
PetaLinux Tools
Documentation

Reference Guide

UG1144 (v2020.1) June 3, 2020

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1144

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/03/2020 Version 2020.1

Chapter 2: Setting Up Your Environment Added the Installing a Preferred eSDK as part of the
PetaLinux Tool section.

Chapter 4: Configuring and Building Added the PetaLinux Commands with Equivalent devtool
Commands section.

Chapter 6: Upgrading the Workspace Added new sections: petalinux-upgrade Options, Upgrading
Between Minor Releases (2020.1 Tool with 2020.2 Tool) ,
Upgrading the Installed Tool with More Platforms, and
Upgrading the Installed Tool with your Customized
Platform.

Chapter 7: Customizing the Project Added new sections: Creating Partitioned Images Using Wic
and Configuring SD Card ext File System Boot.

Chapter 8: Customizing the Root File System Added the Appending Root File System Packages section.

Chapter 10: Advanced Configurations Updated PetaLinux Menuconfig System.

Chapter 11: Yocto Features Added the Adding Extra Users to the PetaLinux System
section.

Appendix A: Migration Added Tool/Project Directory Structure.

Revision History

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview.. 7
Introduction... 7

Chapter 2: Setting Up Your Environment.. 9
Installation Steps...9
PetaLinux Working Environment Setup... 14
Design Flow Overview...15

Chapter 3: Creating a Project..17
PetaLinux BSP Installation... 17
Configuring Hardware Platform with Vivado Design Suite..18
Exporting Hardware Platform to PetaLinux Project... 20
Creating an Empty Project from a Template..21

Chapter 4: Configuring and Building..23
Version Control..23
Importing Hardware Configuration..24
Build System Image.. 26
Generate Boot Image for Zynq UltraScale+ MPSoC..28
Generate Boot Image for Zynq-7000 Devices..29
Generate Boot Image for MicroBlaze Processor...30
Modify Bitstream File for MicroBlaze Processor... 31
Build Optimizations...31

Chapter 5: Booting and Packaging.. 34
Packaging Prebuilt Images.. 34
Using petalinux-boot Command with Prebuilt Images..35
Booting a PetaLinux Image on QEMU.. 36
Boot a PetaLinux Image on Hardware with an SD Card...48
Boot a PetaLinux Image on Hardware with JTAG..52
Boot a PetaLinux Image on Hardware with TFTP..56

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=3

BSP Packaging... 58

Chapter 6: Upgrading the Workspace...60
petalinux-upgrade Options..60
Upgrading Between Minor Releases (2020.1 Tool with 2020.2 Tool)60
Upgrading the Installed Tool with More Platforms.. 63
Upgrading the Installed Tool with your Customized Platform..63

Chapter 7: Customizing the Project.. 65
Firmware Version Configuration... 65
Root File System Type Configuration..65
Boot Images Storage Configuration...66
Primary Flash Partition Configuration.. 68
Managing Image Size... 68
Configuring INITRD BOOT... 69
Configuring INITRAMFS Boot.. 70
Configure TFTP Boot... 71
Configuring NFS Boot... 72
Configuring JFFS2 Boot... 74
Configuring SD Card ext File System Boot... 76
Creating Partitioned Images Using Wic... 78

Chapter 8: Customizing the Root File System... 80
Including Prebuilt Libraries..80
Including Prebuilt Applications... 82
Creating and Adding Custom Libraries.. 83
Testing User Libraries... 84
Creating and Adding Custom Applications.. 86
Creating and Adding Custom Kernel Modules.. 87
Building User Applications... 89
Testing User Applications...90
Building User Modules... 91
PetaLinux Auto Login..92
Application Auto Run at Startup..93
Adding Layers.. 94
Adding an Existing Recipe into the Root File System..95
Adding a Package Group..96
Appending Root File System Packages...97

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=4

Chapter 9: Debugging... 98
Debugging the Linux Kernel in QEMU..98
Debugging Applications with TCF Agent..100
Debugging Zynq UltraScale+ MPSoC Applications with GDB.. 105
Debugging Individual PetaLinux Components... 108

Chapter 10: Advanced Configurations...110
Menuconfig Usage.. 110
PetaLinux Menuconfig System.. 110
Open Source Bootgen for On-target Use for Zynq Devices and Zynq UltraScale+

MPSoC..127
Configuring Out-of-tree Build..127
Configuring Project Components... 132

Chapter 11: Yocto Features... 138
SDK Generation (Target Sysroot Generation)..138
Accessing BitBake/Devtool in a Project..140
Shared State Cache... 141
Downloading Mirrors..142
Machine Support... 143
SoC Variant Support..144
Image Features..145
Filtering RootFS Packages Based on License...145
Creating and Adding Patches For Software Components within a PetaLinux Project... 145
Adding Extra Users to the PetaLinux System.. 146

Chapter 12: Technical FAQs..148
Troubleshooting ... 148

Appendix A: Migration... 153
Tool/Project Directory Structure... 153
DT Overlay Support...153
Linux and U-Boot Default Configurations..153
Build Changes..154
Menuconfig Changes..154

Appendix B: PetaLinux Project Structure... 156
Project Layers.. 159

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=5

Appendix C: Generating Boot Components... 160
First Stage Boot Loader for Zynq UltraScale+ and Zynq-7000 Devices.............................160
Arm Trusted Firmware (ATF)..161
PMU Firmware... 161
FS-Boot for MicroBlaze Platform Only..162

Appendix D: QEMU Virtual Networking Modes... 164
Redirecting Ports in Non-root Mode...164
Specifying the QEMU Virtual Subnet.. 165

Appendix E: Xilinx IP Models Supported by QEMU.................................. 166

Appendix F: Xen Zynq UltraScale+ MPSoC Example................................ 167
Prerequisites.. 167
Boot Prebuilt Linux as dom0..167
Rebuild Xen.. 168
Boot Built Linux as dom0... 169

Appendix G: Booting Prebuilt OpenAMP... 170

Appendix H: Additional Resources and Legal Notices...........................171
Xilinx Resources...171
Documentation Navigator and Design Hubs.. 171
References..171
Please Read: Important Legal Notices... 172

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=6

Chapter 1

Overview

Introduction
PetaLinux is an embedded Linux Software Development Kit (SDK) targeting FPGA-based System-
on-Chip designs. This guide helps the reader to familiarize with the tool enabling overall usage of
PetaLinux.

You are assumed to have basic Linux knowledge, such as how to run Linux commands. You
should be aware of OS and host system features, such as OS version, Linux distribution, security
privileges, and basic Yocto concepts.

The PetaLinux tool contains:

• Yocto Extensible SDK (eSDK)

• XSCT (Xilinx Software Command-Line Tool) and toolchains

• PetaLinux CLI tools

Note: Vitis™ unified software platform is the integrated design environment (IDE) for creating embedded
applications on Xilinx microprocessors. Refer to Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400) for more details.

PetaLinux SDK is a Xilinx development tool that contains everything necessary to build, develop, test, and
deploy embedded Linux systems.

Yocto Extensible SDK

The following table details the four extensible SDKs installed.

Table 1: Extensible SDKs

Path Architecture
$PETALINUX/components/yocto/source/aarch64 Zynq® UltraScale+™ MPSoC
$PETALINUX/components/yocto/source/arm Zynq-7000 devices
$PETALINUX/components/yocto/source/
microblaze_full

MicroBlaze™ platform full designs

$PETALINUX/components/yocto/source/
microblaze_lite

MicroBlaze platform lite designs

Chapter 1: Overview

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 7Send Feedback

https://wiki.yoctoproject.org/wiki/FAQ
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#sdk-extensible
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=7

Note: Earlier, the eSDKs were extracted in the specified path but now they are in tar. For 2020.1 and future
releases, your eSDK scripts have the same name and are extracted into <plnx-proj-root>/
components/yocto when you run the petalinux-config or the petalinux-build command in
the PetaLinux project. The project extracts the corresponding eSDK, for example, if you create a Zynq
UltraScale+ MPSoC project, then only the aarch64 eSDK is extracted into the <plnx-proj-root>/
components/yocto project.

XSCT and toolchains

For all embedded software applications (non-Linux), the PetaLinux tool uses XSCT underneath.
The Linux toolchain for all three architectures is from Yocto.

PetaLinux Command Line Interface (CLI) tools

This contains all the PetaLinux commands that you require. The CLI command tools are:

• petalinux-create

• petalinux-config

• petalinux-build

• petalinux-util

• petalinux-package

• petalinux-upgrade

Chapter 1: Overview

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=8

Chapter 2

Setting Up Your Environment

Installation Steps
Installation Requirements
The PetaLinux tools installation requirements are:

• Minimum workstation requirements:

○ 8 GB RAM (recommended minimum for Xilinx® tools)

○ 2 GHz CPU clock or equivalent (minimum of eight cores)

○ 100 GB free HDD space

○ Supported OS:

- Red Hat Enterprise Workstation/Server 7.4, 7.5, 7.6, 7.7, 8.1 (64-bit)

- CentOS Workstation/Server 7.4, 7.5, 7.6, 7.7, 8.1 (64-bit)

- Ubuntu Linux Workstation/Server 16.04.5, 16.04.6, 18.04.1, 18.04.2, 18.04.3, 18.04.4
(64-bit)

• You need to have root access to install the required packages mentioned in the following
table. The PetaLinux tools need to be installed as a non-root user.

• PetaLinux requires a number of standard development tools and libraries to be installed on
your Linux host workstation. Install the libraries and tools listed in the following table on the
host Linux.

• PetaLinux tools require that your host system /bin/sh is 'bash'. If you are using Ubuntu
distribution and your /bin/sh is 'dash', consult your system administrator to change your
default system shell /bin/sh with the sudo dpkg-reconfigure dash command.

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=9

Table 2: Packages and Linux Workstation Environments

Tool / Library
CentOS Workstation/

Server 7.4, 7.5, 7.6, 7.7, 8.1
(64-bit)

Red Hat Enterprise
Workstation/Server 7.4,
7.5, 7.6, 7.7, 8.1 (64-bit)

Ubuntu Linux
Workstation/Server

16.04.5, 16.04.6, 18.04.1,
18.04.2, 18.04.3, 18.04.4

(64-bit)
ip iproute iproute iproute

gcc gcc gcc gcc

g++ (gcc-c++) gcc-c++ gcc-c++ gcc-c++

netstat net-tools net-tools net-tools

ncurses
devel

ncurses
-devel

ncurses
-devel

libncurses5
-dev

zlib devel (also,
install 32-bit of
this version)

zlib-devel zlib-devel zlib1g:i386

openssl
devel

openssl
-devel

openssl
-devel 1.0

libssl
-dev

flex flex flex flex

bison bison bison bison

libselinux libselinux libselinux libselinux1

xterm xterm xterm xterm

autoconf autoconf autoconf autoconf

libtool libtool libtool libtool

texinfo texinfo texinfo texinfo

zlib1g-dev - - zlib1g-dev

gcc-multilib - - gcc-multilib

build-essential - - build-essential

SDL-devel SDL-devel SDL-devel -

glibc-devel glibc-devel glibc-devel -

32-bit glibc glibc glibc -

glib2-devel glib2-devel glib2-devel -

automake automake automake -

screen screen screen screen

pax pax pax pax

libstdc++ libstdc++ libstdc++ -

gawk gawk gawk gawk

python python python python

Note: For the exact package versions, refer to the PetaLinux 2020.1 Release Notes and Master Answer
Record: 73296.

CAUTION! Consult your system administrator if you are not sure about the correct procedures for host system
package management.

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 10Send Feedback

https://www.xilinx.com/support/answers/73686.html
https://www.xilinx.com/support/answers/73296.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=10

IMPORTANT! PetaLinux 2020.1 works only with hardware designs exported from Vivado® Design Suite
2020.1.

Prerequisites
• The PetaLinux tools installation requirements are met. See the Installation Requirements for

more information.

• The PetaLinux installer is downloaded. You can download PetaLinux installer from PetaLinux
Downloads.

Installing the PetaLinux Tool
Without any options, the PetaLinux tool are installed into the current working directory.

./petalinux-v<petalinux-version>-final-installer.run

Alternatively, you can specify an installation path.

./petalinux-v<petalinux-version>-final-installer.run [--log <LOGFILE>] [-
d|--dir <INSTALL_DIR>] [options]

Table 3: PetaLinux Installer Options

Options Description
--log <LOGFILE> Specifies where the logfile should be created. By default, it is

petalinux_installation_log in your working directory.

-d|--dir [INSTALL_DIR] Specifies the directory where you want to install the tool kit.
If not specified, the tool kit is installed in your working
directory.

-p|--platform <arch_name> Specifies the architecture:

aarch64: Sources for Zynq UltraScale+ MPSoC.
arm: sources for Zynq devices.
microblaze_lite: sources for microblaze_lite
microblaze_full: sources for microblaze_full

For example: To install PetaLinux tools under /opt/pkg/petalinux/<petalinux-
version>:

$ mkdir -p /opt/pkg/petalinux/<petalinux-version>
$./petalinux-v<petalinux-version>-final-installer.run --dir /opt/pkg/
petalinux/<petalinux-version>

Note: Do not change the install directory permissions to CHMOD 775 as it might cause BitBake errors.

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=embedded-design-tools.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=11

This installs the PetaLinux tool into the /opt/pkg/petalinux/<petalinux-version>
directory. By default, it installs all the four eSDKs. To install a specific eSDK as part of the
PetaLinux tool, see Installing a Preferred eSDK as part of the PetaLinux Tool.

IMPORTANT! Once installed, you cannot move or copy the installed directory. In the above example, you
cannot move or copy /opt/pkg/petalinux/<petalinux-version>  because the full path is stored in
the Yocto e-SDK environment file.

Note: You cannot install the tool as a root user. Ensure that /opt/pkg/petalinux is writeable. You can
change the permissions after installation to make it globally read-execute (0755). It is not mandatory to
install the tool in /opt/pkg/petalinux directory. You can install it at any location that has the 755
permissions.

Reading and agreeing to the PetaLinux End User License Agreement (EULA) is a required and
integral part of the PetaLinux tools installation process. You can read the license agreement prior
to running the installation. If you wish to keep the license for your records, the licenses are
available in plain ASCII text in the following files:

• $PETALINUX/etc/license/petalinux_EULA.txt: EULA specifies in detail the rights
and restrictions that apply to PetaLinux.

• $PETALINUX/etc/license/Third_Party_Software_End_User_License_Agree
ment.txt: This third party license agreement details the licenses of the distributable and
non-distributable components in PetaLinux tools.

By default, the WebTalk option is disabled to send tools usage statistics back to Xilinx. You can
turn on the WebTalk feature by running the petalinux-util --webtalk command after the
installation is complete.

IMPORTANT! Before running the PetaLinux command, you need to source PetaLinux settings. For more
information, see PetaLinux Working Environment Setup.

$ petalinux-util --webtalk on

Installing a Preferred eSDK as part of the PetaLinux Tool

As described in Installing the PetaLinux Tool, the PetaLinux tool has four eSDKs: aarch64, arm,
microblaze_full and microblaze_lite. While installing the tool, you can specify your preferred
eSDK, for example, if you are working on a Zynq platform, you can only install the arm eSDK into
the PetaLinux tool. However, by default, all platform eSDKs are installed into the tool install
directory. To install the desired eSDK, follow these examples:

• To install eSDKs for all Xilinx supported architectures like Zynq, Zynq UltraScale+ MPSoC,
microblaze_lite, and microblaze_full:

 $./petalinux-v<petalinux-version>-final-installer.run --dir
<INSTALL_DIR>

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=12

• To install only the Zynq eSDK for arm architecture

$./petalinux-v<petalinux-version>-final-installer.run --dir
<INSTALL_DIR> --platform "arm"

• To install the Zynq and Zynq UltraScale+ MPSoC eSDKs for arm and aarch64 architecture

$./petalinux-v<petalinux-version>-final-installer.run --dir
<INSTALL_DIR> --platform "arm aarch64"

• To install microblaze_lite and microblaze_full eSDKs for MicroBlaze architecture

$./petalinux-v<petalinux-version>-final-installer.run --dir
<INSTALL_DIR> --platform "microblaze_lite microblaze_full"

Troubleshooting
This section describes some common issues you may experience while installing the PetaLinux
tool. If the PetaLinux tool installation fails, the file petalinux_installation_log is
generated in your PetaLinux installation directory.

Table 4: PetaLinux Installation Troubleshooting

Problem / Error Message Description and Solution
WARNING: You have less than 1 GB
free space on the installation
drive

Problem Description:
This warning message indicates that the installation drive is almost full. You
might not have enough free space to develop the hardware project and/or
software project after the installation.
Solution:
Clean up the installation drive to clear some more free space.
Alternatively, move PetaLinux installation to another hard disk drive.

WARNING: No tftp server found Problem Description:
This warning message indicates that you do not have a TFTP service running
on the workstation. Without a TFTP service, you cannot download Linux
system images to the target system using the U-Boot network/TFTP
capabilities. This warning can be ignored for other boot modes.
Solution:
Enable the TFTP service on your workstation. If you are unsure how to enable
this service, contact your system administrator.

ERROR: GCC is not installed -
unable to continue. Please
install and retry

Problem Description:
This error message indicates that you do not have gcc installed on the host
workstation.
Solution:
Install gcc using your Linux workstation package management system. If you
are unsure how to do this, contact your system administrator. See
Installation Steps.

ERROR: You are missing the
following system tools required
by PetaLinux: missing-tools-list

or
ERROR: You are missing these
development libraries required by
PetaLinux: missing-library-list

Problem Description:
This error message indicates that you do not have the required tools or
libraries listed in the "missing-tools-list" or "missing-library-list".
Solution:
Install the packages of the missing tools. For more information, see
Installation Requirements.

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=13

Table 4: PetaLinux Installation Troubleshooting (cont'd)

Problem / Error Message Description and Solution
./petalinux-v<petalinux-version>-
final-installer.run: line 52:
petalinux_installation_log:
Permission denied

Problem Description:
This error message indicates that PetaLinux install directory does not have
writable permissions.
Solution:
Give 755 permissions to the install directory.

PetaLinux Working Environment Setup
After the installation, the remaining setup is completed automatically by sourcing the provided
settings scripts.

Prerequisites
This section assumes that the PetaLinux tools installation is complete. For more information, see
Installation Steps.

Steps to Set Up PetaLinux Working Environment
1. Source the appropriate settings script:

• For Bash as user login shell:

$ source <path-to-installed-PetaLinux>/settings.sh

• For C shell as user login shell:

$ source <path-to-installed-PetaLinux>/settings.csh

Below is an example of the output when sourcing the setup script for the first time:

PetaLinux environment set to '/opt/pkg/petalinux'
INFO: Checking free disk space
INFO: Checking installed tools
INFO: Checking installed development libraries
INFO: Checking network and other services
WARNING: No tftp server found - please refer to "UG1144 2020.1
PetaLinux Tools Documentation Reference Guide" for its impact and
solution

2. Verify that the working environment has been set:

$ echo $PETALINUX

Example output: /opt/pkg/petalinux

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=14

Environment variable $PETALINUX should point to the installed PetaLinux path. The output
may be different from this example based on the PetaLinux installation path.

Troubleshooting
This section describes some common issues that you may experience while setting up PetaLinux
Working Environment.

