
Summary
This application note describes the implementation and evaluation of a large multiply-add
systolic array designed for the acceleration of matrix multiplication for deep learning neural
network inference applications. This design is built on an array of 6144 DSPs in a 32×192
configuration, spanning all 3 super logic regions (SLRs) of the XCVU37P-2E FPGA. Timing closure
was achieved with a maximum operating frequency of 638 MHz.

Download the reference design files for this application note from the Xilinx® website. For
detailed information about the design files, see Reference Design.

Introduction
Matrix Multiplication in Neural Networks

Matrix multiplication is the most demanding operation in deep learning inference in terms of
computational resources. The number of multiply-add operations total many billions in modern
neural networks. Therefore, a competitive inference system requires a fast and efficient matrix
multiplier as the main computational engine. High throughput convolutional matrix multiplication
with systolic multiply-add arrays on FPGAs has been previously demonstrated at the maximum
FPGA operating frequency, ƒMAX [Ref 1] [Ref 2]. High computational efficiency of systolic arrays
in the acceleration of an image classification neural network has been demonstrated with careful
matching of the dimensions of the systolic array and neural network layers [Ref 3] [Ref 4].

Even though modern neural networks consist of a wide range of dimensions of layers, numbers
of channels, and kernels for image-processing networks, the matrix dimensions tend to be quite
large. Therefore, a single large systolic multiplier array, using the FPGA resources, is easily
programmable and can be readily and efficiently applied to any neural network.

Matrix-Matrix Multiplication Decomposed into Matrix-Vector

The matrix multiplication problem in a given neural network layer can be written as:

Equation 1: Matrix Multiplication

Y = AB + c1
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Here, the layer input operands are matrices A and B with dimensions [M×K] and [K×N],
respectively, a column vector c with dimensions [M×1], and a row vector 1 with dimensions
[1×N]. The resulting layer output, Y, has dimensions [M×N]. In image-processing layers, the
operands A and B can be regarded as weights and activations, respectively, and the vector c as
bias. The matrix inner product dimension, K, is the unrolled filter kernel, which is the product of
the filter dimensions and the number of input channels. The left-hand output dimension, M, maps
to the number of output channels. The right-hand output dimension, N, maps to the output
image area. The layer computation in Equation 1 can be efficiently performed as a series of N
independent matrix-vector multiplication operations of the [M×K] matrix A by a column vector b
with length [K].

Equation 1 is mapped to a hardware multiplier array that performs the operation in Equation 2
every clock cycle:

Equation 2: Hardware Multiplier Array Operation

y ' = A ' b ' + c '

The hardware performs a multiplication of matrix A' by a column vector b' with dimensions [m×k]
and [k×1], respectively, with an addition of a bias column vector c' with dimensions [m×k]. So, k is
the length of the inner product that can be performed every clock cycle, generating m
simultaneous outputs. In the implementation, there are m dot-product multiply-accumulation
cascade chains with length k. The right-hand vector operand b' is broadcast to all m cascade
chains, operating in parallel. Because the matrix-vector multiplication operation is the basis of
the accelerator operation, this hardware block is referenced as M×V.

Matrix Multiplication Mapped to M×V

The mapping of a matrix multiplication problem is shown in Figure 1. In this example, the matrix
multiplication inner product dimension, K, is mapped onto the M×V multiply-accumulate cascade
length, k. The following equation illustrates the minimum passes required to complete the matrix
inner dot product.

Ρk = ⎡
⎢K

k
⎤
⎥

Similarly, M, the number of rows in matrix A, is mapped onto the m output lanes of the M×V. The
following equation illustrates the minimum passes required to complete all M output rows.

Ρm = ⎡
⎢ M

m
⎤
⎥

Each inner dot-product pass is labeled as:

ρk ∈ ⎡
⎣0, Ρk

⎞
⎠

Each pass along the output row axis is labeled as:

ρm ∈ ⎡
⎣0, Ρm

⎞
⎠
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In general, K might not be an integer multiple of k, and M might not be an integer multiple of m.
So, some zero padding of operand matrices A and B might be required. The last pass along the
inner dot product axis or the output row axis with zero padding is shown in shaded gray areas at
the edges of matrices A and B in Figure 1.

