linux by launching U-Boot in non-secure mode.
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ProvenCore embeds a security driver that sets up security rules for peripheral access. On the Zynq 
UltraScale+ platform, this driver configures Arm TrustZone, the XMPU, and the XPPU to match the 
given security policy. The XMPU is used to guarantee that only ProvenCore can access its secure 
memory area. The XPPU is used to reserve either completely, or temporarily, at ProvenCore’s 
request, peripherals that the secure environment would like to use. The eMMC controller is 
dedicated to secure storage in the secure world, and the Ethernet controller is completely operated 
from the secure world. If Linux crashes or gets corrupted, ProvenCore’s secure peripherals continue 
to operate as normal and recover the system. ProvenCore also relies on the Zynq UltraScale+ 
platform’s cryptographic cores for accelerating cryptographic functionality.

Communication between Linux and ProvenCore is provided by the Linux TrustZone driver and 
enables communication between a Linux user space application and trusted application running 
inside of ProvenCore. The driver shares a common DRAM area to exchange requests and responses 
between the secure and non-secure world. Every connection through the driver between a user 
space application and a TA is known as a session in Prove & Run’s TEE terminology. Each session has 
a dedicated shared memory area and establishes its own communication protocol. World change 
requests are sent using two dedicated SMC calls and are dispatched using two reserved software-
generated interrupts managed by the Secure Monitor. One SMC call is required to switch from the 
untrusted world, normally Linux, into ProvenCore. The other SMC call is used to switch back from 
ProvenCore into the untrusted world. In addition to receiving SMC calls from the untrusted world 
to switch into the trusted world, ProvenCore implements a user-configurable timer so that 
ProvenCore can be run periodically without being called by the untrusted world. Most TEEs are 
scheduled to run when time is allocated by the non-secure OS.

X-Ref Target - Figure 4

Figure 4: ProvenCore Running on Zynq UltraScale+ Platform
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Since the PL of the Zynq UltraScale+ platform can propagate the secure status of a transaction 
through the TrustZone bit in the interconnect IP, ProvenCore also manages peripherals 
implemented in the PL through the combination of a driver running inside of ProvenCore as well as 
a Prove & Run hardware block running inside of the PL. This allows Prove & Run's TEE architecture 
to ban any non-secure access to any secure hardware running inside of the PL.

TEE Usage Examples
Increasing Security in Automotive

Increasingly, cars are connected to the outside environment. Many car manufacturers are opting for 
security architectures with multiple security domains that are compartmentalized using either 
hardware virtualization or multiple hardware devices. Some of these domains manage 
communications with untrusted environments and therefore are at the forefront when remote 
attacks occur. In some automotive architectures, an intrusion protection system (IPS) is deployed 
which scrutinizes all incoming traffic to detect possible attacks on the different communication 
layers. Unfortunately, communication stacks are complex and cannot be fully free from bugs. 
Attackers use these vulnerabilities coupled with additional vulnerabilities on the underlying non-
secure OS, which the IPS is running on, to take control. From there, attackers can circumvent all 
security functions intended to block malicious traffic from reaching the safety-critical domains of 
the car.

However, if the IPS runs on a secure OS, most of the remote attack risk can be mitigated. The secure 
OS alone has a much smaller attack surface than a typical non-secure OS, which mitigates the 
secure OS from being compromised. While the IPS operates in the secure world, the IPS can 
perform re-encapsulation of messages for the different layers of the communication protocol 
stack. This prevents attacks that use vulnerabilities in the implementation of communication stacks 
and decreases the attack surface even further. Additionally, an initial check of the conformity of the 
message’s payload can be implemented. In the end, messages from the secure OS that are 
transmitted to applications running on a non-secure OS have a reduced probability of being 
compromised.

In this example, using a secure hypervisor does not, on its own, solve the issue. A hypervisor 
architecture can dedicate a VM for hosting the IPS, but if the OS running on this VM can be 
compromised by incoming messages, then the OS is unable to mitigate being attacked. Messages 
transmitted from a VM containing the IPS to the other parts of the car can be as malicious as those 
coming directly from the outside. Therefore, a secure OS is necessary for the VM on which the IPS 
is running on.

Increasing Security in a Data Center
Applying algorithms for medical diagnostics can be computationally intensive, which motivates the 
use of cloud computing for offering these services. However, patient data, which is often very 
valuable to hackers, must be sent to a data center to be analyzed. Encrypted communication and 
storage help against data theft and usually rely on hardware security modules (HSM) for key 
management and cryptographic computations.
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In the typical architecture, as shown in Figure 5, a Linux server is in charge of establishing secure 
communication with the client by using the cryptographic services of an HSM. The server then 
performs the computations on the unencrypted patient’s data, which can involve using FPGA 
peripherals for increased speed. Afterwards, the server sends the data back to the client using the 
secure communication channel. The Linux server now has access to unencrypted patient data and 
diagnosis. A hacker can install back doors in the server or exploit common vulnerabilities to steal 
the data. A TEE, however, can run a secure OS like ProvenCore and keep all confidential patient data 
out of the non-secure Linux server. While inside the TEE, the patient data is securely decrypted, 
confidentially processed, securely re-encrypted, and then sent back safely through the Linux server 
without compromise. Moreover, any high-performance processing can be securely computed 
inside of the TEE because the PL on the Zynq UltraScale+ platform is TrustZone aware.

Conclusion
This white paper explored how a TEE running on the Zynq UltraScale+ platform greatly reduces the 
attack surface of security-critical applications and greatly increases system-wide security. By taking 
advantage of all the security features implemented on the Zynq UltraScale+ platform—including 
TrustZone, XMPU, XPPU, SMMU, AIB, Arm Exception Levels, Xilinx ATF, and trusted boot—a strong 
trusted execution environment can be created using only a single SoC. This white paper showed 
why a hypervisor still requires the use of a TEE to isolate security critical tasks, since those tasks 
might be running on potentially non-secure operating systems. The TEE architecture designed by 
Prove & Run showed how their secure OS (ProvenCore) was implemented using the Zynq 
UltraScale+ platform. Not only can a TEE be used across all markets, but an automotive application 
and a data center application were described in detail to show how a TEE greatly increases security 
in both applications.

Note: This white paper has been written in collaboration with our TEE partner Prove & Run.

X-Ref Target - Figure 5

Figure 5: A Typical Data Center Architecture Used for Analyzing Medical Data
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