Table 5: PetaLinux Working Environment Troubleshooting

Problem / Error Message Description and Solution
WARNING: /bin/sh is not
bash

Problem Description:
This warning message indicates that your default shell is linked to dash.
Solution:
PetaLinux tools require your host system /bin/sh is bash. If you are using Ubuntu
distribution and your /bin/sh is dash, consult your system administrator to change
your default host system /bin/sh with the sudo dpkg-reconfigure dash
command.

Failed to open PetaLinux
lib

Problem Description:
This error message indicates that a PetaLinux library failed to load. The possible
reasons are:

• The PetaLinux settings.sh has not been loaded.

• The Linux Kernel that is running has SELinux configured. This can cause issues
with regards to security context and loading libraries.

Solution:

1. Source the settings.sh script from the top-level PetaLinux directory. For more
information, see PetaLinux Working Environment Setup.

2. If you have SELinux enabled, determine if SELinux is in enforcing mode. If
SELinux is configured in enforcing mode, either reconfigure SELinux to
permissive mode (see the SELinux manual) or change the security context of the
libraries to allow access.

$ cd $PETALINUX/tools/xsct/lib/lnx64.o

$ chcon -R -t textrel_shlib_t lib

Design Flow Overview
In general, the PetaLinux tools follow a sequential workflow model. The table below provides an
example design workflow, demonstrating the order in which the tasks should be completed and
the corresponding tool or workflow for that task.

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=15

Table 6: Design Flow Overview

Design Flow Step Tool / Workflow
Hardware platform creation (for custom hardware only) Vivado® design tools

Create a PetaLinux project petalinux-create -t project

Initialize a PetaLinux project (for custom hardware only) petalinux-config --get-hw-description

Configure system-level options petalinux-config

Create user components petalinux-create -t COMPONENT

Configure the Linux kernel petalinux-config -c kernel

Configure the root filesystem petalinux-config -c rootfs

Build the system petalinux-build

Package for deploying the system petalinux-package

Boot the system for testing petalinux-boot

Chapter 2: Setting Up Your Environment

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=16

Chapter 3

Creating a Project

PetaLinux BSP Installation
PetaLinux board support packages (BSPs) are reference designs on supported boards for you to
start working with and customizing your own projects. In addition, these designs can be used as a
basis for creating your own projects on supported boards. PetaLinux BSPs are provided in the
form of installable BSP files, and include all necessary design and configuration files, pre-built and
tested hardware, and software images ready for downloading on your board or for booting in the
QEMU system emulation environment. You can download a BSP to any location of your choice.

BSPs are not included in the PetaLinux tools installer and need to be downloaded and installed
separately. PetaLinux BSP packages are available on the Xilinx.com Download Center. There is a
README in each BSP which explains the details of the BSP.

Note: Download only the BSPs you need.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• PetaLinux BSP is downloaded. You can download PetaLinux BSP from PetaLinux Downloads.

• PetaLinux Working Environment Setup is completed. For more details, see PetaLinux Working
Environment Setup.

Create a Project from a BSP
1. Change to the directory under which you want PetaLinux projects to be created. For

example, if you want to create projects under /home/user:

$ cd /home/user

2. Run petalinux-create command on the command console:

petalinux-create -t project -s <path-to-bsp>

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 17Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=17

The board being referenced is based on the BSP installed. The output is similar to the
following output:

INFO: Create project:
INFO: Projects:
INFO: * xilinx-zcu102-v<petalinux-version>
INFO: has been successfully installed to /home/user/
INFO: New project successfully created in /home/user/

In the above example, when the command runs, it tells you the projects that are extracted
and installed from the BSP. If the specified location is on the Network File System (NFS), it
changes the TMPDIR to /tmp/<projname-timestamp-id>; otherwise, it is set to
$PROOT/build/tmp.

If /tmp/<projname_timestamp> is also on NFS, then it throws an error. You can change
TMPDIR anytime through petalinux-config → Yocto-settings. Do not configure the same
location as TMPDIR for two different PetaLinux projects as it can cause build errors.

Run ls from /home/user to see the created project(s). For more details on the structure of
a PetaLinux project, see Appendix B: PetaLinux Project Structure.

CAUTION! Do not create PetaLinux projects in the install area and do not use the install area as a tmp build
area.

Troubleshooting
This section describes some common issues you may experience while installing PetaLinux BSP.

Table 7: PetaLinux BSP Installation Troubleshooting

Problem / Error Message Description and Solution
petalinux-create: command not found Problem Description:

This message indicates that it is unable to find petalinux-
create command and therefore it cannot proceed with BSP
installation.
Solution:
You have to setup your environment for PetaLinux tools. For
more information, see the PetaLinux Working Environment
Setup.

Configuring Hardware Platform with Vivado
Design Suite

This section describes how to make a hardware platform ready for PetaLinux.

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=18

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• Vivado® Design Suite is installed. You can download Vivado Design Suite from Vivado Design
Tool Downloads.

• You have set up the Vivado tools working environment. If you have not, source the
appropriate settings scripts as follows:

$ source <path-to-installed-Xilinx-Vivado>/settings64.sh

Note: You can have Vivado tools set up on a different machine; it is not necessary to have PetaLinux
and Vivado tools set up on the same machine.

• You are familiar with the Vivado Design Suite and the Vitis™ software development platform.
For more information, see the Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400).

Configure a Hardware Platform for Linux
You can create your own hardware platform with Vivado® tools. Regardless of how the hardware
platform is created and configured, there are a small number of hardware IP and software
platform configuration changes required to make the hardware platform Linux ready. These are
described below:

Zynq UltraScale+ MPSoC

The following is a list of hardware requirements for a Zynq® UltraScale+™ MPSoC hardware
project to boot Linux:

1. External memory of, at least, 64 MB (required)

2. UART for serial console (required)

3. Non-volatile memory (optional), for example, QSPI Flash and SD/MMC

4. Ethernet (optional, essential for network access)

IMPORTANT! If soft IP with interrupt or external PHY device with interrupt is used, ensure the interrupt signal
is connected.

Zynq-7000 Devices

The following is a list of hardware requirements for a Zynq-7000 hardware project to boot Linux:

1. One Triple Timer Counter (TTC) (required)

IMPORTANT! If multiple TTCs are enabled, the Zynq-7000 Linux kernel uses the first TTC block from the
device tree. Please make sure the TTC is not used by others.

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 19Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=19

2. External memory controller with at least 32 MB of memory (required)

3. UART for serial console (required)

4. Non-volatile memory (optional), for example, QSPI Flash and SD/MMC

5. Ethernet (optional, essential for network access)

IMPORTANT! If soft IP is used, ensure the interrupt signal is connected. If soft IP with interrupt or external
PHY device with interrupt is used, ensure the interrupt signal is connected.

MicroBlaze processors (AXI)

The following is a list of requirements for a MicroBlaze™ hardware project to boot Linux:

1. IP core check list:

• External memory controller with at least 32 MB of memory (required)

• Dual channel timer with interrupt connected (required)

• UART with interrupt connected for serial console (required)

• Non-volatile memory such as Linear Flash or SPI Flash (required)

• Ethernet with interrupt connected (optional, but required for network access)

2. MicroBlaze processor configuration:

• MicroBlaze processors with MMU support by selecting either Linux with MMU or low-end
Linux with MMU configuration template in the MicroBlaze configuration wizard.

Note: Do not disable any instruction set related options that are enabled by the template, unless
you understand the implications of such a change.

• MicroBlaze processor initial boot loader fs-boot needs minimum 4 KB of BRAM for parallel
flash and 8 KB for SPI flash when the system boots from non-volatile memory.

Exporting Hardware Platform to PetaLinux
Project

This section describes how to export a hardware platform to a PetaLinux project.

Prerequisites
This section assumes that a hardware platform is created with the Vivado Design Suite. For more
information, see Configuring Hardware Platform with Vivado Design Suite.

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=20

Exporting Hardware Platform
After you have configured your hardware project, the PetaLinux project requires a hardware
description file (.xsa file) with information about the processing system. You can get the
hardware description file by running Export Hardware from the Vivado® Design Suite.

During project initialization (or update), PetaLinux generates a device tree source file, U-Boot
configuration header files (if auto config enabled for U-Boot), and enables the Linux kernel
drivers (if auto config enabled for Linux) based on the hardware description file. These details are
discussed in Appendix B: PetaLinux Project Structure.

For Zynq® UltraScale+™ MPSoC platform, you need to boot with the Platform Management Unit
(PMU) firmware and ATF. See Appendix C: Generating Boot Components for building PMU
firmware and ATF. If you want a first stage boot loader (FSBL) built for Cortex™-R5F boot, you
have to build it with the Vitis™ software platform because the FSBL built with PetaLinux tools is
for Cortex-A53 boot. For details on how to build the FSBL for Cortex-R5F with the Vitis software
platform, see the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137).

Creating an Empty Project from a Template
This section describes how to create an empty project from a template. Projects created from
templates must be configured to an actual hardware instance before they can be built.

Prerequisites
This section assumes that the PetaLinux working environment setup is complete. For more
information, see PetaLinux Working Environment Setup.

Create New Project
The petalinux-create command is used to create a new PetaLinux project:

$ petalinux-create --type project --template <PLATFORM> --name
<PROJECT_NAME>

The parameters are as follows:

• --template <PLATFORM> - The following platform types are supported:

○ zynqMP (for Zynq UltraScale+ MPSoC)

○ zynq (for Zynq-7000 devices)

○ microblaze (for MicroBlaze™ processor)

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 21Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=21

Note: The MicroBlaze option cannot be used along with Zynq-7000 devices or Zynq UltraScale+
designs in the Programmable Logic (PL).

• --name <PROJECT_NAME> - The name of the project you are building.

This command creates a new PetaLinux project folder from a default template. The following
steps customize these settings to match the hardware project created previously.

If --template option is used instead of a BSP, you can use the petalinux-config command
to choose default board configs that are close to your board design, as shown below:

1. Run the following command.

petalinux-config --get-hw-description <PATH-TO-XSA DIRECTORY>

Note: Changing the XSA file in the <PATH-TO-XSA directory> later gives an INFO: Seems like your
hardware design:<PATH-TO_XSA Directory>/system.xsa has changed warning for all subsequent
executions of the petalinux-config/petalinux-build commands. This means that your xsa
has changed. To use the latest XSA, run petalinux-config --get-hw-description <PATH-
TO-XSA> again.

2. Set CONFIG_SUBSYSTEM_MACHINE_NAME as required.

• The possible values are: ac701-full, ac701-lite, kc705-full, kcu105, zcu1275-revb,
zcu1285-reva, zc1751-dc1, zc1751-dc2, zc702, zc706, avnet-ultra96-rev1, zcu100-revc,
zcu102-rev1.0, zcu104-revc, zcu106-reva, zcu111-reva

• In petalinux-config, select DTG Settings  → (template) MACHINE_NAME, change the
template to any of the above mentioned possible values.

Note: For custom boards, changing the DTG Settings  → MACHINE_NAME is not required. Leave it
as a template. The above values are applicable to Xilinx evaluation boards only.

TIP: For details on the PetaLinux project structure, see Appendix B: PetaLinux Project Structure.

CAUTION! When a PetaLinux project is created on NFS, petalinux-create  automatically changes the
TMPDIR to /tmp/<projname-timestamp-id>  . If /tmp  is on NFS, it throws an error. To change the
TMPDIR to a local storage, select petalinux-config → Yocto-settings → TMPDIR. Do not configure the same
location as TMPDIR for two different PetaLinux projects. This can cause build errors. If TMPDIR is at /tmp/..,
deleting the project does not work. To delete the project, run petalinux-build -x mrproper.

Chapter 3: Creating a Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=22

Chapter 4

Configuring and Building

Version Control
This section details about version management/control in PetaLinux project.

Prerequisites
This section assumes that you have created a new PetaLinux project or have an existing
PetaLinux project. See Creating an Empty Project from a Template for more information on
creating a PetaLinux project.

Version Control
You can have version control over your PetaLinux project directory <plnx-proj-root>,
excluding the following:

• <plnx-proj-root>/.petalinux

• <plnx-proj-root>/!.petalinux/metadata

• <plnx-proj-root>/build/

• <plnx-proj-root>/images/linux

• <plnx-proj-root>/pre-built/linux

• <plnx-proj-root>/components/plnx-workspace/

• <plnx-proj-root>/components/yocto/

• <plnx-proj-root>/*/*/config.old

• <plnx-proj-root>/*/*/rootfs_config.old

• <plnx-proj-root>/*.o

• <plnx-proj-root>/*.log

• <plnx-proj-root>/*.jou

By default, these files are added into .gitignore while creating the project.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=23

Note: A PetaLinux project should be cleaned using petalinux-build -x mrproper before submitting
to the source control.

Note: In concurrent development, TMPDIR in petalinux-config should be unique for each user.

Importing Hardware Configuration
This section explains the process of updating an existing/newly created PetaLinux project with a
new hardware configuration. This enables you to make the PetaLinux tools software platform
ready for building a Linux system, customized to your new hardware platform.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have exported the hardware platform and .xsa file is generated. For more information, see
Exporting Hardware Platform.

• You have created a new PetaLinux project or have an existing PetaLinux project. For more
information on creating a PetaLinux project, see Creating an Empty Project from a Template.

Steps to Import Hardware Configuration
Steps to import hardware configuration are:

1. Change into the directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Import the hardware description with petalinux-config command by giving the path of
the directory containing the .xsa file as follows:

$ petalinux-config --get-hw-description <PATH-TO-XSA Directory>

Note: Changing the XSA file in the <PATH-TO-XSA directory> later gives an INFO: Seems like your
hardware design:<PATH-TO_XSA Directory>/system.xsa has changed warning for all subsequent
executions of the petalinux-config/petalinux-build commands. This means that your xsa
has changed. To use the latest XSA, run petalinux-config --get-hw-description <PATH-
TO-XSA> again.

This launches the top system configuration menu. When the petalinux-config --get-hw-
description command runs for the PetaLinux project, the tool detects changes in the system
primary hardware candidates:

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=24

Figure 1: System Configuration Menu

Ensure Subsystem AUTO Hardware Settings is selected, and go into the menu which is similar to
the following:

Subsystem AUTO Hardware Settings
System Processor (psu_cortexa53_0) --->
Memory Settings --->
Serial Settings --->
Ethernet Settings --->
Flash Settings --->
SD/SDIO Settings --->
RTC Settings --->
[*]Advanced bootable images storage Settings --->

The Subsystem AUTO Hardware Settings → menu allows customizing system wide hardware
settings.

This step can take a few minutes to complete because the tool parses the hardware description
file for hardware information required to update the device tree, PetaLinux U-Boot configuration
files and the kernel config files based on the “Auto Config Settings --->” and “Subsystem AUTO
Hardware Settings --->” settings.

For example, if ps7_ethernet_0 as the Primary Ethernet is selected and you enable the auto
update for kernel config and U-Boot config, the tool automatically enables its kernel driver and
also updates the U-Boot configuration headers for U-Boot to use the selected Ethernet
controller.

Note: For more details on Auto Config Settings menu, see the Auto Config Settings.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=25

The --silentconfig option allows you to reuse a prior configuration. Old configurations have
the file name CONFIG.old within the directory containing the specified component for
unattended updates.

Build System Image
Prerequisites
This section assumes that you have PetaLinux tools software platform ready for building a Linux
system that is customized to your hardware platform. For more information, see Importing
Hardware Configuration.

Steps to Build PetaLinux System Image
1. Change into the directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Run petalinux-build to build the system image:

$ petalinux-build

This step generates a device tree DTB file, a first stage boot loader (for Zynq devices, Zynq
UltraScale+ MPSoC, and MicroBlaze), and ATF (for Zynq UltraScale+ MPSoC), U-Boot, the
Linux kernel, and a root file system image. Finally, it generates the necessary boot images.

3. The compilation progress shows on the console. Wait until the compilation finishes.

TIP: A detailed compilation log is in <plnx-proj-root>/build/build.log.

When the build finishes, the generated images are stored in the <plnx-proj-root>/images/
linux or /tftpboot directories.

The console shows the compilation progress. For example:

petalinux-build
INFO: sourcing build tools
[INFO] building project
[INFO] generating Kconfig for project
[INFO] silentconfig project
[INFO] extracting yocto SDK to components/yocto
[INFO] sourcing build environment
[INFO] generating kconfig for Rootfs
[INFO] silentconfig rootfs
[INFO] generating plnxtool conf
[INFO] generating user layers
[INFO] generating workspace directory
INFO: bitbake petalinux-image-minimal

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=26

Parsing recipes: 100% |
##
##| Time:
0:00:35
Parsing of 2961 .bb files complete (0 cached, 2961 parsed). 4230 targets,
168 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies
NOTE: Fetching uninative binary shim from file:///scratch/xilinx-
zcu102-2020.1/components/yocto/downloads/uninative/
9498d8bba047499999a7310ac2576d0796461184965351a56f6d32c888a1f216/x86_64-
nativesdk-
libc.tar.xz;sha256sum=9498d8bba047499999a7310ac2576d0796461184965351a56f6d32
c888a1f216
Initialising tasks: 100% |
##
###| Time: 0:00:03
Checking sstate mirror object availability: 100% |
##
###################################| Time: 0:00:21
Sstate summary: Wanted 1016 Found 803 Missed 213 Current 0 (79% match, 0%
complete)
NOTE: Executing Tasks
NOTE: Setscene tasks completed
NOTE: Tasks Summary: Attempted 3614 tasks of which 2619 didn't need to be
rerun and all succeeded.
INFO: Failed to copy built images to tftp dir: /tftpboot
[INFO] successfully built project

Default Image
When you run petalinux-build, it generates FIT images for Zynq® UltraScale+™ MPSoC,
Zynq-7000 devices, and MicroBlaze™ platforms. The RAM disk image rootfs.cpio.gz.u-
boot is also generated.

The full compilation log build.log is stored in the build sub-directory of your PetaLinux
project. The final image, <plnx-proj-root>/images/linux/image.ub, is a FIT image. The
kernel image (including RootFS) is Image for Zynq® UltraScale+™ MPSoC, zImage for
Zynq-7000 devices, and image.elf for MicroBlaze processors. The build images are located in
the <plnx-proj-root>/images/linux directory. A copy is also placed in the /tftpboot
directory if the option is enabled in the system-level configuration for the PetaLinux project.

IMPORTANT! By default, besides the kernel, RootFS, and U-Boot, the PetaLinux project is configured to
generate and build the first stage boot loader. For more details on the auto generated first stage boot loader, see
Appendix C: Generating Boot Components.

Troubleshooting
This section describes some common issues/warnings you may experience while building a
PetaLinux image.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=27

Warnings/Errors

• WARNING: Skipping recipe linux-xlnx as it does not produce a package with the same name

• Description: It appears if the provided recipe name does not match with the packages
provided by it, for example, if linux-xlnx provides kernel-image, kernel-base, kernel-dev, and
kernel-modules packages and these does not match with the name linux-xlnx which was in
workspace directory.

• Solution: You can ignore this warning message.

• <package-name> do_package: Could not copy license file <plnx-proj-root>/
components/yocto/layers/core/meta/files/common-licenses/ to /opt/pkg/
petalinux/build/tmp/work/<machine-name>-xilinx-linux/image/usr/
share/licenses/<package-name>/COPYING.MIT [Errno 1] Operation not permitted:

• Description: When the tool is installed, all license files in <plnx-proj-root>/
components/yocto//layers/core/meta/files/common-licenses/ have 644
permissions. Therefore, they are readable by others but not writable.