Inner Dot Product Axis:

ρk = Ρk - 1

Output Row Axis:

ρm = Ρm - 1

The dimensions of zero-padded matrices Apad and Bpad are:

⎡
⎣Ρm m × Ρk k⎤

⎦

⎡
⎣Ρk k × N⎤

⎦

The left-hand operand of Equation 1, A, is divided into PmPk blocks, each with dimensions [m×k].
These data blocks, numbered PmPk– 1 in Figure 1, are loaded one after another into the A'
register of the M×V. Similarly, the right-hand operand of Equation 1, B, is divided into ΡkN
vectors, each with length [k], which are loaded into the b' input of the M×V. For each of the ρm
passes along the output row axis, a bias vector with length [m] is loaded into the c' input of the
M×V.

Multiplication Scheduling to Minimize Required Memory Bandwidth

Due to limited memory bandwidth, multiple cycles are required to load the entire sub-block A'
into the M×V register. Therefore, as-late-as-possible (ALAP) scheduling is used to hold the A' data
as long as possible while loading the complementary page. This minimizes the required memory
bandwidth for loading A'. Each of the ρm ρk A' sub-blocks is multiplied by N b' vectors
corresponding to the ρk index. This requires the accumulation of N partial sums for m outputs
corresponding to the ρm index. There is a maximum limit on the number of partial sums that can
be kept in memory: N ≤ Nacc, where Nacc is the maximum depth of the accumulator memory.
Operand B matrices with N ≥ Nacc are separated into smaller sub-matrices that satisfy this
constraint.

FPGA Acceleration of Matrix Multiplication for Neural Networks

XAPP1332 (v1.0) February 27, 2020  www.xilinx.com
Application Note  3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1332&Title=FPGA%20Acceleration%20of%20Matrix%20Multiplication%20for%20Neural%20Networks&releaseVersion=1.0&docPage=3


Figure 1: Matrix Multiplication mapping onto the MxV
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Operation Description
Precisions Supported (Input and Output)

The M×V currently supports precisions of matrix multiplication operands listed in the following
table. There are [32×192] physical multipliers implemented, capable of performing multiply-add
operations with 16-bit operands every clock cycle. With 8-bit operands, the number of output
rows can be doubled to 64, with a small overhead in the dot-product accumulation chain [Ref 5]
[Ref 6]. The precision of the output result is reduced from 64 bits to 32 bits for 8-bit operands.

With 16-bit operands, 1 row of matrix A' is loaded every cycle. This value is labeled as mA in the
following table. For 8-bit operands, mA =2, because the maximum memory bandwidth is held
constant. Lastly, the number of cycles to fully populate one page of the A' register is the same for
both operand precisions, because the following equation is used for both cases.

m phys = m
mA

= 32
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Table 1: Supported Input Operation and Precision by the MxV

A type B type Y type M×V size [m x k] A' Rows loaded per cycle
mA

int8 int8 int32 64×192 2

uint8 int8 int32 64×192 2

int8 uint8 int32 64×192 2

uint8 uint8 uint32 64×192 2

int16 int16 int64 32×192 1

uint16 int16 int64 32×192 1

int16 uint16 int64 32×192 1

uint16 uint16 uint64 32×192 1

Scaling

Scaling is often used in neural networks to retain dynamic operating range with quantized layer
operands. The dynamic range for the precisions listed in Table 1 for the matrix multiplication
operands in Equation 1 can be expanded through the use of scaling factors. The M×V supports
independent scaling control of the matrix multiplication operands along the M-element row axis
of matrix operand A. So, sA and sc, the scaling factors for matrix multiplication operand A and bias
vector c, respectively, are both vectors with length M. The scaling factor for matrix multiplication
operand B, sb, is a scalar value.