• Solution:

• Method 1: Manually modify permissions of the license files coming from the layers

$ chmod 666 <proj-root-dir>/components/yocto/layers/core/meta/files/
common-licenses/*

When creating the hard link, you have write permissions to the source of the link.

• Method 2: Disable hard linking protection on the kernel

$ sysctl fs.protected_hardlinks=0

The kernel does not allows the source to be writable by the current user when creating
the hard link.

• Method 3: Set the following Yocto variables in <plnx-proj>/meta-user/conf/
petalinuxbsp.conf

LICENSE_CREATE_PACKAGE_forcevariable = "0"
SIGGEN_LOCKEDSIGS_TASKSIG_CHECK = "none"

The build system does not try to create the link and the license is not on the final image.

Generate Boot Image for Zynq UltraScale+
MPSoC

This section is for Zynq® UltraScale+™ MPSoC only and describes how to generate BOOT.BIN
for Zynq UltraScale+ MPSoC.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=28

Prerequisites
This section assumes that you have built the PetaLinux system image. For more information, see
Build System Image.

Generate Boot Image
The boot image can be put into Flash or SD card. When you power on the board, it can boot from
the boot image. A boot image usually contains a first stage boot loader image, FPGA bitstream
(optional), PMU firmware, ATF, and U-Boot.

Execute the following command to generate the boot image in .BIN format.

:petalinux-package --boot --u-boot --format BIN
INFO: sourcing build tools
INFO: File in BOOT BIN: "/scratch/petalinux/xilinx-zcu102-2020.1/images/
linux/zynqmp_fsbl.elf"
INFO: File in BOOT BIN: "/scratch/petalinux/xilinx-zcu102-2020.1/images/
linux/pmufw.elf"
INFO: File in BOOT BIN: "/scratch/petalinux/xilinx-zcu102-2020.1/images/
linux/bl31.elf"
INFO: File in BOOT BIN: "/scratch/petalinux/xilinx-zcu102-2020.1/images/
linux/system.dtb"
INFO: File in BOOT BIN: "/scratch/petalinux/xilinx-zcu102-2020.1/images/
linux/u-boot.elf"
INFO: Generating zynqmp binary package BOOT.BIN...

****** Xilinx Bootgen v2020.1
 **** Build date : May 26 2020-14:07:15
 ** Copyright 1986-2020 Xilinx, Inc. All Rights Reserved.

[INFO] : Bootimage generated successfully

INFO: Binary is ready.
WARNING: Unable to access the TFTPBOOT folder /tftpboot!!!
WARNING: Skip file copy to TFTPBOOT folder!!!

For detailed usage, see the --help option or PetaLinux Tools Documentation: PetaLinux Command
Line Reference (UG1157).

Generate Boot Image for Zynq-7000 Devices
This section is for Zynq®-7000 devices only and describes how to generate BOOT.BIN.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=29

Prerequisites
This section assumes that you have built the PetaLinux system image. For more information, see
Build System Image.

Generate Boot Image
The boot image can be put into Flash or SD card. When you power on the board, it can boot from
the boot image. A boot image usually contains a first stage boot loader image, FPGA bitstream
(optional) and U-Boot.

Follow the step below to generate the boot image in .BIN format.

$ petalinux-package --boot --fsbl <FSBL image> --fpga <FPGA bitstream> --u-
boot

For detailed usage, see the --help option or PetaLinux Tools Documentation: PetaLinux Command
Line Reference (UG1157) .

Generate Boot Image for MicroBlaze
Processor

This section is for MicroBlaze™ processor only and describes how to generate an MCS file for
MicroBlaze processor.

Prerequisites
This section assumes that you have built the PetaLinux system image. For more information, see
Build System Image.

• To generate an MCS boot file, you must install the Vivado® Design Suite. You can download
the Vivado Design Suite from Vivado Design Tool Downloads.

• You have set up the Vivado tools working environment. If you have not, source the
appropriate settings scripts as follows:

$ source /settings64.sh

Generate Boot Image
Execute the following command to generate MCS boot file for MicroBlaze processors.

$ petalinux-package --boot --fpga <FPGA bitstream> --u-boot --kernel

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com/support/download.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=30

It generates boot.mcs in your working directory and it copies it to the <plnx-proj-root>/
images/linux/ directory. With the above command, the MCS file contains FPGA bitstream,
fs-boot, U-Boot, and kernel image image.ub.

Command to generate the MCS file with fs-boot and FPGA bitstream only:

$ petalinux-package --boot --fpga <FPGA bitstream>

Command to generate the MCS file with FPGA bitstream, fs-boot, and U-Boot:

$ petalinux-package --boot --fpga <FPGA bitstream> --u-boot

For detailed usage, see the --help option or PetaLinux Tools Documentation: PetaLinux Command
Line Reference (UG1157).

Modify Bitstream File for MicroBlaze
Processor

Prerequisites
This section assumes that you have built the PetaLinux system image and FSBL. For more
information, see Build System Image.

Modify Bitstream
Execute the following command to modify the bitstream file for MicroBlaze™ processor.

$ petalinux-package --boot --fpga <FPGA bitstream> --fsbl <FSBL_ELF> --
format DOWNLOAD.BIT

This generates download.bit in the <plnx-proj-root>images/linux/ directory. With
the above command, it merges the fs-boot into the FPGA bitstream by mapping the ELF data
onto the memory map information (MMI) for the block RAMs in the design. For detailed usage,
see the --help option or see the PetaLinux Tools Documentation: PetaLinux Command Line
Reference (UG1157).

Build Optimizations
This section describes the build optimization techniques with the PetaLinux tools.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 31Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=31

Deselecting Default Components

You can deselect default components, if they are not needed. To disable the FSBL and PMU
firmware for Zynq® UltraScale+™ MPSoC, deselect the following options in petalinux-config → 
Linux Components Selection.

• FSBL → [] First Stage Boot Loader

• PMUFW → [] PMU Firmware

Deselecting these components removes these components from the default build flow.

Note: If the FSBL and PMU firmware are not built with PetaLinux, they must be built in the Vitis™ software
platform.

Local Mirror Servers

You can set internal mirrors on the NFS or web server which can speed up the builds. By default,
PetaLinux uses sstate-cache and download mirrors from petalinux.xilinx.com. Follow these steps
to work with local, NFS, or the internal webserver copy of sstate in PetaLinux. You can download
the sstate from the download area along with PetaLinux.

Table 8: Local Mirror Servers

Server Description
downloads Source of download files are available in http://petalinux.xilinx.com/sswreleases/

rel-v2020/downloads

aarch64 sstate mirrors for Zynq UltraScale+ MPSoC

arm sstate mirrors for Zynq-7000

mb-full sstate mirrors for MicroBlaze™ processors (full)

mb-lite sstate mirrors for MicroBlaze processors (lite)

Source Mirrors

You can set source mirrors through petalinux-config → Yocto-settings → Add pre-mirror URL.
Select file://<local downloads path> for all projects. Save the configuration to use the
download mirrors and verify the changes in build/conf/plnxtool.conf.

Reduce Build Time

To reduce the build time by disabling the network sstate feeds, de-select the petalinux-config → 
Yocto Settings → Enable Network sstate feeds.

Sstate Feeds

You can set sstate feeds through petalinux-config.

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 32Send Feedback

http://petalinux.xilinx.com
http://petalinux.xilinx.com/sswreleases/rel-v2020/downloads
http://petalinux.xilinx.com/sswreleases/rel-v2020/downloads
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=32

• sstate feeds on NFS: Go to petalinux-config → Yocto Settings → Local sstate feeds settings
and enter the full path of the sstate directory. By enabling this option, you can point to your
own shared state which is available at a NFS/local mount point.

For example, to enable, use /opt/petalinux/sstate-cache_2020/aarch64.

• sstate feeds on webserver: Go to petalinux-config → Yocto Settings → Enable Network sstate
feeds → Network sstate feeds URL and enter the URL for sstate feeds.

Note: This is set to http://petalinux.xilinx.com/sswreleases/rel-v2020/aarch64/sstate-cache, by default.

PetaLinux Commands with Equivalent devtool
Commands
The following table lists the PetaLinux commands with equivalent devtool commands. To execute
these commands, change the petalinux-build flow from bitbake to devtool by selecting
petalinux-config → Yocto Settings → Build tool (devtool).

Table 9: Using Devtool

PetaLinux Command Respective Devtool Command
petalinux-build devtool build-image petalinux-image-minimal

petalinux-build -c <component> -x build devtool build <component>

petalinux-build -c <component> -x clean devtool build --clean <component>

petalinux-build -c <component> -x finish devtool finish <component>

petalinux-build -c <component> -x modify devtool modify <component>

petalinux-build -c <component> -x reset devtool reset <component> ; rm -rf <workspace>/sources/
<component>

petalinux-build -c <component> -x update-recipe devtool update-recipe <component>

petalinux-build -c <component> devtool modify <component>; devtool build <component>

petalinux-build -s devtool build-sdk (This was not working for current flow)

petalinux-config -c <component> devtool modify <component>; devtool menuconfig
<component>

petalinux-config -c <component> --silentconfig devtool modify <component>; devtool configure
<component>

Chapter 4: Configuring and Building

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 33Send Feedback

http://petalinux.xilinx.com/sswreleases/rel-v2020/aarch64/sstate-cache
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=33

Chapter 5

Booting and Packaging

Packaging Prebuilt Images
This section describes how to package newly built images into a prebuilt directory.

This step is typically done when you want to distribute your project as a BSP to other users.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• For Zynq® UltraScale+™ MPSoC and Zynq-7000 devices, you have generated the boot image.
For more information, see Generate Boot Image for Zynq UltraScale+ MPSoC.

• For MicroBlaze™ processors, you have generated the system image. For more information, see
Build System Image.

Steps to Package Prebuilt Image
1. Change into the root directory of your project.

$ cd <plnx-proj-root>

2. Use petalinux-package --prebuilt to package the prebuilt images.

$ petalinux-package --prebuilt --fpga <FPGA bitstream>

For detailed usage, see the --help option or the PetaLinux Tools Documentation: PetaLinux
Command Line Reference (UG1157).

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=34

Using petalinux-boot Command with Prebuilt
Images

You can boot a PetaLinux image using the petalinux-boot command. Use the --qemu option
for software emulation (QEMU) and --jtag option to boot on hardware. This section describes
different boot levels for prebuilt option.

Prerequisites
This section assumes that you have packaged prebuilt images. For more information, see
Packaging Prebuilt Images.

Boot Levels for Prebuilt Option
--prebuilt <BOOT_LEVEL> boots prebuilt images (override all settings). Supported boot
levels are 1 to 3. The command for JTAG boot:

petalinux-boot --jtag --prebuilt <BOOT_LEVEL> --hw_server-url
<hostname:3121>

The command for the QEMU boot is as follows:

petalinux-boot --qemu --prebuilt <BOOT_LEVEL>

Note: The QEMU boot does not support BOOT_LEVEL 1.

• Level 1: Download the prebuilt FPGA bitstream.

○ It boots FSBL and PMU firmware for Zynq® UltraScale+™ MPSoC.

○ It boots FSBL for Zynq-7000 devices.

• Level 2: Download the prebuilt FPGA bitstream and boot the prebuilt U-Boot.

○ For Zynq-7000 devices: It boots FSBL before booting U-Boot.

○ For Zynq UltraScale+ MPSoC: It boots PMU firmware, FSBL, and ATF before booting U-
Boot.

• Level 3:

○ For MicroBlaze™ processors: Downloads the prebuilt FPGA bitstream and boots the
prebuilt kernel image on target.

○ For Zynq-7000 devices: Downloads the prebuilt FPGA bitstream and FSBL, boots the
prebuilt U-Boot, and boots the prebuilt kernel on target.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=35

○ For Zynq UltraScale+ MPSoC: Downloads PMU firmware, prebuilt FSBL, prebuilt kernel,
prebuilt FPGA bitstream, linux-boot.elf, DTB, and the prebuilt ATF on target.

Example to show the usage of boot level for prebuilt option:

$ petalinux-boot --jtag --prebuilt 3

Booting a PetaLinux Image on QEMU
This section describes how to boot a PetaLinux image under software emulation (QEMU)
environment.

For details on Xilinx® IP Models supported by QEMU, see Appendix E: Xilinx IP Models
Supported by QEMU.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have a PetaLinux system image by either installing a PetaLinux BSP (see PetaLinux BSP
Installation) or by building your own PetaLinux project (see Build System Image).

• If you are going to use --prebuilt option for QEMU boot, you need to have prebuilt
images packaged. For more information, see Packaging Prebuilt Images.

IMPORTANT! Unless otherwise indicated, the PetaLinux tool command must be run within a project directory
(<plnx-proj-root>).

Steps to Boot a PetaLinux Image on QEMU
PetaLinux provides QEMU support to enable testing of PetaLinux software image in a simulated
environment without any hardware.

Use the following steps to test the PetaLinux reference design with QEMU:

1. Change to your project directory and boot the prebuilt Linux kernel image:

$ petalinux-boot --qemu --prebuilt 3

If you do not wish to use prebuilt capability for QEMU boot, see the Additional Options for
Booting on QEMU.

The --qemu option tells petalinux-boot to boot QEMU instead of real hardware.

• The --prebuilt 1 performs a Level 1 (FPGA bitstream) boot. This option is not valid for
QEMU.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=36

• A level 2 boot includes U-Boot.

• A level 3 boot includes a prebuilt Linux image.

To know more about different boot levels for prebuilt option, see Using petalinux-boot
Command with Prebuilt Images.

An example of the kernel boot log messages displayed on the console during successful Linux
boot is as follows:

[4.841731] TI DP83867 ff0e0000.ethernet-ffffffff:0c: attached PHY
driver [TI DP83867] (mii_bus:phy_addr=ff0e0000.ethernet-ffffffff:0c,
irq=POLL)
[4.854771] macb ff0e0000.ethernet eth0: Cadence GEM rev 0x50070106
at 0xff0e0000 irq 30 (00:0a:35:00:22:01)
[4.864857] xilinx-axipmon ffa00000.perf-monitor: Probed Xilinx APM
[4.871379] xilinx-axipmon fd0b0000.perf-monitor: Probed Xilinx APM
[4.877847] xilinx-axipmon fd490000.perf-monitor: Probed Xilinx APM
[4.884328] xilinx-axipmon ffa10000.perf-monitor: Probed Xilinx APM
[4.892194] dwc3 fe200000.dwc3: Failed to get clk 'ref': -2
[4.897976] xilinx-psgtr fd400000.zynqmp_phy: Lane:2 type:0
protocol:3 pll_locked:yes
[4.908242] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[4.913734] xhci-hcd xhci-hcd.0.auto: new USB bus registered,
assigned bus number 1
[4.921486] xhci-hcd xhci-hcd.0.auto: hcc params 0x0238f625 hci
version 0x100 quirks 0x0000000202010810
[4.930903] xhci-hcd xhci-hcd.0.auto: irq 54, io mem 0xfe200000
[4.937042] usb usb1: New USB device found, idVendor=1d6b,
idProduct=0002, bcdDevice= 5.04
[4.945313] usb usb1: New USB device strings: Mfr=3, Product=2,
SerialNumber=1
[4.952526] usb usb1: Product: xHCI Host Controller
[4.957396] usb usb1: Manufacturer: Linux 5.4.0-xilinx-v2020.1 xhci-
hcd
[4.964001] usb usb1: SerialNumber: xhci-hcd.0.auto
[4.969138] hub 1-0:1.0: USB hub found
[4.972904] hub 1-0:1.0: 1 port detected
[4.977017] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[4.982500] xhci-hcd xhci-hcd.0.auto: new USB bus registered,
assigned bus number 2
[4.990157] xhci-hcd xhci-hcd.0.auto: Host supports USB 3.0 SuperSpeed
[4.996882] usb usb2: New USB device found, idVendor=1d6b,
idProduct=0003, bcdDevice= 5.04
[5.005145] usb usb2: New USB device strings: Mfr=3, Product=2,
SerialNumber=1
[5.012362] usb usb2: Product: xHCI Host Controller
[5.017231] usb usb2: Manufacturer: Linux 5.4.0-xilinx-v2020.1 xhci-
hcd
[5.023839] usb usb2: SerialNumber: xhci-hcd.0.auto
[5.028941] hub 2-0:1.0: USB hub found
[5.032703] hub 2-0:1.0: 1 port detected
[5.037687] pca953x 0-0020: 0-0020 supply vcc not found, using dummy
regulator
[5.045615] pca953x 0-0021: 0-0021 supply vcc not found, using dummy
regulator
[5.061251] i2c i2c-0: Added multiplexed i2c bus 3
[5.072158] i2c i2c-0: Added multiplexed i2c bus 4
[5.088893] random: fast init done
[5.097250] ata1: SATA link down (SStatus 0 SControl 330)
[5.123459] i2c i2c-0: Added multiplexed i2c bus 5
[5.128360] i2c i2c-0: Added multiplexed i2c bus 6

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=37

[5.133154] pca954x 0-0075: registered 4 multiplexed busses for I2C
mux pca9544
[5.140480] cdns-i2c ff020000.i2c: 400 kHz mmio ff020000 irq 32
[5.148171] at24 7-0054: 1024 byte 24c08 EEPROM, writable, 1 bytes/
write
[5.154899] i2c i2c-1: Added multiplexed i2c bus 7
[5.159894] i2c i2c-1: Added multiplexed i2c bus 8
[5.167399] si570 9-005d: registered, current frequency 300000000 Hz
[5.173780] i2c i2c-1: Added multiplexed i2c bus 9
[5.193293] si570 10-005d: registered, current frequency 148500000 Hz
[5.199762] i2c i2c-1: Added multiplexed i2c bus 10
[5.204837] si5324 11-0069: si5328 probed
[5.263052] ata2: SATA link up 3.0 Gbps (SStatus 123 SControl 330)
[5.268669] si5324 11-0069: si5328 probe successful
[5.274124] i2c i2c-1: Added multiplexed i2c bus 11
[5.279126] i2c i2c-1: Added multiplexed i2c bus 12
[5.284115] i2c i2c-1: Added multiplexed i2c bus 13
[5.289112] i2c i2c-1: Added multiplexed i2c bus 14
[5.293993] pca954x 1-0074: registered 8 multiplexed busses for I2C
switch pca9548
[5.301875] i2c i2c-1: Added multiplexed i2c bus 15
[5.306869] i2c i2c-1: Added multiplexed i2c bus 16
[5.307741] ata2.00: ATA-7: ST3160812AS, 3.ADH, max UDMA/133
[5.311866] i2c i2c-1: Added multiplexed i2c bus 17
[5.317389] ata2.00: 312500000 sectors, multi 0: LBA48 NCQ (depth 32)
[5.328880] i2c i2c-1: Added multiplexed i2c bus 18
[5.333886] i2c i2c-1: Added multiplexed i2c bus 19
[5.338881] i2c i2c-1: Added multiplexed i2c bus 20
[5.343880] i2c i2c-1: Added multiplexed i2c bus 21
[5.348874] i2c i2c-1: Added multiplexed i2c bus 22
[5.353752] pca954x 1-0075: registered 8 multiplexed busses for I2C
switch pca9548
[5.361338] cdns-i2c ff030000.i2c: 400 kHz mmio ff030000 irq 33
[5.366050] ata2.00: configured for UDMA/133
[5.370930] cdns-wdt fd4d0000.watchdog: Xilinx Watchdog Timer with
timeout 60s
[5.371767] scsi 1:0:0:0: Direct-Access ATA ST3160812AS
H PQ: 0 ANSI: 5
[5.378957] cdns-wdt ff150000.watchdog: Xilinx Watchdog Timer with
timeout 10s
[5.387232] sd 1:0:0:0: [sda] 312500000 512-byte logical blocks: (160
GB/149 GiB)
[5.394415] cpufreq: cpufreq_online: CPU0: Running at unlisted freq:
1199880 KHz
[5.401532] sd 1:0:0:0: [sda] Write Protect is off
[5.408945] cpufreq: cpufreq_online: CPU0: Unlisted initial frequency
changed to: 1199999 KHz
[5.422230] sd 1:0:0:0: [sda] Write cache: enabled, read cache:
enabled, doesn't support DPO or FUA
[5.431292] usb 2-1: new SuperSpeed Gen 1 USB device number 2 using
xhci-hcd
[5.464062] sda: sda1
[5.467101] sd 1:0:0:0: [sda] Attached SCSI disk
[5.467629] mmc0: SDHCI controller on ff170000.mmc [ff170000.mmc]
using ADMA 64-bit
[5.482267] input: gpio-keys as /devices/platform/gpio-keys/input/
input0
[5.489346] rtc_zynqmp ffa60000.rtc: setting system clock to
2020-05-27T01:17:28 UTC (1590542248)
[5.498217] of_cfs_init
[5.500678] of_cfs_init: OK
[5.503618] cfg80211: Loading compiled-in X.509 certificates for
regulatory database

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=38

[5.551387] mmc0: new high speed SDHC card at address aaaa
[5.557013] usb 2-1: New USB device found, idVendor=054c,
idProduct=09c2, bcdDevice= 1.00
[5.565192] usb 2-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[5.572322] usb 2-1: Product: Storage Media
[5.576496] usb 2-1: Manufacturer: Sony
[5.580325] usb 2-1: SerialNumber: 5C07104BE28C15CF00
[5.585676] mmcblk0: mmc0:aaaa SL16G 14.8 GiB
[5.592325] usb-storage 2-1:1.0: USB Mass Storage device detected
[5.598452] mmcblk0: p1 p2
[5.601833] scsi host2: usb-storage 2-1:1.0
[5.640394] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7'
[5.646922] clk: Not disabling unused clocks
[5.651189] ALSA device list:
[5.654141] #0: DisplayPort monitor
[5.658099] platform regulatory.0: Direct firmware load for
regulatory.db failed with error -2
[5.666706] cfg80211: failed to load regulatory.db
[5.841844] EXT4-fs (mmcblk0p2): recovery complete
[5.850361] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data
mode. Opts: (null)
[5.855064] [drm] Cannot find any crtc or sizes
[5.858490] VFS: Mounted root (ext4 filesystem) on device 179:2.
[5.869011] devtmpfs: mounted
[5.872150] Freeing unused kernel memory: 704K
[5.876626] Run /sbin/init as init process

INIT: version 2.88 booting

Starting udev
[6.231116] udevd[171]: starting version 3.2.8
[6.239333] random: udevd: uninitialized urandom read (16 bytes read)
[6.245844] random: udevd: uninitialized urandom read (16 bytes read)
[6.252367] random: udevd: uninitialized urandom read (16 bytes read)
[6.287438] udevd[172]: starting eudev-3.2.8
[6.658640] EXT4-fs (sda): ext4_check_descriptors: Block bitmap for
group 880 not in group (block 1838176491)!
[6.668737] EXT4-fs (sda): group descriptors corrupted!
[6.684560] scsi 2:0:0:0: Direct-Access Sony Storage Media
PMAP PQ: 0 ANSI: 6
[6.728123] FAT-fs (mmcblk0p1): Volume was not properly unmounted.
Some data may be corrupt. Please run fsck.
[6.835063] cramfs: Unknown parameter 'umask'
[6.847623] FAT-fs (sda1): Volume was not properly unmounted. Some
data may be corrupt. Please run fsck.
[6.881627] EXT4-fs (mmcblk0p2): re-mounted. Opts: (null)
Wed May 27 01:23:03 UTC 2020

Configuring packages on first boot....

 (This may take several minutes. Please do not power off the machine.)

Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...

update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge
(continuing)

 Removing any system start
INIT: Entering runlevel: 5

Configuring network interfaces... [7.345608] pps pps0: new PPS

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=39

source ptp0
[7.349678] macb ff0e0000.ethernet: gem-ptp-timer ptp clock
registered.
udhcpc: started, v1.31.0

udhcpc: sending discover

[7.411155] sd 2:0:0:0: [sdb] 15199296 512-byte logical blocks: (7.78
GB/7.25 GiB)
[7.419833] sd 2:0:0:0: [sdb] Write Protect is off
[7.425751] sd 2:0:0:0: [sdb] No Caching mode page found
[7.431064] sd 2:0:0:0: [sdb] Assuming drive cache: write through
[7.473694] sdb: sdb1
[7.485182] sd 2:0:0:0: [sdb] Attached SCSI removable disk
[7.644305] cramfs: Unknown parameter 'umask'
[7.653863] FAT-fs (sdb1): Volume was not properly unmounted. Some
data may be corrupt. Please run fsck.
[8.347604] macb ff0e0000.ethernet eth0: link up (1000/Full)
[8.353280] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
udhcpc: sending discover

udhcpc: sending select for 10.10.70.2

udhcpc: lease of 10.10.70.2 obtained, lease time 600

done.

Starting haveged: haveged: listening socket at 3

haveged: haveged starting up

Starting Dropbear SSH server: [11.609617] urandom_read: 5 callbacks
suppressed
[11.609623] random: dropbearkey: uninitialized urandom read (32 bytes
read)
[11.623891] random: dropbearkey: uninitialized urandom read (32 bytes
read)
Generating 2048 bit rsa key, this may take a while...

haveged: haveged: ver: 1.9.5; arch: generic; vend: ; build: (gcc 9.2.0
CTV); collect: 128K

haveged: haveged: cpu: (VC); data: 16K (D); inst: 16K (D); idx: 11/40;
sz: 15456/64452

haveged: haveged: tot tests(BA8): A:1/1 B:1/1 continuous tests(B): last
entropy estimate 8.00051

haveged: haveged: fills: 0, generated: 0

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=40

[12.347988] random: crng init done
Public key portion is:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCobZGi0OV/
ajCzeowFZ6TeEcJERNytVMWW2+F/
cHeqKnAQWrBrU4Wd7VxS4i5er5CVCUs59isTG9WidFUaVuBYJGLsC6lK/
lkHBojGuAa4Tsll4CkcpemSC2ERknqvOctRWEGJUJCKTc3lxmsYg9qklG/
dpUltXte5xedFQjt9DX4QRbgcHuslMXNGa9ARzqOz5oYPKTU6ZOAOoWdQcPHkCfnCPnMfURWj
zgeFH73MnMkJfxrnr+5c6n/H69mL/btzXUEtN4IZYQodkZrx/XMn33Ac/
d6Dg2JuvUOr4BivpEUpwS0Sw+jPi0vrFPQMYSg52Evm+Weie25t5uFA6xkh root@xilinx-
zcu102-2020_1

Fingerprint: sha1!!
e6:30:61:30:67:11:cf:5a:92:48:64:ca:ed:e5:02:f0:a1:ed:35:4f

dropbear.

Starting internet superserver: inetd.

Starting syslogd/klogd: done

Starting tcf-agent: OK

PetaLinux 2020.1 xilinx-zcu102-2020_1 /dev/ttyPS0

xilinx-zcu102-2020_1 login: rroot
oot

Password:
root

root@xilinx-zcu102-2020_1:~#
root@xilinx-zcu102-2020_1:~#

2. Log in to target with the default user name root and password root.

TIP: To exit QEMU, press Ctrl+A together and then press X.

Additional Options for Booting on QEMU
• To download the newly built <plnx-proj-root>/images/linux/u-boot.elf with

QEMU:

$ petalinux-boot --qemu --u-boot

○ For Zynq® UltraScale+™ MPSoC, it loads <plnx-proj-root>/images/linux/u-
boot.elf and boots the ATF image <plnx-proj-root>/images/linux/bl31.elf
with QEMU. The ATF then boots the loaded U-Boot image.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=41

○ For MicroBlaze™ CPUs and Zynq-7000 devices, it boots <plnx-proj-root>/images/
linux/u-boot.elf with QEMU.

• To download the newly built kernel with QEMU:

$ petalinux-boot --qemu --kernel

○ For MicroBlaze processors, it boots <plnx-proj-root>/images/linux/image.elf
with QEMU.

○ For Zynq-7000 devices, it boots <plnx-proj-root>/images/linux/zImage with
QEMU.

○ For Zynq UltraScale+ MPSoC, it loads the kernel image <plnx-proj-root>/images/
linux/Image and boots the ATF image <plnx-proj-root>/images/linux/
bl31.elf with QEMU, and the ATF then boots the loaded kernel image, with PMU
firmware running in the background.

Note: For Zynq UltraScale+ MPSoC kernel boot, create a pre-built/linux/images/ folder and copy
pmu_rom_qemu_sha3.elf from any Zynq UltraScale+ MPSoC BSP project. You can also pass
pmu_rom_qemu_sha3.elf using --pmu-qemu-args.

cd <plnx-proj-root>
mkdir -p pre-built/linux/images
cp <zynq UltraScale+ bsp project
directory>/pre-built/linux/images/pmu_rom_qemu_sha3.elf pre-built/linux/
images/

or

petalinux-boot --qemu --uboot --pmu-qemu-args" -kernel
pmu_rom_qemu_sha3.elf"

During start up, the normal Linux boot process ending with a login prompt is displayed as shown
below:

[4.841731] TI DP83867 ff0e0000.ethernet-ffffffff:0c: attached PHY
driver [TI DP83867] (mii_bus:phy_addr=ff0e0000.ethernet-ffffffff:0c,
irq=POLL)
[4.854771] macb ff0e0000.ethernet eth0: Cadence GEM rev 0x50070106 at
0xff0e0000 irq 30 (00:0a:35:00:22:01)
[4.864857] xilinx-axipmon ffa00000.perf-monitor: Probed Xilinx APM
[4.871379] xilinx-axipmon fd0b0000.perf-monitor: Probed Xilinx APM
[4.877847] xilinx-axipmon fd490000.perf-monitor: Probed Xilinx APM
[4.884328] xilinx-axipmon ffa10000.perf-monitor: Probed Xilinx APM
[4.892194] dwc3 fe200000.dwc3: Failed to get clk 'ref': -2
[4.897976] xilinx-psgtr fd400000.zynqmp_phy: Lane:2 type:0 protocol:3
pll_locked:yes
[4.908242] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[4.913734] xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned
bus number 1
[4.921486] xhci-hcd xhci-hcd.0.auto: hcc params 0x0238f625 hci version
0x100 quirks 0x0000000202010810
[4.930903] xhci-hcd xhci-hcd.0.auto: irq 54, io mem 0xfe200000
[4.937042] usb usb1: New USB device found, idVendor=1d6b,
idProduct=0002, bcdDevice= 5.04
[4.945313] usb usb1: New USB device strings: Mfr=3, Product=2,

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=42

SerialNumber=1
[4.952526] usb usb1: Product: xHCI Host Controller
[4.957396] usb usb1: Manufacturer: Linux 5.4.0-xilinx-v2020.1 xhci-hcd
[4.964001] usb usb1: SerialNumber: xhci-hcd.0.auto
[4.969138] hub 1-0:1.0: USB hub found
[4.972904] hub 1-0:1.0: 1 port detected
[4.977017] xhci-hcd xhci-hcd.0.auto: xHCI Host Controller
[4.982500] xhci-hcd xhci-hcd.0.auto: new USB bus registered, assigned
bus number 2
[4.990157] xhci-hcd xhci-hcd.0.auto: Host supports USB 3.0 SuperSpeed
[4.996882] usb usb2: New USB device found, idVendor=1d6b,
idProduct=0003, bcdDevice= 5.04
[5.005145] usb usb2: New USB device strings: Mfr=3, Product=2,
SerialNumber=1
[5.012362] usb usb2: Product: xHCI Host Controller
[5.017231] usb usb2: Manufacturer: Linux 5.4.0-xilinx-v2020.1 xhci-hcd
[5.023839] usb usb2: SerialNumber: xhci-hcd.0.auto
[5.028941] hub 2-0:1.0: USB hub found
[5.032703] hub 2-0:1.0: 1 port detected
[5.037687] pca953x 0-0020: 0-0020 supply vcc not found, using dummy
regulator
[5.045615] pca953x 0-0021: 0-0021 supply vcc not found, using dummy
regulator
[5.061251] i2c i2c-0: Added multiplexed i2c bus 3
[5.072158] i2c i2c-0: Added multiplexed i2c bus 4
[5.088893] random: fast init done
[5.097250] ata1: SATA link down (SStatus 0 SControl 330)
[5.123459] i2c i2c-0: Added multiplexed i2c bus 5
[5.128360] i2c i2c-0: Added multiplexed i2c bus 6
[5.133154] pca954x 0-0075: registered 4 multiplexed busses for I2C mux
pca9544
[5.140480] cdns-i2c ff020000.i2c: 400 kHz mmio ff020000 irq 32
[5.148171] at24 7-0054: 1024 byte 24c08 EEPROM, writable, 1 bytes/write
[5.154899] i2c i2c-1: Added multiplexed i2c bus 7
[5.159894] i2c i2c-1: Added multiplexed i2c bus 8
[5.167399] si570 9-005d: registered, current frequency 300000000 Hz
[5.173780] i2c i2c-1: Added multiplexed i2c bus 9
[5.193293] si570 10-005d: registered, current frequency 148500000 Hz
[5.199762] i2c i2c-1: Added multiplexed i2c bus 10
[5.204837] si5324 11-0069: si5328 probed
[5.263052] ata2: SATA link up 3.0 Gbps (SStatus 123 SControl 330)
[5.268669] si5324 11-0069: si5328 probe successful
[5.274124] i2c i2c-1: Added multiplexed i2c bus 11
[5.279126] i2c i2c-1: Added multiplexed i2c bus 12
[5.284115] i2c i2c-1: Added multiplexed i2c bus 13
[5.289112] i2c i2c-1: Added multiplexed i2c bus 14
[5.293993] pca954x 1-0074: registered 8 multiplexed busses for I2C
switch pca9548
[5.301875] i2c i2c-1: Added multiplexed i2c bus 15
[5.306869] i2c i2c-1: Added multiplexed i2c bus 16
[5.307741] ata2.00: ATA-7: ST3160812AS, 3.ADH, max UDMA/133
[5.311866] i2c i2c-1: Added multiplexed i2c bus 17
[5.317389] ata2.00: 312500000 sectors, multi 0: LBA48 NCQ (depth 32)
[5.328880] i2c i2c-1: Added multiplexed i2c bus 18
[5.333886] i2c i2c-1: Added multiplexed i2c bus 19
[5.338881] i2c i2c-1: Added multiplexed i2c bus 20
[5.343880] i2c i2c-1: Added multiplexed i2c bus 21
[5.348874] i2c i2c-1: Added multiplexed i2c bus 22
[5.353752] pca954x 1-0075: registered 8 multiplexed busses for I2C
switch pca9548
[5.361338] cdns-i2c ff030000.i2c: 400 kHz mmio ff030000 irq 33
[5.366050] ata2.00: configured for UDMA/133
[5.370930] cdns-wdt fd4d0000.watchdog: Xilinx Watchdog Timer with

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=43

timeout 60s
[5.371767] scsi 1:0:0:0: Direct-Access ATA ST3160812AS
H PQ: 0 ANSI: 5
[5.378957] cdns-wdt ff150000.watchdog: Xilinx Watchdog Timer with
timeout 10s
[5.387232] sd 1:0:0:0: [sda] 312500000 512-byte logical blocks: (160 GB/
149 GiB)
[5.394415] cpufreq: cpufreq_online: CPU0: Running at unlisted freq:
1199880 KHz
[5.401532] sd 1:0:0:0: [sda] Write Protect is off
[5.408945] cpufreq: cpufreq_online: CPU0: Unlisted initial frequency
changed to: 1199999 KHz
[5.422230] sd 1:0:0:0: [sda] Write cache: enabled, read cache: enabled,
doesn't support DPO or FUA
[5.431292] usb 2-1: new SuperSpeed Gen 1 USB device number 2 using xhci-
hcd
[5.464062] sda: sda1
[5.467101] sd 1:0:0:0: [sda] Attached SCSI disk
[5.467629] mmc0: SDHCI controller on ff170000.mmc [ff170000.mmc] using
ADMA 64-bit
[5.482267] input: gpio-keys as /devices/platform/gpio-keys/input/input0
[5.489346] rtc_zynqmp ffa60000.rtc: setting system clock to
2020-05-27T01:17:28 UTC (1590542248)
[5.498217] of_cfs_init
[5.500678] of_cfs_init: OK
[5.503618] cfg80211: Loading compiled-in X.509 certificates for
regulatory database
[5.551387] mmc0: new high speed SDHC card at address aaaa
[5.557013] usb 2-1: New USB device found, idVendor=054c,
idProduct=09c2, bcdDevice= 1.00
[5.565192] usb 2-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[5.572322] usb 2-1: Product: Storage Media
[5.576496] usb 2-1: Manufacturer: Sony
[5.580325] usb 2-1: SerialNumber: 5C07104BE28C15CF00
[5.585676] mmcblk0: mmc0:aaaa SL16G 14.8 GiB
[5.592325] usb-storage 2-1:1.0: USB Mass Storage device detected
[5.598452] mmcblk0: p1 p2
[5.601833] scsi host2: usb-storage 2-1:1.0
[5.640394] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7'
[5.646922] clk: Not disabling unused clocks
[5.651189] ALSA device list:
[5.654141] #0: DisplayPort monitor
[5.658099] platform regulatory.0: Direct firmware load for
regulatory.db failed with error -2
[5.666706] cfg80211: failed to load regulatory.db
[5.841844] EXT4-fs (mmcblk0p2): recovery complete
[5.850361] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data
mode. Opts: (null)
[5.855064] [drm] Cannot find any crtc or sizes
[5.858490] VFS: Mounted root (ext4 filesystem) on device 179:2.
[5.869011] devtmpfs: mounted
[5.872150] Freeing unused kernel memory: 704K
[5.876626] Run /sbin/init as init process

INIT: version 2.88 booting

Starting udev
[6.231116] udevd[171]: starting version 3.2.8
[6.239333] random: udevd: uninitialized urandom read (16 bytes read)
[6.245844] random: udevd: uninitialized urandom read (16 bytes read)
[6.252367] random: udevd: uninitialized urandom read (16 bytes read)
[6.287438] udevd[172]: starting eudev-3.2.8

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=44

[6.658640] EXT4-fs (sda): ext4_check_descriptors: Block bitmap for
group 880 not in group (block 1838176491)!
[6.668737] EXT4-fs (sda): group descriptors corrupted!
[6.684560] scsi 2:0:0:0: Direct-Access Sony Storage Media
PMAP PQ: 0 ANSI: 6
[6.728123] FAT-fs (mmcblk0p1): Volume was not properly unmounted. Some
data may be corrupt. Please run fsck.
[6.835063] cramfs: Unknown parameter 'umask'
[6.847623] FAT-fs (sda1): Volume was not properly unmounted. Some data
may be corrupt. Please run fsck.
[6.881627] EXT4-fs (mmcblk0p2): re-mounted. Opts: (null)
Wed May 27 01:23:03 UTC 2020

Configuring packages on first boot....