Clipping

The matrix multiplication output can be passed through a fused non-linear clipping operation.
This operation, when enabled, restricts the output to be between two values, clipmin and clipmax:

Y o = min⎛
⎝clipmax, max ⎛

⎝Y , clipmin
⎞
⎠
⎞
⎠

Python User Interface

A set of user interface software tools is provided in the python 3 operating environment as part
of the M×V package. These tools are developed to accept the A, B, and c matrix multiplication
operands as input to the software in the form of numpy arrays [Ref 7], in one of the formats
listed in Table 1. The user interface software generates the corresponding formatted binary
vector inputs to the M×V, as well as the expected reference data vectors. A software usage
example is provided in the package in \python\MxV_genInput.py python script. In this
script, the command and data input vectors to the M×V are generated by the
xal.MxV_queues.gen_queue_inputs() function after all the parameters are defined. As
part of the demonstration of correctness, the reference inputs stored in SRAM in this package
include the vectors generated by this example script.
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Vivado Tcl Scripts

The package includes Tcl scripts that are used in the Vivado® software for precise control of
resource placement for DSP SuperTile arrays, control of resource placement and routing at SLR
crossings, and timing constraint control by specifying multi-cycle paths. For a technical
description of the DSP Supertile, refer to A High-Throughput Reconfigurable Processing Array for
Neural Network [Ref 1].

Implementation Results on XCVU37P-2E
Physical Placement Picture and Description

An example implementation of a 32×192 multiplier array that spans all 3 SLRs of the
XCVU37P-2E FPGA is shown in the following figure. This example uses 64 DSP rows in each
SLR.
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Figure 2: View of a Vivado Implementation of a 32x192 DSP Array on XCVU37P-2E FPGA

The maximum operation frequency of this design on the XCVU37P-2E FPGA is 638 MHz. The
implementation resource usage data of this design is shown in the following figure.
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Figure 3: XCVU37P-2E FPGA Resource Utilization

Reference Example Data (Inputs and Expected Output) in SRAM

To demonstrate correctness, example cases for M×V command and data inputs as well as output
reference data are listed in the following table.

Table 2: Reference Example Test Cases Provided in SRAM Intialization

Test Case A type B type M K N

1 int8 int8 128 384 32

2 uint8 int8 128 384 32

3 int8 uint8 128 384 32

4 uint8 uint8 128 384 32

Output Signals: Done and Pass/Fail

As part of the reference implementation, the M×V block provides an output pass/fail indicator
signal after making a comparison of the generated output data with the provided reference
output values.

Reference Design
Download the reference design files for this application note from the Xilinx® website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 3: Reference Design Matrix

Parameter Description
General

Developer name Xilinx

Target devices XCVU37P-2E FPGA
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Table 3: Reference Design Matrix (cont'd)

Parameter Description
Source code provided? Yes

Source code format SystemVerilog

Design uses code or IP from existing reference design,
application note, third party or Vivado® software?

ChipScope™ VIO

Simulation

Functional simulation performed Yes

Timing simulation performed? No

Test bench provided for functional and timing simulation? Yes (Functional simulation)

Test bench format SystemVerilog

Simulator software and version XSIM 2019.1

SPICE/IBIS simulations No

Implementation

Synthesis software tools/versions used Vivado® synthesis

Implementation software tool(s) and version Vivado Implementation 2019.1

Static timing analysis performed? Yes

Conclusion
This application note presented a reference design for a multi-precision integer matrix-vector
multiplier (MxV). The reference design on XCVU37P-2E FPGA supports both 8-bit and 16-bit
input operands, as well as 32-bit and 64-bit accumulators. Although the XCVU37P-2E FPGA
consists of three SLRs, the MxV operates as if the FPGA were a monolithic device running at 638
MHz. Such a design achieves the highest throughput and the lowest latency for a given amount
of DSP resources on multi-SLR devices. In 8-bit mode, the MxV achieves a throughput of 15.7
Top/sec, and in 16-bit mode, the throughput is 7.8 Top/sec. The reference design includes not
only the HDL design and Vivado® tools physical design scripts, but also Python scripts for
verifying block-matrix multiplication. This reference design can therefore become an integral part
of a low-latency, high-throughput reconfigurable neural-network accelerator.
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action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
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errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
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AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
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OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
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