 (This may take several minutes. Please do not power off the machine.)

Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...

update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge (continuing)

 Removing any system start
INIT: Entering runlevel: 5

Configuring network interfaces... [7.345608] pps pps0: new PPS source
ptp0
[7.349678] macb ff0e0000.ethernet: gem-ptp-timer ptp clock registered.
udhcpc: started, v1.31.0

udhcpc: sending discover

[7.411155] sd 2:0:0:0: [sdb] 15199296 512-byte logical blocks: (7.78 GB/
7.25 GiB)
[7.419833] sd 2:0:0:0: [sdb] Write Protect is off
[7.425751] sd 2:0:0:0: [sdb] No Caching mode page found
[7.431064] sd 2:0:0:0: [sdb] Assuming drive cache: write through
[7.473694] sdb: sdb1
[7.485182] sd 2:0:0:0: [sdb] Attached SCSI removable disk
[7.644305] cramfs: Unknown parameter 'umask'
[7.653863] FAT-fs (sdb1): Volume was not properly unmounted. Some data
may be corrupt. Please run fsck.
[8.347604] macb ff0e0000.ethernet eth0: link up (1000/Full)
[8.353280] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
udhcpc: sending discover

udhcpc: sending select for 10.10.70.2

udhcpc: lease of 10.10.70.2 obtained, lease time 600

done.

Starting haveged: haveged: listening socket at 3

haveged: haveged starting up

Starting Dropbear SSH server: [11.609617] urandom_read: 5 callbacks
suppressed

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=45

[11.609623] random: dropbearkey: uninitialized urandom read (32 bytes
read)
[11.623891] random: dropbearkey: uninitialized urandom read (32 bytes
read)
Generating 2048 bit rsa key, this may take a while...

haveged: haveged: ver: 1.9.5; arch: generic; vend: ; build: (gcc 9.2.0
CTV); collect: 128K

haveged: haveged: cpu: (VC); data: 16K (D); inst: 16K (D); idx: 11/40; sz:
15456/64452

haveged: haveged: tot tests(BA8): A:1/1 B:1/1 continuous tests(B): last
entropy estimate 8.00051

haveged: haveged: fills: 0, generated: 0

[12.347988] random: crng init done
Public key portion is:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCobZGi0OV/ajCzeowFZ6TeEcJERNytVMWW2+F/
cHeqKnAQWrBrU4Wd7VxS4i5er5CVCUs59isTG9WidFUaVuBYJGLsC6lK/
lkHBojGuAa4Tsll4CkcpemSC2ERknqvOctRWEGJUJCKTc3lxmsYg9qklG/
dpUltXte5xedFQjt9DX4QRbgcHuslMXNGa9ARzqOz5oYPKTU6ZOAOoWdQcPHkCfnCPnMfURWjzge
FH73MnMkJfxrnr+5c6n/H69mL/btzXUEtN4IZYQodkZrx/XMn33Ac/
d6Dg2JuvUOr4BivpEUpwS0Sw+jPi0vrFPQMYSg52Evm+Weie25t5uFA6xkh root@xilinx-
zcu102-2020_1

Fingerprint: sha1!!
e6:30:61:30:67:11:cf:5a:92:48:64:ca:ed:e5:02:f0:a1:ed:35:4f

dropbear.

Starting internet superserver: inetd.

Starting syslogd/klogd: done

Starting tcf-agent: OK

PetaLinux 2020.1 xilinx-zcu102-2020_1 /dev/ttyPS0

xilinx-zcu102-2020_1 login: rroot
oot

Password:

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=46

root

root@xilinx-zcu102-2020_1:~#
root@xilinx-zcu102-2020_1:~#

You may see slightly different output from the above example depending on the Linux image you
test and its configuration.

Login to the virtual system when you see the login prompt on the emulator console with the
login root and password root. Try Linux commands such as ls, ifconfig, cat/proc/
cpuinfo and so on. They behave the same as on real hardware. To exit the emulator when you
are finished, press Ctrl + A, release, and then press X.

• Boot a specific Linux image:

The petalinux-boot tool can also boot a specific Linux image using the image option (-i or
--image):

$ petalinux-boot --qemu --image <path-to-Linux-image-file>

For example:

$ petalinux-boot --qemu --image ./images/linux/zImage

• Direct Boot a Linux Image with Specific DTB:

Device Trees (DTB files) are used to describe the hardware architecture and address map to the
Linux kernel. The PetaLinux system emulator also uses DTB files to dynamically configure the
emulation environment to match your hardware platform.

If no DTB file option is provided, petalinux-boot extracts the DTB file from the given
image.elf for MicroBlaze processors and from <plnx-proj-root>/images/linux/
system.dtb for Zynq-7000 devices and Zynq UltraScale+ MPSoC. Alternatively, you can use
the --dtb option as follows:

$ petalinux-boot --qemu --image ./images/linux/zImage --dtb ./images/linux/
system.dtb

Note: QEMU version has been upgraded to 4.2. The old options are deprecated in the new version but
remain functionally operational. Since PetaLinux tools still use the old options, warning messages are
displayed. You can ignore them.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=47

Boot a PetaLinux Image on Hardware with an
SD Card

This section describes how to boot a PetaLinux image on hardware with an SD Card.

This section is for Zynq® UltraScale+™ MPSoC and Zynq-7000 devices only because they allow
you to boot from SD cards.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have installed PetaLinux Tools on the Linux workstation. If you have not installed, see the
Installation Steps.

• You have installed PetaLinux BSP on the Linux workstation. If you have not installed, see the
PetaLinux BSP Installation.

• A serial communication program such as minicom/kermit/gtkterm has been installed; the baud
rate of the serial communication program has been set to 115200 bps.

Steps to Boot a PetaLinux Image on Hardware with
SD Card
1. Mount the SD card on your host machine.

2. Copy the following files from <plnx-proj-root>/pre-built/linux/images/ into the
root directory of the first partition which is in FAT32 format in the SD card:

• BOOT.BIN

• image.ub

• boot.scr

3. Connect the serial port on the board to your workstation.

4. Open a console on the workstation and start the preferred serial communication program
(For example: kermit, minicom, gtkterm) with the baud rate set to 115200 on that console.

5. Power off the board.

6. Set the boot mode of the board to SD boot. Refer to the board documentation for details.

7. Plug the SD card into the board.

8. Power on the board.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=48

9. You should see a boot messages similar to the following message on the serial console:

[7.741083] cfg80211: Loading compiled-in X.509 certificates for
regulatory database
[7.882290] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7'
[7.888818] clk: Not disabling unused clocks
[7.893083] ALSA device list:
[7.896040] #0: DisplayPort monitor
[7.899994] platform regulatory.0: Direct firmware load for
regulatory.db failed with error -2
[7.908610] cfg80211: failed to load regulatory.db
[7.913597] Freeing unused kernel memory: 704K
[7.931199] Run /init as init process

INIT: version 2.88 booting

Starting udev
[8.026549] mmc0: new high speed SDHC card at address aaaa
[8.032550] mmcblk0: mmc0:aaaa SP32G 29.7 GiB
[8.038229] udevd[167]: starting version 3.2.8
[8.039893] mmcblk0: p1
[8.042979] random: udevd: uninitialized urandom read (16 bytes read)
[8.051695] random: udevd: uninitialized urandom read (16 bytes read)
[8.058197] random: udevd: uninitialized urandom read (16 bytes read)
[8.067225] usb 2-1: new SuperSpeed Gen 1 USB device number 2 using
xhci-hcd
[8.069110] udevd[169]: starting eudev-3.2.8
[8.075194] [drm] Cannot find any crtc or sizes
[8.091909] usb 2-1: New USB device found, idVendor=0781,
idProduct=5580, bcdDevice= 0.10
[8.100109] usb 2-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[8.107248] usb 2-1: Product: Extreme
[8.110900] usb 2-1: Manufacturer: SanDisk
[8.114988] usb 2-1: SerialNumber: AA010104131512483744
[8.121414] usb-storage 2-1:1.0: USB Mass Storage device detected
[8.128190] scsi host2: usb-storage 2-1:1.0
[8.152664] zynqmp_r5_remoteproc ff9a0000.zynqmp-rpu: RPU core_conf:
split
[8.162198] remoteproc remoteproc0: r5@0 is available
[8.455632] mali: loading out-of-tree module taints kernel.
[8.960540] cramfs: Unknown parameter 'umask'
[8.971664] FAT-fs (sda1): Volume was not properly unmounted. Some
data may be corrupt. Please run fsck.
[8.981200] vfat filesystem being mounted at /run/media/sda1 supports
timestamps until 2107 (0x10391447e)
[9.139803] scsi 2:0:0:0: Direct-Access SanDisk Extreme
0001 PQ: 0 ANSI: 6
[9.149297] sd 2:0:0:0: [sdb] 62533296 512-byte logical blocks: (32.0
GB/29.8 GiB)
[9.157860] sd 2:0:0:0: [sdb] Write Protect is off
[9.163586] sd 2:0:0:0: [sdb] Write cache: disabled, read cache:
enabled, doesn't support DPO or FUA
[9.198380] sdb: sdb1
[9.204317] sd 2:0:0:0: [sdb] Attached SCSI removable disk
Configuring packages on first boot....

 (This may take several minutes. Please do not power off the machine.)

Running postinst /etc/rpm-postinsts/100-sysvinit-inittab...

Running postinst /etc/rpm-postinsts/101-libmali-xlnx...

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=49

[9.333900] cramfs: Unknown parameter 'umask'
[9.335514] update-alternatives: Linking /usr/lib/libMali.so.9.0
to /usr/lib/x11/libMali.so.9.0
[9.340086] FAT-fs (sdb1): Volume was not properly unmounted. Some
data may be corrupt. Please run fsck.
[9.356558] vfat filesystem being mounted at /run/media/sdb1 supports
timestamps until 2107 (0x10391447e)
[9.385844] update-alternatives: Linking /usr/lib/libMali.so.9.0
to /usr/lib/x11/libMali.so.9.0
[9.414144] Warn: update-alternatives: libmali-xlnx has multiple
providers with the same priority, please check /usr/lib/opkg/
alternatives/libmali-xlnx for details
[9.440237] update-alternatives: Linking /usr/lib/libMali.so.9.0
to /usr/lib/x11/libMali.so.9.0
[9.480366] update-alternatives: Linking /usr/lib/libMali.so.9.0
to /usr/lib/x11/libMali.so.9.0
update-rc.d: /etc/init.d/run-postinsts exists during rc.d purge
(continuing)

 Removing any system st
INIT: Entering runlevel: 5

Configuring network interfaces... [9.559410] pps pps0: new PPS
source ptp0
[9.563425] macb ff0e0000.ethernet: gem-ptp-timer ptp clock
registered.
udhcpc: started, v1.31.0

udhcpc: sending discover

[10.579726] macb ff0e0000.ethernet eth0: link up (1000/Full)
[10.585412] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
udhcpc: sending discover

udhcpc: sending select for 10.10.70.1

udhcpc: lease of 10.10.70.1 obtained, lease time 600

done.

Starting system message bus: dbus.

Starting haveged: haveged: listening socket at 3

haveged: haveged starting up

Starting Dropbear SSH server: Generating 2048 bit rsa key, this may take
a while...

haveged: haveged: ver: 1.9.5; arch: generic; vend: ; build: (gcc 9.2.0
CTV); collect: 128K

haveged: haveged: cpu: (VC); data: 16K (D); inst: 16K (D); idx: 11/40;
sz: 15456/64452

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=50

haveged: haveged: tot tests(BA8): A:1/1 B:1/1 continuous tests(B): last
entropy estimate 7.99902

haveged: haveged: fills: 0, generated: 0

[14.561816] random: crng init done
[14.565218] random: 7 urandom warning(s) missed due to ratelimiting
Public key portion is:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCq0ua7bEdUb0PHmF3f8HVbpcLq/
ahhMCFrQZsgK2UpDmkoMAMMsYRwna2Qog1WlFmaBmIhUT8OI3nVApVc21I7q35Yd2PcAmyeVX
ZqCnYUriaae7hGrwpRgMNq48ixiWqcf7OXCnLSQ5GI8eJjeV5JMHwvlpuU0mnSkFFbx46UnL1
N7b+qMxz9FTTLQBIWS/PUZTTewZs+hKExv8OGZE1T46YdmrY89zc
+6of9c5NMdhGtD5fy7RRKY28fnUQ3wkN7ensLcJhVkWfrUyDVOoh2Th/
gh2D6RBAkMwxdnLUmdMrP8tbyGOxY0stM+9pO2t7qn6cvT9wHx7ekUaS/zqaR
root@xilinx-zcu102-2020_1

Fingerprint: sha1!!
c7:b9:cd:c4:a8:0a:b9:a8:ec:7b:a6:b1:55:a8:29:79:68:15:00:05

dropbear.

Starting internet superserver: inetd.

Starting syslogd/klogd: done

Starting tcf-agent: OK

PetaLinux 2020.1 xilinx-zcu102-2020_1 /dev/ttyPS0

xilinx-zcu102-2020_1 login: rroot
Password: oot

root
root@xilinx-zcu102-2020_1:~#

TIP: If you wish to stop auto-boot, hit any key when you see the messages similar to the following on the
console: Hit any key to stop autoboot:

10. Type user name root and password root on the serial console to log into the PetaLinux
system.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=51

Troubleshooting
This section describes some common issues you may experience while booting a PetaLinux
image on hardware with SD card.

Table 10: PetaLinux Image on Hardware Troubleshooting

Problem / Error Message Description and Solution
Wrong Image Format for boot
command.

ERROR: Can’t get kernel image!

Problem Description:
This error message indicates that the U-Boot boot loader is unable to find kernel
image. This is likely because bootcmd environment variable is not set properly.
Solution:
To see the default boot device, print bootcmd environment variable using the
following command in U-Boot console.
U-Boot-PetaLinux> print bootcmd

If it is not run using sdboot flow, there are a few options as follows:
• Without rebuild PetaLinux, set bootcmd to boot from your desired media,

use setenv command. For SD card boot, set the environment variable as
follows.
U-Boot-PetaLinux> setenv bootcmd ’run sdboot’ ; saveenv

• Run petalinux-config to set to load kernel image from SD card. For more
information, see the Boot Images Storage Configuration. Rebuild PetaLinux
and regenerate BOOT.BIN with the rebuilt U-Boot, and then use the new
BOOT.BIN to boot the board. See Generate Boot Image for Zynq UltraScale+
MPSoC on how to generate BOOT.BIN.

TIP: To know more about U-Boot options, use the command: $ U-Boot-PetaLinux> printenv.

Boot a PetaLinux Image on Hardware with
JTAG

This section describes how to boot a PetaLinux image on hardware with JTAG.

JTAG boot communicates with XSDB which in turn communicates with hw_server. The TCP port
used is 3121; ensure that the firewall is disabled for this port.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have a PetaLinux system image by either installing a PetaLinux BSP (see PetaLinux BSP
Installation) or by building your own PetaLinux project (see Build System Image).

• If you wish to make use of prebuilt capability for JTAG boot. You need to have packaged
prebuilt images (see Packaging Prebuilt Images).

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=52

• A serial communication program such as minicom/kermit/gtkterm has been installed; the baud
rate of the serial communication program has been set to 115200 bps.

• Appropriate JTAG cable drivers have been installed.

Steps to Boot a PetaLinux Image on Hardware with
JTAG
1. Power off the board.

2. Connect the JTAG port on the board with the JTAG cable to your workstation.

3. Connect the serial port on the board to your workstation.

4. If your system has Ethernet, also connect the Ethernet port on the board to your local
network.

5. Ensure that the mode switches are set to JTAG mode. Refer to the board documentation for
details.

6. Power on the board.

7. Open a console on your workstation and start with preferred serial communication program
(For example, kermit, minicom) with the baud rate set to 115200 on that console.

8. Run the petalinux-boot command as follows on your workstation:

$ petalinux-boot --jtag --prebuilt 3 --hw_server-url
<hostname:3121>

Note: If you wish not to use prebuilt capability for JTAG boot, refer to Additional Options for Booting
with JTAG.

The --jtag option tells petalinux-boot to boot on hardware via JTAG, and the --
prebuilt 3 option boots the Linux kernel. Wait for the appearance of the shell prompt on
the command console to indicate completion of the command.

Note: To know more about different boot levels for prebuilt option, see Using petalinux-boot
Command with Prebuilt Images.

The example of the message on the workstation command console for successful
petalinux-boot is:

NOTICE: ATF running on XCZU9EG/silicon v4/RTL5.1 at 0xfffea000
NOTICE: BL31: v2.2(release):v1.1-5588-g5918e656e
NOTICE: BL31: Built : 22:53:26, May 26 2020

U-Boot 2020.01 (May 26 2020 - 22:58:43 +0000)

Model: ZynqMP ZCU102 Rev1.0
Board: Xilinx ZynqMP
DRAM: 4 GiB
PMUFW: v1.1
EL Level: EL2
Chip ID: zu9eg

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=53

NAND: 0 MiB
MMC: mmc@ff170000: 0
In: serial@ff000000
Out: serial@ff000000
Err: serial@ff000000
Bootmode: JTAG_MODE
Reset reason: SRST
Net:
ZYNQ GEM: ff0e0000, mdio bus ff0e0000, phyaddr 12, interface rgmii-id

Warning: ethernet@ff0e0000 using MAC address from DT
eth0: ethernet@ff0e0000
Hit any key to stop autoboot: 2
ZynqMP>

By default, network settings for PetaLinux reference designs are configured using DHCP. The
output you see may be slightly different from the above example, depending on the
PetaLinux reference design being tested.

9. Type user name: root and password: root on the serial console to log into the PetaLinux
system.

10. Determine the IP address of the PetaLinux system by running ifconfig on the system console.

Additional Options for Booting with JTAG
• To download a bitstream to target board:

$ petalinux-boot --jtag --fpga --bitstream <BITSTREAM> --hw_server-url
<hostname:3121>

• To download newly built <plnx-proj-root>/images/linux/u-boot.elf to target
board:

$ petalinux-boot --jtag --u-boot --hw_server-url <hostname:3121>

• To download newly built kernel to target board:

$ petalinux-boot --jtag --kernel --hw_server-url <hostname:3121>

○ For MicroBlaze™ processors, this boots <plnx-proj-root>/images/linux/
system.bit, u-boot.elf, linux.bin.ub, system.dtb, and
rootfs.cpio.gz.u-boot on target board.

Note: If using a MicroBlaze processor, you need to add --fpga to the petalinux-boot command
as shown in the following example:

petalinux-boot --jtag --fpga --kernel --hw_server-url <hostname:3121>

○ For Zynq® UltraScale+™ MPSoC, this boots <plnx-proj-root>/images/linux/
pmufw.elf, zynqmp_fsbl.elf, u-boot.elf, Image, system.dtb, and
rootfs.cpio.gz.u-boot on target board.

○ For Zynq-7000 devices, this boots <plnx-proj-root>/images/linux/
zynq_fsbl.elf, u-boot.elf, uImage, system.dtb, and
rootfs.cpio.gz.u-boot on target board.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=54

• To download a image with a bitstream with --fpga --bitstream <BITSTREAM> option:

$ petalinux-boot --jtag --u-boot --fpga --bitstream <BITSTREAM>

The above command downloads the bitstream and then download the U-Boot image.

• To see the verbose output of JTAG boot with -v option:

$ petalinux-boot --jtag --u-boot -v

Logging Tcl/XSDB for JTAG Boot
Use the following command to take log of XSDB commands used during JTAG boot. It dumps Tcl
script (which in turn invokes the XSDB commands) data to test.txt.

$ cd <plnx-proj-root>
$ petalinux-boot --jtag --prebuilt 3 --tcl test.txt

Troubleshooting
This section describes some common issues you may experience while booting a PetaLinux
image on hardware with JTAG.

Table 11: PetaLinux Image on Hardware with JTAG Troubleshooting

Problem / Error Message Description and Solution
Cannot see any console output when
trying to boot U-Boot or kernel on
hardware but boots correctly on QEMU.

Problem Description:
This problem is usually caused by one or more of the following:
• The serial communication terminal application is set with the wrong baud

rate.
• Mismatch between hardware and software platforms.
Solution:
• Ensure your terminal application baud rate is correct and matches your

hardware configuration.
• Ensure the PetaLinux project is built with the right hardware platform.

○ Import hardware configuration properly (see the Importing Hardware
Configuration).

○ Check the "Subsystem AUTO Hardware Settings →" submenu to
ensure that it matches the hardware platform.

○ Check the "Serial settings →" submenu under "Subsystem AUTO
Hardware Settings →" to ensure stdout, stdin are set to the correct
UART IP core.

○ Rebuild system images (see Build System Image).

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=55

Boot a PetaLinux Image on Hardware with
TFTP

This section describes how to boot a PetaLinux image using Trivial File Transfer Protocol (TFTP).

TFTP boot saves a lot of time because it is much faster than booting through JTAG and you do
not have to flash the image for every change in kernel source.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• Host environment with TFTP server is setup and PetaLinux Image is built for TFTP boot. For
more information, see Configure TFTP Boot.

• You have packaged prebuilt images. For more information, see Packaging Prebuilt Images.

• A serial communication program such as minicom/kermit/gtkterm has been installed; the baud
rate of the serial communication program has been set to 115200 bps.

• Ethernet connection is setup properly between Host and Linux Target.

• Appropriate JTAG cable drivers have been installed.

Steps to Boot a PetaLinux Image on Hardware with
TFTP
1. Power off the board.

2. Connect the JTAG port on the board to the workstation using a JTAG cable.

3. Connect the serial port on the board to your workstation.

4. Connect the Ethernet port on the board to the local network via a network switch.

5. For Zynq®-7000 devices and Zynq UltraScale+ MPSoC device boards, ensure that the mode
switches are set to JTAG mode. Refer to the board documentation for details.

6. Power on the board.

7. Open a console on your workstation and start with preferred serial communication program
(for example, kermit, minicom) with the baud rate set to 115200 on that console.

8. Run the petalinux-boot command as follows on your workstation

$ petalinux-boot --jtag --prebuilt 2 --hw_server-url <hostname:3121>

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=56

The --jtag option tells petalinux-boot to boot on hardware via JTAG, and the
--prebuilt 2 option downloads the prebuilt bitstream (FSBL for Zynq UltraScale+
MPSoCs and Zynq-7000 devices) to target board, and then boot prebuilt U-Boot on target
board.

9. When autoboot starts, hit any key to stop it.

The example of a workstation console output for successful U-Boot download is:

Xilinx Zynq MP First Stage Boot Loader
Release 2020.1 Apr 27 2020 - 08:55:54
NOTICE: ATF running on XCZU9EG/silicon v4/RTL5.1 at 0xfffea000
NOTICE: BL31: v2.2(release):xilinx-v2019.2-1739-gbf72e4d49
NOTICE: BL31: Built : 10:12:17, Apr 27 2020

U-Boot 2020.01 (Apr 27 2020 - 10:12:56 +0000)

Model: ZynqMP ZCU102 Rev1.0
Board: Xilinx ZynqMP
DRAM: 4 GiB
PMUFW: v1.1
EL Level: EL2
Chip ID: zu9eg
NAND: 0 MiB
MMC: mmc@ff170000: 0
In: serial@ff000000
Out: serial@ff000000
Err: serial@ff000000
Bootmode: JTAG_MODE
Reset reason: DEBUG
Net:
ZYNQ GEM: ff0e0000, mdio bus ff0e0000, phyaddr 12, interface rgmii-id

Warning: ethernet@ff0e0000 using MAC address from DT
eth0: ethernet@ff0e0000
Hit any key to stop autoboot: 2

 0
ZynqMP>
ZynqMP>

10. Check whether the TFTP server IP address is set to the IP Address of the host where the
image resides. This can be done using the following command:

ZynqMP> print serverip

11. Set the server IP address to the host IP address using the following commands:

ZynqMP> set serverip <HOST IP ADDRESS>; saveenv

12. Boot the kernel using the following command:

ZynqMP> run netboot

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=57

Troubleshooting
Table 12: PetaLinux Image on Hardware with TFTP

Problem / Error Message Description and Solution
Error: "serverip" not defined. Problem Description:

This error message indicates that U-Boot environment
variable serverip is not set. You have to set it to IP
Address of the host where the image resides.
Solution:
Use the following command to set the serverip:
ZynqMP> set serverip <HOST IP ADDRESS>;saveenv

BSP Packaging
BSPs are useful for distribution between teams and customers. Customized PetaLinux project
can be shipped to next level teams or external customers through BSPs. This section explains,
with an example, how to package a BSP with PetaLinux project.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration.

Steps for BSP Packaging
Steps on how to package a project are as follows:

1. You can go outside the PetaLinux project directory to run petalinux-package command.

2. Use the following commands to package the BSP.

$ petalinux-package --bsp -p <plnx-proj-root> --output MY.BSP

This generates MY.BSP, including the following elements from the specified project:

• <plnx-proj-root>/project-spec/

• <plnx-proj-root>/config.project

• <plnx-proj-root>/.petalinux/

• <plnx-proj-root>/pre-built/

• <plnx-proj-root>/.gitignore

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=58

• <plnx-proj-root>/components

Additional BSP Packaging Options
1. BSP packaging with hardware source.

$ petalinux-package --bsp -p <plnx-proj-root> --hwsource <hw-project-
root> --output MY.BSP

It does not modify the specified PetaLinux project <plnx-proj-root>. It puts the specified
hardware project source to <plnx-proj-root>/hardware/ inside MY.BSP archive.

2. Exclude workspace changes

The default petalinux-package --bsp command checks for sources in components/
plnx-workspace/sources directory and applies those changes to the meta-user layer. To
skip this, use --exclude-workspace as shown in the following code snippet:

$ petalinux-packge --bsp -p <plnx-proj-root> --exclude-workspace

Alternatively, you can clean the project before executing the petalinux-package --bsp
command as shown below.

$ petalinux-build -x mrproper -f

This removes the sources and appends directories from components/plnx-workspace.

3. BSP packaging with external sources.

The support for search path is obsolete. It is your responsibility to copy the external sources
under <plnx-proj-root>/components/ext_sources. For more information, see Using
External Kernel and U-Boot with PetaLinux.

Chapter 5: Booting and Packaging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=59

Chapter 6

Upgrading the Workspace
To upgrade the workspace, use the petalinux-upgrade command. You can upgrade the tool
in the following three cases.

petalinux-upgrade Options
Table 13: petalinux-upgrade Options

Options Functional description Value Range Default Range
-h --help Displays usage information. None None
-f --file Local path to target system software

components.
User-specified. None

-u --url URL to target system software
components.

User-specified. None

-w, --wget-args Passes additional wget arguments
to the command.

Additional wget options. None

-p|--platform Specifies the architecture name to
upgrade.

aarch64: sources for Zynq
UltraScale+ MPSoC
arm: sources for Zynq devices
microblaze_lite: sources for
microblaze_lite
microblaze_full: sources for
microblaze_full

None

Upgrading Between Minor Releases (2020.1
Tool with 2020.2 Tool)

PetaLinux tool has system software components (embedded software, ATF, Linux, U-Boot,
OpenAMP, and Yocto framework) and host tool components (Vivado® Design Suite and Vitis™
software development platform). To upgrade to the latest system software components only, you
need to install the corresponding host tools.

Chapter 6: Upgrading the Workspace

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=60

The petalinux-upgrade command resolves this issue by upgrading the system software
components without changing the host tool components. The system software components are
upgraded in two steps: first, by upgrading the installed PetaLinux tool, and then by upgrading
existing PetaLinux projects. This allows you to upgrade without having to install the latest
version of the Vivado hardware project or Vitis software platform.

Upgrade PetaLinux Tool

Upgrade from Local File

Download the target system software components content from the server URL http://
petalinux.xilinx.com/sswreleases/rel-v2020/sdkupdate.

petalinux-upgrade command would expect the downloaded path as input.

1. Install the tool if you do not have it installed.

Note: Ensure the install area is writable.

2. Change into the directory of your installed PetaLinux tool using cd <plnx-tool>.

3. Type: source settings.sh.

4. Enter command: petalinux-upgrade -f <downloaded sdkupdate path>.

Example:

petalinux-upgrade -f “/scratch/ws/upgrade-workspace/sdkupdate”

Upgrade from Remote Server

Follow these steps to upgrade the installed tool target system software components from the
remote server.

1. Install the tool if you do not have it installed.

Note: The tool should have R/W permissions.

2. Go to installed tool.

3. Type: source settings.sh.

4. Enter command: petalinux-upgrade -u <url>.

Example:

petalinux-upgrade -u “http://petalinux.xilinx.com/sswreleases/rel-v2020/
sdkupdate/”

IMPORTANT! Only minor version upgrades are supported.

Chapter 6: Upgrading the Workspace

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 61Send Feedback

http://petalinux.xilinx.com/sswreleases/rel-v2020/sdkupdate
http://petalinux.xilinx.com/sswreleases/rel-v2020/sdkupdate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=61

Upgrading only Preferred Platforms in Tool

• To upgrade all platforms:

$ petalinux-upgrade -u/-f <path/url>

To upgrade the eSDKs for all (Zynq devices, Zynq UltraScale+ MPSoC, microblaze_lite,
microblaze_full).

• To upgrade only Zynq-7000 platform:

$ petalinux-upgrade -u/-f <path/url> --platform "arm"

• To upgrade eSDKs for Zynq and Zynq UltraScale+ MPSoC platforms:

$ petalinux-upgrade -u/-f <path/url> --platform "arm aarch64"

• To upgrade eSDKs for microblaze_lite:

$ petalinux-upgrade -u/-f <path/url> --platform "microblaze_lite
microblaze_full"

Upgrade PetaLinux Project

Upgrade an Existing Project with the Upgraded Tool

Use the following steps to upgrade existing project with upgraded tool.

1. Run petalinux-build -x mrproper in the existing project before upgrading the tool.

2. Upgrade the tool. To upgrade from local file, see Upgrade from Local File. To upgrade from
remote server, see Upgrade from Remote Server.

3. Go to the PetaLinux project you want to upgrade.

4. Enter either petalinux-build or petalinux-config to upgrade the project with all
new system components.

5. When asked to upgrade the eSDK, please select y to extract the new eSDK as shown below.

WARNING: Your Yocto SDK was changed in tool.
Please input "y" to proceed the installing SDK into project, "n" to
exit:y

Now your project is built with the upgraded tool.

6. If you had used only the petalinux-config command in step 4, run the petalinux-
build command to build the project.

Chapter 6: Upgrading the Workspace

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=62

Upgrading the Installed Tool with More
Platforms

Initially you installed PetaLinux tool with only the arm platform as specified in the Installing the
PetaLinux Tool. To install the aarch64 platform, follow these steps.

1. Go to the installed tool.

2. Source settings.sh file.

3. Run: petalinux-upgrade -u http://petalinux.xilinx.com/sswreleases/
rel-v2020/sdkupdate/ -p aarch64

The new platform is part of your <plnx-tool>/components/yocto/source/aarch64.

Use Cases

• To get the Zynq platform only:

$ petalinux-upgrade -u/-f <path/url> --platform "arm"

• To get Zynq and Zynq UltraScale+ MPSoC platforms:

$ petalinux-upgrade -u/-f <path/url> --platform "arm aarch64"

• To get the MicroBlaze platforms:

$ petalinux-upgrade -u/-f <path/url> --platform "microblaze_lite
microblaze_full"

Upgrading the Installed Tool with your
Customized Platform

From 2020.1 release onwards, platform/esdk is part of your project <plnx-proj-root>/
components/yocto. You can make changes in the esdk/platform and you can build those
changes using the petalinux-build –esdk option. The newly built eSDK is in <plnx-
proj-root>/images/linux/esdk.sh. Rename the newly built esdk.sh as
aarch64/arm/mb-lite/mb-full based on your project.

1. Go to the installed tool.

2. Source settings.sh.

3. Run petalinux-upgrade -f <plnx-proj-root>/images/linux/ -p
<platform>.

Chapter 6: Upgrading the Workspace

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=63

The tool will be upgraded with your new platform changes.

Note: These procedures work only between minor releases.

Chapter 6: Upgrading the Workspace

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=64

Chapter 7

Customizing the Project

Firmware Version Configuration
This section explains how to do firmware version configuration using petalinux-config
command.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see the Importing
Hardware Configuration.

Steps for Firmware Version Configuration
1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Firmware Version Configuration.

4. Select Host Name, Product Name, Firmware Version as per the requirement to edit them.

5. Exit the menu and select <Yes> when asked: Do you wish to save your new configuration?

6. Once the target is booted, verify the host name in cat /etc/hostname, product name in
cat /etc/petalinux/product, and the firmware version in cat /etc/petalinux/
version.

Root File System Type Configuration
This section details configuration of RootFS type using petalinux-config command.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=65

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see the Importing
Hardware Configuration.

Steps for Root File System Type Configuration
1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Image Packaging Configuration → Root File System Type.

4. Select INITRAMFS/INITRD/JFFS2/NFS/EXT4 (SD/eMMC/SATA/USB) as per the
requirement.

Note: EXT4 boot functionality expects the root file system to be mounted on ext4 partition and all
other boot images in FAT32 partition.

5. Save Configuration settings.

Boot Images Storage Configuration
This section provides details about configuration of the Boot Device, for example, Flash and
SD/MMC using petalinux-config command.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see the Importing
Hardware Configuration.

Steps for Boot Images Storage Configuration
1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=66

3. Select Subsystem AUTO Hardware Settings → Advanced Bootable Images Storage Settings.

4. In the Advanced Bootable Images Storage Settings submenu, you have the following options:

• Boot image settings (BOOT.BIN which includes FSBL, PMU, and ATF for Zynq®

UltraScale+™ MPSoC)

Select boot device as per requirement.

○ To set flash as the boot device, select primary flash.

○ To make SD card as the boot device, select primary sd.

• U-Boot env partition settings

• Kernel image settings (image.ub - Linux kernel, DTB, and RootFS)

• Image storage media

Select storage device as per the requirement.

○ To set flash as the boot device, select primary flash.

○ To make SD card as the boot device, select primary sd.

• Image name

The default kernel image is fitimage (image.ub).

You can change the kernel image (Image) using this menuconfig option.

• jffs2 RootFS image settings

• DTB settings

Troubleshooting
This section describes some common issues you may experience while working with boot device
configuration.

Table 14: Boot Images Storage Troubleshooting

Problem / Error Message Description and Solution
ERROR: Failed to config linux/kernel! Problem Description:

This error message indicates that it is unable to configure
the linux-kernel component with menuconfig.
Solution:
Check whether all required libraries/packages are installed
properly. For more information, see the Installation
Requirements.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=67

Primary Flash Partition Configuration
This sections provides details on how to configure flash partition with PetaLinux menuconfig.

1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Subsystem AUTO Hardware Settings → Flash Settings.

4. Select a flash device as the Primary Flash.

5. Set the name and the size of each partition.

The PetaLinux tools uses the start address for parallel flash or start offset for SPI flash and the
size of the above partitions to generate the following U-Boot commands:

• update_boot if the boot image, which is a U-Boot image for MicroBlaze™ processors and a
BOOT.BIN image for Zynq®-7000 devices, is selected to be stored in the primary flash.

• update_kernel and load_kernel if the kernel image, which is the FIT image image.ub,
is selected to be stored in the flash.

Managing Image Size
In an embedded environment, it is important to reduce the size of the kernel image stored in
flash and the static size of kernel image in RAM. This section describes impact of config item
on kernel size and RAM usage.

By default, the FIT image is composed of kernel image, DTB, and RootFS image.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see the Importing
Hardware Configuration.

Steps for Managing Image Size
FIT Image size can be reduced using the following methods:

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=68

1. Launch the root file system configuration menu using the following command:

$ cd <plnx-proj-root>
$ petalinux-config -c rootfs

2. Select File System Packages.

Under this submenu, you can find the list of options corresponding to the root file system
packages. If your requirement does not need some of these packages, you can shrink the size
of the root file system image by disabling them.

3. Launch the kernel configuration menu using the following command:

$ cd <plnx-proj-root>
$ petalinux-config -c kernel

4. Select General Setup.

Under this sub-menu, you can find options to set the config items. Any item that is not
mandatory to have in the system can be disabled to reduce the kernel image size. For
example, CONFIG_SHMEM, CONFIG_AIO, CONFIG_SWAP, CONFIG_SYSVIPC. For more
details, see the Linux kernel documentation.

Note: Note that disabling of some config items may lead to unsuccessful boot. It is expected that you
have the knowledge of config items before disabling them.

Inclusion of extra configuration items and file system packages lead to increase in the kernel
image size and the root file system size respectively.

If kernel or the root file system size increases and is greater than 128 MB, you need to do the
following:

a. Mention the Bootm length in <plnx-proj-root>/project-spec/meta-user/
recipes-bsp/u-boot/files/platform-top.h.

#define CONFIG_SYS_BOOTM_LEN <value greater than image size>

b. Undef CONFIG_SYS_BOOTMAPSZ in <plnx-proj-root>/project-spec/meta-
user/recipes-bsp/u-boot/files/platform-top.h.

Configuring INITRD BOOT
Initial RAM disk (INITRD) provides the capability to load a RAM disk by the boot loader during
the PetaLinux startup process. The Linux kernel mounts it as RootFS and starts the initialization
process. This section describes the procedure to configure the INITRD boot.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=69

Prerequisites
This section assumes that you have created a new PetaLinux project (see Creating an Empty
Project from a Template) and imported the hardware platform (see Importing Hardware
Configuration).

Steps to Configure INITRD Boot
1. Set the RootFS type to INITRD. For more information, see Root File System Type

Configuration.

2. Set RAMDISK loadaddr. Ensure loadaddr does not overlap with kernel or DTB address and
that it is a valid DDR address.

3. Build the system image. For more information, see Build System Image.

4. Use one of the following methods to boot the system image:

a. Boot a PetaLinux Image on Hardware with SD Card, see Boot a PetaLinux Image on
Hardware with an SD Card.

b. Boot a PetaLinux Image on Hardware with JTAG, see Boot a PetaLinux Image on
Hardware with JTAG.

• Make sure you have configured TFTP server in host.

• Set the server IP address to the host IP address using the following command at U-
Boot prompt:

ZynqMP> set serverip <HOST IP ADDRESS>;

• Read the images using following command:

ZynqMP> tftpb <dtb load address> system.dtb;tftpb <kernel load
address> Image; tftpb <rootfs load address> rootfs.cpio.gz.u-boot.

• Boot images using following command:

ZynqMP> booti <kernel load address> <rootfs loadaddress> <device
tree load address>

Configuring INITRAMFS Boot
Initial RAM file system (INITRAMFS) is the successor of INITRD. It is a cpio archive of the initial
file system that gets loaded into memory during the PetaLinux startup process. The Linux kernel
mounts it as RootFS and starts the initialization process.

This section describes the procedure to configure INITRAMFS boot.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=70

Prerequisites
This section assumes that you have created a new PetaLinux project (see Creating an Empty
Project from a Template) and imported the hardware platform (see Importing Hardware
Configuration).

Steps to Configure INITRAMFS Boot
1. Set the RootFS type to INITRAMFS. For more information, see Root File System Type

Configuration.

2. Build the system image. For more information, see Build System Image.

3. Use one of the following methods to boot the system image.

a. Boot a PetaLinux Image on QEMU, see Booting a PetaLinux Image on QEMU.

b. Boot a PetaLinux Image on Hardware with SD Card, see Boot a PetaLinux Image on
Hardware with an SD Card.

c. Boot a PetaLinux Image on Hardware with JTAG, see Boot a PetaLinux Image on
Hardware with JTAG.

IMPORTANT! The default mode in the PetaLinux BSP is the INITRD mode.

In INITRAMFS mode, RootFS is included in the kernel image.

• Image → Image (kernel) + rootfs.cpio (for Zynq® UltraScale+™ MPSoC)

• zImage → zImage (kernel) + rootfs.cpio (for Zynq-7000 devices)

• linux.bin.ub → simpleImage.mb (kernel) + rootfs.cpio (for MicroBlaze™ processors)

As you select the RootFS components, its size increases proportionally.

Configure TFTP Boot
This section describes how to configure the host and the PetaLinux image for the TFTP boot.

TFTP boot saves a lot of time because it is much faster than booting through JTAG and you do
not have to flash the image for every change in kernel source.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=71

• You have created a new PetaLinux project (see Creating an Empty Project from a Template)
and imported the hardware platform (see Importing Hardware Configuration).

• You have TFTP server running on your host.

PetaLinux Configuration and Build System Image
Steps to configure PetaLinux for TFTP boot and build the system image are:

1. Change to root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Image Packaging Configuration.

4. Select Copy final images to tftpboot and set tftpboot directory. By default, the TFTP
directory ID is /tftpboot. Ensure this matches your host's TFTP server setup.

5. Save configuration settings and build system image as explained in Build System Image.

Configuring NFS Boot
One of the most important components of a Linux system is the root file system. A well-
developed root file system can provide you with useful tools to work on PetaLinux projects.
Because a root file system can become big in size, it is hard to store it in flash memory.

The most convenient thing is to mount the entire root file system from the network allowing the
host system and the target to share the same files. The root file system can be modified quickly
and also on the fly (meaning that the file system can be modified while the system is running).
The most common way to setup a system like the one described is through NFS.

In case of NFS, no manual refresh is needed for new files.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have created a new PetaLinux project (see Creating an Empty Project from a Template)
and imported the hardware platform (see Importing Hardware Configuration).

• You have Linux file and directory permissions.

• You have an NFS server setup on your host. Assuming it is set up as /home/NFSshare in this
example.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=72

PetaLinux Configuration and Build System Image
Steps to configure the PetaLinux for NFS boot and build the system image are as follows:

1. Change to root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Image Packaging Configuration → Root File System Type.

4. Select NFS as the RootFS type.

5. Select Location of NFS root directory and set it to /home/NFSshare.

6. Exit menuconfig and save configuration settings. The boot arguments in the auto generated
DTSI is automatically updated. You can check <plnx-proj-root>/components/
plnx_workspace/device-tree/device-tree/system-conf.dts.

7. Launch Kernel configuration menu.

$petalinux-config -c kernel

8. Select Networking support → IP: kernel level configuration.

• IP:DHCP support

• IP:BOOTP support

• IP:RARP support

9. Select File systems → Network file systems → Root file systems on NFS.

10. Build the system image.

Note: For more information, see Build System Image.

11. You can see the updated boot arguments only after building.

Booting with NFS
In case of NFS Boot, RootFS is mounted through the NFS but bootloader (FSBL, bitstream, U-
Boot), and kernel can be downloaded using various methods as mentioned below.

1. JTAG: In this case, bootloader and kernel is downloaded on to the target through JTAG. For
more information, see Boot a PetaLinux Image on Hardware with JTAG.

TIP: If you want to make use of prebuilt capability to boot with JTAG, package images into prebuilt directory.
For more information, see Packaging Prebuilt Images.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=73

1. tftpboot: In this case, bootloader is downloaded through JTAG and kernel is downloaded on
to the target through tftpboot. For more information, see Boot a PetaLinux Image on
Hardware with TFTP.

2. SD card: In this case, bootloader (BOOT.BIN), bootscript (boot.scr) and kernel image
(image.ub) is copied to the SD card downloaded from the SD card. For more information,
see Boot a PetaLinux Image on Hardware with an SD Card.

Configuring JFFS2 Boot
Journaling flash file system version 2 or JFFS2 is a log-structured file system for use with flash
memory devices. This section describes the procedure to configure JFFS2 boot.

Prerequisites
This section assumes that you have created a new PetaLinux project (see Creating an Empty
Project from a Template) and imported the hardware platform (see Importing Hardware
Configuration).

Steps to Configure JFFS2 Boot
1. Set the root file system type to JFFS2. For more information, see Root File System Type

Configuration.

2. Set Primary Flash as boot device and boot images storage. For more information, see Boot
Images Storage Configuration and Primary Flash Partition Configuration.

3. Build the system image. For more information, see Build System Image.

4. Boot a PetaLinux Image on hardware with JTAG, see Boot a PetaLinux Image on Hardware
with an SD Card.

5. Make sure you have configured TFTP server in host.

6. Set the server IP address to the host IP address using the following command at U-Boot
prompt.

ZynqMP> set serverip <HOST IP ADDRESS>;

a. Detect Flash Memory.

ZynqMP> sf probe 0 0 0

b. Erase Flash Memory.

ZynqMP> sf erase 0 0x5000000

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=74

c. Read images onto Memory and write into Flash.

• Read BOOT.BIN.

ZynqMP> tftpboot 0x80000 BOOT.BIN

• Write BOOT.BIN.

ZynqMP> sf write 0x80000 0 <size of boot.bin>

Example: sf write 0x80000 0 0x10EF48

• Read image.ub.

ZynqMP> tftpboot 0x80000 image.ub

• Write image.ub.

ZynqMP>sf write 0x80000 <loading address of kernel> <size of
image.ub>

Example: sf write 0x80000 0x580000 0x6cb0e4

• Read rootfs.jffs2.

ZynqMP> tftpboot 0x80000 rootfs.jffs2

• Write rootfs.jffs2.

ZynqMP> sf write 0x80000 <loading address of rootfs.jffs2> <size of
rootfs.jffs2>

Example: sf write 0x80000 0x1980000 0x7d4000

Note: Check loading addresses for kernel and root file system inside system.dts.

• Read boot.scr

ZynqMP> tftpboot 0x80000 boot.scr

• Write boot.scr

ZynqMP> sf write 0x80000 <loading address of boot.scr> < size of
boot.scr>

Example: sf write 0x80000 0x7F80000 0x80000

Note: Check the addresses in <plnx-project-root>/project-spec/meta-user/
recipes-bsp/u-boot/u-boot-zynq-scr/boot.cmd.default.initrd. If they do not
match, the process may fail in the U-Boot prompt.

7. Enable QSPI flash boot mode on board.

8. Reset the board (booting starts from flash).

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=75

Configuring SD Card ext File System Boot
Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have created a new PetaLinux project (see Creating an Empty Project from a Template)
and imported the hardware platform (see Importing Hardware Configuration).

• An SD memory card with at least 4 GB of storage space. It is recommended to use a card with
speed-grade 6 or higher to achieve optimal file transfer performance.

Preparing the SD Card
Steps to prepare the SD card for PetaLinux SD card ext file system boot:

1. The SD card is formatted with two partitions using a partition editor such as gparted.

2. The first partition should be at least 500 MB in size and formatted as a FAT32 file system.
Ensure that there is 4 MB of free space preceding the partition. The first partition contains
the boot loader, device tree, and kernel images. Label this partition as BOOT.

3. The second partition should be formatted as an ext4 files system and can take up the
remaining space on the SD card. This partition stores the system root file system. Label this
partition as RootFS.

4. Copy the files as follows:
FAT partition:BOOT.BIN, boot.scr, and Image
EXT partition: rootfs.tar.gz/rootfs.cpio.gz

For optimal performance ensure that the SD card partitions are 4 MB aligned.

PetaLinux Configuration and Build System Image
Steps to configure PetaLinux for SD card ext file system boot and build the system image are as
follows:

1. Change to root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch top level system configuration menu.

$ petalinux-config

3. Select Image Packaging Configuration → Root file system type.

4. Select EXT4 (SD/eMMC/SATA/USB) as the root file system type.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=76

Note: Choose this setting to configure your PetaLinux build for EXT root. By default, it adds the SD/
eMMC device name in bootargs. For other devices (SATA/USB), you must change the ext4 device
name, as shown in the following examples:

• eMMC or SD root = /dev/mmcblkYpX

• SATA or USB root= /dev/sdX

5. Exit menuconfig and save configuration settings.

Note: The boot arguments is automatically updated in the <plnx-proj-root>/components/
plnx_workspace/device-tree/device-tree/system-conf.dtsi. These changes are
reflected only after the build.

6. Build PetaLinux images. For more information, see Build System Image.

7. Generate boot image. For more information, see Generate Boot Image for Zynq UltraScale+
MPSoC.

8. The generated rootfs.tar.gz file is present in images/linux directory. To extract, use
tar xvf rootfs.tar.gz.

Copying Image Files
This section explains how to copy image files to SD card partitions. Assuming the two partitions
get mounted at /media/BOOT and /media/rootfs.

1. Change to root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Copy BOOT.BIN and image.ub to BOOT partition of SD card. The image.ub file has
device tree and kernel image files.

$ cp images/linux/BOOT.BIN /media/BOOT/
$ cp images/linux/image.ub /media/BOOT/
$ cp images/linux/boot.scr /media/BOOT/

3. Copy rootfs.tar.gz file to the root file system partition of the SD card and extract the
file system.

$ sudo tar xvf rootfs.tar.gz -C /media/rootfs

In order to boot this SD card ext image, see Boot a PetaLinux Image on Hardware with an SD
Card.

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=77

Troubleshooting
Table 15: Configuring SD Card ext Filesystem Boot

Problem / Error Message Description and Solution
EXT4-fs (mmcblk0p2): mounted filesystem with
ordered data mode. Opts: (null) Kernel panic -
not syncing: No working init found.

Problem Description:
This message indicates that the Linux kernel is unable to
mount EXT4 File System and unable to find working init.
Solution:
Extract RootFS in RootFS partition of SD card. For more
information, see the Copying Image Files.

Creating Partitioned Images Using Wic
The following command generates partitioned images from the images/linux directory. Image
generation is driven by partitioning commands contained in the kickstart file (.wks). The
default .wks file is FAT32 with 1G and EXT4 with 3 GB. You can find the default kickstart file in
<plnx-proj-root>/build/wic/rootfs.wks after the petalinux-package --wic
command is executed.

$ petalinux-package --wic

Package wic Image using Default Images

The following command generates the wic image, petalinux-sdimage.wic, in the images/
linux folder with the default images from the images/linux directory.

$ petalinux-package --wic

Package wic Image in a Specific Folder

The following command generates the wic image, petalinux-sdimage.wic, in the
wicimage/ folder.

$ petalinux-package --wic --outdir wicimage/

Package wic Image with Specified Images Path

The following command packs all bootfiles from the custom-imagespath/ directory.

$ petalinux-package --wic --images-dir custom-imagespath/

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=78

Package Custom Bootfiles into the /boot Directory

• To copy boot.bin userfile1 userfile2 files from the <plnx-proj-dir>/images/
linux directory to the /boot of media, use the following command:

$ petalinux-package --wic --bootfiles "boot.bin userfile1 userfile2"

This generates the wic image with specified files copied into the /boot directory.

Note: Ensure that these files are part of the images directory.

• To copy the uImage file named kernel to the /boot directory, use the following command:

$ petalinux-package --wic --extra-bootfiles "uImage:kernel"

• To copy the default bootfiles and specified bootfiles by user files into the /boot directory, use
the following command:

$ petalinux-package --wic --bootfiles "userfiles/*"

• To copy all the files in the userfiles/ directory to the /boot/user_boot directory, use
the following command:

$ petalinux-package --wic --extra-bootfiles "userfiles/*:user_boot"

Note: Ensure that these files are part of the images directory.

Package Custom Root File System

The following command unpacks your custom-rootfs.tar.gz file and copies it to the /
rootfs directory.

$ petalinux-package --wic --rootfs-file custom-rootfs.tar.gz

Copy the Image SD Card

The following command copies the image SD card to the EXT4 partition. Alternatively, you can
use the etcher tool or Win32Diskimager from Windows to flash this image.

$ sudo dd if=petalinux-sdimage.wic of=/dev/mmcblk<X> conv=fsync

Chapter 7: Customizing the Project

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=79

Chapter 8

Customizing the Root File System

Including Prebuilt Libraries
This section explains how to include pre-compiled libraries to PetaLinux root file system.

If a library is developed outside PetaLinux, you may just want to add the library in the PetaLinux
root file system. In this case, an application template is created to allow copying of the existing
content to target file system.

If the application, library, or module name has ‘_’, see Recipe Name Having ' _ '.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration.

Steps to Include Prebuilt Applications
If your prebuilt application name is mylib.so, including this into PetaLinux root file system is
explained in following steps.

1. Ensure that the pre-compiled code has been compiled for your PetaLinux target architecture,
for example, MicroBlaze™ processors, Arm® cores, etc.

2. Create an application with the following command.

$ petalinux-create -t apps --template install --name mylib --enable

Note: --enable should be executed after the petalinux-config command.

3. Change to the newly created application directory.

$ cd <plnx-proj-root>/project-spec/meta-user/recipes-apps/mylib/files/

4. Remove existing mylib file, and copy the prebuilt mylib.so into mylib/files directory.

$ rm mylib
$ cp <path-to-prebuilt-mylib.so> ./

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=80

5. Create an application and include a prebuilt library into the root file system with a single
command instead of following steps 2, 3, and 4. The following command creates mylib app
and copies mylib.so from <path-to-dir> to mylib/files directory.

$ petalinux-create -t apps --template install --name mylib --srcuri
<path-to-dir>/mylib.so --enable

Note: This is applicable for applications and modules.

6. Create an application with multiple source files.

$ petalinux-create -t apps --template install --name mylibs --srcuri
"<path-to-dir>/mylib1.so <path-to-dir>/mylib2.so"

Note: This is applicable for applications and modules.

7. Create an app with remote sources. The following examples will create applications with
specified git/http/https pointing to the srcuri.

$ petalinux-create -t apps -n myapp --enable --srcuri http://
example.tar.gz

$ petalinux-create -t apps -n myapp --enable --srcuri git://example.git
\;protocol=https

$ petalinux-create -t apps -n myapp --enable --srcuri https://
example.tar.gz

Note: This is applicable for applications and modules.

8. Edit <plnx-proj-root>/project-spec/meta-user/recipes-apps/mylib/
mylib.bb.

The file should look like the following.

This file is the libs recipe.
#

SUMMARY = "Simple libs application"
SECTION = "PETALINUX/apps"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/
MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://mylib.so \
 "

S = "${WORKDIR}"

TARGET_CC_ARCH += "${LDFLAGS}"

do_install() {
 install -d ${D}${libdir}
 install -m 0655 ${S}/mylib.so ${D}${libdir}
}

FILES_${PN} += "${libdir}"
FILES_SOLIBSDEV = ""

9. Run petalinux-build -c rootfs.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=81

IMPORTANT! You need to ensure that the binary data being installed into the target file system by an install
template application is compatible with the underlying hardware implementation of your system.

Including Prebuilt Applications
If an application is developed outside PetaLinux (for example, through the Vitis™ software
development platform), you may just want to add the application binary in the PetaLinux root file
system. In this case, an application template is created to allow copying of the existing content to
target file system.

This section explains how to include pre-compiled applications to PetaLinux root file system.

Prerequisites
This section assumes that you have PetaLinux tools software platform ready for building a Linux
system customized for your hardware platform. For more information, see Importing Hardware
Configuration.

Steps to Include Prebuilt Applications
If your prebuilt application name is myapp, including this into PetaLinux root file system is
explained in following steps.

1. Ensure that the pre-compiled code has been compiled for your PetaLinux target architecture,
for example, MicroBlaze™ processors, Arm® cores etc.

2. Create an application with the following command.

$ petalinux-create -t apps --template install --name myapp --enable

3. Change to the newly created application directory.

$ cd <plnx-proj-root>/project-spec/meta-user/recipes-apps/myapp/files/

4. Remove existing myapp app and copy the prebuilt myapp into myapp/files directory.

$ rm myapp
$ cp <path-to-prebuilt-app> ./

IMPORTANT! You need to ensure that the binary data being installed into the target file system by an install
template application is compatible with the underlying hardware implementation of your system.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=82

Creating and Adding Custom Libraries
This section explains how to add custom Libraries to PetaLinux root file system.

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration.

Steps to Add Custom Libraries
The basic steps are as follows:

1. Create a user application by running petalinux-create -t apps from inside a
PetaLinux project on your workstation:

$ cd <plnx-proj-root>
$ petalinux-create -t apps --template c --name <user-library-name> --
enable

For example:

$ petalinux-create -t apps --template c --name libsample --enable

Note: If the application name has '_', see Recipe Name Having ' _ '.

The new application sources can be found in the <plnx-proj-root>/project-spec/
meta-user/recipes-apps/libsample directory.

2. Change to the newly created application directory.

$ cd <plnx-proj-root>/project-spec/meta-user/recipes-apps/libsample

3. Edit the file project-spec/meta-user/recipes-apps/libsample/libsample.bb.

The file should look like the following.

#
This file is the libsample recipe.
#
SUMMARY = "Simple libsample application"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM ="file://${COMMON_LICENSE_DIR}/
MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://libsample.c \
 file://libsample.h \
 file://Makefile \
 "

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=83

S = "${WORKDIR}"

PACKAGE_ARCH = "${MACHINE_ARCH}"
PROVIDES = "sample"TARGET_CC_ARCH += "${LDFLAGS}"
do_install() {
 install -d ${D}${libdir}
 install -d ${D}${includedir}
 oe_libinstall -so libsample ${D}${libdir} install -d -m 0655 ${D}$
{includedir}/SAMPLE
 install -m 0644 ${S}/*.h ${D}${includedir}/SAMPLE/
 }

 FILES_${PN} = "${libdir}/*.so.* ${includedir}/*"
 FILES_${PN}-dev = "${libdir}/*.so"

4. Edit the file project-spec/meta-user/recipes-apps/libsample/files/
libsample.c. The file should look like the following:

#include <stdio.h>
#include "libsample.h"

int function()
{
 printf("Hello World!\n");
 return 0;
}

void samplelib()
{
 printf("Hello, Welcome to PetaLinux -- samplelib !\n");
}

5. Create a new file project-spec/meta-user/recipes-apps/libsample/files/
libsample.h and add below line.

void samplelib();

6. Edit the file project-spec/meta-user/recipes-apps/libsample/files/
Makefile. Refer to the makefile content at https://xilinx-wiki.atlassian.net/wiki/spaces/A/
pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoAddPre-
builtLibrariesinPetaLinuxorYoctoRecipes for more details.

7. Build recipe.

petalinux-build -c libsample

Testing User Libraries
Prerequisites
This section assumes that you have built and installed pre-compiled/custom user applications.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 84Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoAddPre-builtLibrariesinPetaLinuxorYoctoRecipes
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoAddPre-builtLibrariesinPetaLinuxorYoctoRecipes
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoAddPre-builtLibrariesinPetaLinuxorYoctoRecipes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=84

Steps to Test User Libraries
1. Create an application using following command.

petalinux-create -t apps --template c -n sampleapp --enable

2. Modify the file <plnx-proj-root>/project-spec/meta-user/recipes-apps/
sampleapp/sampleapp.bb as below:

#
This file is the sampleapp recipe.
#

SUMMARY = "Simple sampleapp application"
SECTION = "PETALINUX/apps"
LICENSE = "MIT"
LIC_FILES_CHKSUM =
"file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://sampleapp.c \
 "
S = "${WORKDIR}"

DEPENDS = " sample"

do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} -o testsamplelib testsamplelib.c -
lsample
}

do_install() {
 install -d ${D}${bindir}
 install -m 0755 sampleapp ${D}${bindir}
}
FILES_${PN} += "sampleapp"

3. Edit the file project-spec/meta-user/recipes-apps/sampleapp/files/
sampleapp.c.

#include <stdio.h>
#include <SAMPLE/libsample.h>

int main(int argc, char **argv)
{
 printf("Hello World!\n");
 samplelib();
 return 0;
}

4. Build the application using the following command:

petalinux-build -c sampleapp

5. Boot the newly created system image.

6. Run your user application on the target system console. For example, to run user application
sampleapp:

sampleapp

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=85

7. Confirm that the result of the application is as expected.

Creating and Adding Custom Applications
This section explains how to add custom applications to PetaLinux root file system.

Prerequisites
This section assumes that you have PetaLinux tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration.

Steps to Add Custom Applications
The basic steps are as follows:

1. Create a user application by running petalinux-create -t apps from inside a
PetaLinux project on your workstation:

$ cd <plnx-proj-root>
$ petalinux-create -t apps --template <TYPE> --name <user-application-
name> --enable

For example, to create a user application called myapp in C (the default):

$ petalinux-create -t apps --name myapp --enable

or:

$ petalinux-create -t apps --template c --name myapp --enable

To create a C++ application template, pass the --template c++ option, as follows:

$ petalinux-create -t apps --template c++ --name myapp --enable

To create an autoconf application template, pass the --template autoconf option, as
follows:

$ petalinux-create -t apps --template autoconf --name myapp --enable

The new application sources can be found in the <plnx-proj-root>/project-spec/
meta-user/recipes-apps/myapp directory.

2. Change to the newly created application directory.

$ cd <plnx-proj-root>/project-spec/meta-user/recipes-apps/myapp

You should see the following PetaLinux template-generated files:

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=86

Table 16: Adding Custom Applications Files

Template Description
<plnx-proj-root>/project- spec/meta-user/
conf/user-rootfsconfig

Configuration file template - This file controls the
integration of your application into the PetaLinux RootFS
menu configuration. It also allows you select or de-select
the app and its dev, dbg packages into the target root file
system

Makefile Compilation file template - This is a basic Makefile
containing targets to build and install your application
into the root file system. This file needs to be modified
when you add additional source code files to your project.

README A file to introduce how to build the user application.

myapp.c for C;
myapp.cpp for C++

Simple application program in either C or C++, depending
upon your choice.

Note: If you want to use the build artifacts for debugging with the third party utilities, add the
following line in <plnx-proj-root>/project-spec/meta-user/conf/petalinuxbsp.conf:

RM_WORK_EXCLUDE += "myapp"

Note: You can find all build artifacts under ${TMPDIR}/work/aarch64-xilinx-linux/myapp/
1.0-r0/.

Note: Applications created using the petalinux-create -t apps command have debug symbols
by default in the following path if you comment out rm_work: <plnx-proj>/build/conf/
local.conf.<plnx-proj>/build/tmp/work/aarch64-xilinx-linux/<app-name>/1.0-
r0/packages-split/<app-name>-dbg/usr/bin/.debug/<app-name>.

TIP: Mapping of Make file clean with do_clean  in recipe is not recommended. This is because Yocto
maintains its own do_clean.

3. myapp.c/myapp.cpp file can be edited or replaced with the real source code for your
application. If you want to modify your custom user application later, this file should be
edited.

CAUTION! You can delete the app directory if it is no longer required. You must also remove the line:
CONFIG_myapp  from <plnx-proj-root>/project-spec/meta-user/conf/user-
rootfsconfig. Deleting the directory by keeping the mentioned line throws an error.

Creating and Adding Custom Kernel Modules
This section explains how to add custom kernel modules to PetaLinux root file system.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=87

Prerequisites
This section assumes that you have PetaLinux Tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration for more information.

Steps to Add Custom Modules
1. Create a user module by running petalinux-create -t modules from inside a

PetaLinux project on your workstation:

$ cd <plnx-proj-root>
$ petalinux-create -t modules --name <user-module-name> --enable

For example, to create a user module called mymodule in C (the default):

$ petalinux-create -t modules --name mymodule --enable

You can use -h or --help to see the usage of the petalinux-create -t modules. The
new module recipe you created can be found in the <plnx-proj-root>/project-spec/
meta-user/recipes-modules/mymodule directory.

Note: If the module name has ‘_’, see Recipe Name Having ' _ '.

2. Change to the newly created module directory.

$ cd <plnx-proj-root>/project-spec/meta-user/recipes-modules/
mymodule

You should see the following PetaLinux template-generated files:

Table 17: Adding Custom Module Files

Template Description
Makefile Compilation file template - This is a basic Makefile

containing targets to build and install your module into
the root file system. This file needs to be modified when
you add additional source code files to your project. Click
here to customize the make file.

README A file to introduce how to build the user module.

mymodule.c Simple kernel module in C.

<plnx-proj-root>/project- spec/meta-user/
conf/user-rootfsconfig

Configuration file template - This file controls the
integration of your application/modules/libs into
the PetaLinux RooFS menu configuration system. It also
allows you to select or de-select the app and its dev, dbg
packages into the target root file system.

3. mymodule.c file can be edited or replaced with the real source code for your module. Later
if you want to modify your custom user module, you are required to edit this file.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 88Send Feedback

https://www.kernel.org/doc/Documentation/kbuild/modules.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=88

Note: If you want to use the build artifacts for debugging with the third party utilities, add the
following line in project-spec/meta-user/conf/petalinuxbsp.conf:

RM_WORK_EXCLUDE += "mymodule"

Note: You can find all build artifacts under ${TMPDIR}/work/aarch64-xilinx-linux/mymodule/
1.0-r0/.

Note: The modules created with petalinux-create -t modules have debug symbols by default.

CAUTION! You can delete the module directory if it is no longer required. Apart from deleting the module
directory, you have to remove the line: CONFIG_mymodule  from <plnx-proj-root>/project-spec/
meta-user/conf/user-rootfsconfig . Deleting the directory by keeping the mentioned line in user-
rootfsconfig  throws an error.

Building User Applications
This section explains how to build and install pre-compiled/custom user applications to PetaLinux
root file system.

Prerequisites
This section assumes that you have included or added custom applications to PetaLinux root file
system (see Creating and Adding Custom Applications).

Steps to Build User Applications
Running petalinux-build in the project directory <plnx-proj-root> rebuilds the system
image including the selected user application myapp. (The output directory for this build process
is <TMPDIR>/work/aarch64-xilinx-linux/myapp/1.0-r0/.)

$ petalinux-build

To build myapp into an existing system image:

$ cd <plnx-proj-root>
$ petalinux-build -c rootfs
$ petalinux-build -x package

Other petalinux-build options are explained with --help. Some of the build options are:

• To clean the selected user application:

$ petalinux-build -c myapp -x do_clean

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=89

• To rebuild the selected user application:

$ petalinux-build -c myapp

This compiles the application. The compiled executable files are in the ${TMPDIR}/work/
aarch64-xilinx-linux/myapp/1.0-r0/ directory.

If you want to use the build artifacts for debugging with the third party utilities, add the line:
RM_WORK_EXCLUDE += "myapp" in <plnx-proj-root>/project-spec/meta-
user/conf/petalinuxbsp.conf. Without this line, the BitBake removes all the build
artifacts after building successfully.

• To see all list of tasks for myapp:

petalinux-build -c myapp -x listtasks

• To install the selected user application:

$ petalinux-build -c myapp -x do_install

This installs the application into the target the root file system host copy: <TMPDIR>/work/
<MACHINE_NAME>-xilinx-linux/petalinux-image-minimal/1.0-r0/rootfs/.

TMPDIR can be found in petalinux-config → Yocto-settings → TMPDIR. If the project is on
local storage, TMPDIR is <plnx-proj-root>/build/tmp/.

If you want to use the build artifacts for debugging with third party utilities, add the following
line in project-spec/meta-user/conf/petalinuxbsp.conf:

RM_WORK_EXCLUDE += "myapp"

Testing User Applications
Prerequisites
This section assumes that you have built and installed pre-compiled/custom user applications.
For more information, see Building User Applications.

Steps to Test User Application
1. Boot the newly created system image on target or QEMU.

2. Confirm that your user application is present on the PetaLinux system by running the
following command on the target system login console:

ls /usr/bin

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=90

Unless you have changed the location of the user application through its Makefile, the user
application is placed into the /usr/bin directory.

3. Run your user application on the target system console. For example, to run the user
application myapp:

myapp

4. Confirm that the result of the application is as expected.

If the new application is missing from the target file system, ensure that you have completed the
petalinux-build -x package step as described in the previous section. This ensures that
your application binary is copied into the root file system staging area, and that the target system
image is updated with this new file system.

Building User Modules
This section explains how to build and install custom user kernel modules to PetaLinux root file
system.

Prerequisites
This section assumes that you have included or added custom modules to PetaLinux root file
system (see Creating and Adding Custom Kernel Modules).

Steps to Build User Modules
Running petalinux-build in the project directory "<plnx-proj-root>" rebuilds the
system image including the selected user module mymodule. (The output directory for this build
process is <TMPDIR>/work/<MANCHINE_NAME>-xilinx-linux/mymodule/1.0-r0/)

$ petalinux-build

To build mymodule into an existing system image:

$ cd <plnx-proj-root>
$ petalinux-build -c rootfs
$ petalinux-build -x package

Other petalinux-build options are explained with --help. Some of the build options are:

• To clean the selected user module:

$ petalinux-build -c mymodule -x do_cleansstate

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=91

• To rebuild the selected user module:

$ petalinux-build -c mymodule

This compiles the module. The compiled executable files are placed in <TMPDIR>/work/
<MANCHINE_NAME>-xilinx-linux/mymodule/1.0-r0/ directory.

• To see all list of tasks for this module:

$ petalinux-build -c mymodule -x listtasks

• To install the selected user module:

$ petalinux-build -c mymodule -x do_install

This installs the module into the target the root file system host copy: <TMPDIR>/work/
<MACHINE_NAME>-xilinx-linux/petalinux-image-minimal/1.0-r0/rootfs/.

TMPDIR can be found in petalinux-config → Yocto-settings → TMPDIR. If the project is on
local storage, TMPDIR is <${PROOT}>/build/tmp/.

If you want to use the build artifacts for debugging with third party utilities, add the following
line in project-spec/meta-user/conf/petalinuxbsp.conf:

RM_WORK_EXCLUDE += "mymodule"

PetaLinux Auto Login
This section explains how to login directly from boot without having to enter login credentials.

Prerequisites
This section assumes that you have PetaLinux tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration.

Steps for PetaLinux Auto Login
Follow the below steps for PetaLinux Auto Login:

1. Change to the root directory of your PetaLinux project.

cd <plnx-proj-root>

2. Run petalinux-config -c rootfs.

3. Select Image Features → auto-login.

4. Save the configuration and exit.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=92

5. Run petalinux-build.

Application Auto Run at Startup
This section explains how to add applications that run automatically at system startup.

Prerequisites
This section assumes that you have already added and built the PetaLinux application. For more
information, see Creating and Adding Custom Applications and Building User Applications.

Steps for Application Auto Run at Startup
If you have a prebuilt or newly created custom user application myapp located in your PetaLinux
project at <plnx-proj-root>/project-spec/meta-user/recipes-apps/, you may
want to execute it at system startup. The steps to enable that are:

If you have prebuilt application and you have not included in PetaLinux Root file system, see
Including Prebuilt Applications. If you want to create custom application and install it in
PetaLinux Root file system, see Creating and Adding Custom Applications. If your auto run
application is a blocking application which never exits, launch this application as a daemon.

1. Create and install a new application named myapp-init

cd <plnx-proj-proot>
petalinux-create -t apps --template install -n myapp-init --enable

2. Edit the file project-spec/meta-user/recipes-apps/myapp-init/myapp-
init.bb. The file should look like the following:

#
This file is the myapp-init recipe.
#
SUMMARY = "Simple myapp-init application"
SECTION = "PETALINUX/apps"
LICENSE = "MIT"
LIC_FILES_CHKSUM ="file://${COMMON_LICENSE_DIR}/
MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://myapp-init \
 "
S = "${WORKDIR}"

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

inherit update-rc.d

INITSCRIPT_NAME = "myapp-init"
INITSCRIPT_PARAMS = "start 99 S ."

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=93

do_install() {
 install -d ${D}${sysconfdir}/init.d
 install -m 0755 ${S}/myapp-init ${D}${sysconfdir}/init.d/myapp-
init
}
FILES_${PN} += "${sysconfdir}/*"

3. To run myapp as daemon, edit the file project-spec/meta-user/recipes-apps/
myapp-init/files/myapp-init.

The file should look like below:

#!/bin/sh
DAEMON=/usr/bin/myapp-init
start ()
{
 echo " Starting myapp-init"
 start-stop-daemon -S -o --background -x $DAEMON
}
stop ()
{
 echo " Stoping myapp-init"
 start-stop-daemon -K -x $DAEMON
}
restart()
{
 stop
 start
}
[-e $DAEMON] || exit 1

 case "$1" in
 start)
 start; ;;
 stop)
 stop; ;;
 restart)
 restart; ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 esac
exit $?

4. Run petalinux-build.

Adding Layers
You can add layers into the PetaLinux project. The upstream layers for ZEUS version can be
found http://layers.openembedded.org/layerindex/branch/zeus/layers/.

The following steps demonstrate adding the meta-my layer into the PetaLinux project.

1. Copy or create a layer in <proj_root>/project-spec/meta-mylayer.

2. Run petalinux-config → Yocto Settings → User Layers.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 94Send Feedback

http://layers.openembedded.org/layerindex/branch/zeus/layers/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=94

3. Enter the following command:

${proot}/project-spec/meta-mylayer

4. Save and exit.

5. Verify by viewing the file in <proj_root>/build/conf/bblayers.conf.

Note: 2020.1 PetaLinux is on ZEUS base line. The layers/recipes should be chosen from the ZEUS branch
only. Some of the layers/recipes might not be compatible with our architectures. You are responsible for all
additional layers/recipes.

Note: You can also add a layer that is outside your project; such layers can be shared across projects.
Ensure that the added layer has <layer>/conf/layer.conf; otherwise, it causes build errors.

IMPORTANT! If you want to change the layer priority, you can update ${proot}/project-spec/meta-
mylayer/conf/locallayer.conf  to set BBFILE_PRIORITY_meta-mylayer = 6 (0 to 10, higher values
have higher priority).

Adding an Existing Recipe into the Root File
System

Most of the root file system menu config is static. These are the utilities that are supported by
Xilinx. You can add your own layers in a project or add existing additional recipes from the
existing layers in PetaLinux. Layers in PetaLinux can be found in <plnx-proj-root>/
components/yocto/layers.

By default, iperf3 is not in the root file system menuconfig. The following example
demonstrates adding the iperf3 into the root file system menuconfig.

1. The location of the recipe is <plnx-proj-root>/components/yocto/layers/meta-
openembedded/meta-oe/recipes-benchmark/iperf3/iperf3_3.2.bb.

2. Add the following line in <plnx-proj-root>/project-spec/meta-user/conf/
user-rootfsconfig.

CONFIG_iperf3

3. Run petalinux-config -c rootfs.

4. Select user packages → iperf3. Enable it, save and exit.

5. Run petalinux-build.

Note: It is your responsibility to add the recipes in the layers available in PetaLinux tools, apart from
PetaLinux default RootFS menuconfig.

Note: The above procedure is applicable only to the recipes from the existing layers.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=95

IMPORTANT! All recipes which are in petalinux-image-full  have sstate locked. To unlock you have to
add SIGGEN_UNLOCKED_RECIPES += "my-recipe"  in project-spec/meta-user/conf/
petalinuxbsp.conf.

For example, you have changes to be made in mtd-utils package, so you have created a .bbappend for the same
without SIGGEN_UNLOCKED_RECIPES += "mtd-utils" in project-spec/meta-user/conf/
petalinuxbsp.conf. During project build, you should see the following warning. Your changes for the
package are not included in the build.

"The mtd-utils:do_fetch sig is computed to be
92c59aa3a7c524ea790282e817080d0a, but the sig is locked to
9a10549c7af85144d164d9728e8fe23f in SIGGEN_LOCKEDSIGS_t"

Adding a Package Group
One of the best approaches for customizing images is to create a custom package group to be
used for building the images. Some of the package group recipes are shipped with the PetaLinux
tools.

For example:

<plnx-proj-root>/components/yocto/layers/meta-petalinux/recipes-core/
packagegroups/packagegroup-petalinux-self-hosted.bb

The name of the package group should be unique and should not conflict with the existing recipe
names.

We can create custom package group, for example, an ALSA package group would look like:

DESCRIPTION = "PetaLinux ALSA supported Packages"

inherit packagegroup

ALSA_PACKAGES = " \
 alsa-lib \
 alsa-plugins \
 alsa-tools \
 alsa-utils \
 alsa-utils-scripts \
 pulseaudio \
 "
RDEPENDS_${PN}_append = " \
 ${ALSA_PACKAGES} \
 "

This can be added to <plnx-proj-root>/meta-user/recipes-core/packagegroups/
packagegroup-petalinux-alsa.bb.

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=96

To add this package group in RootFS menuconfig, add CONFIG_packagegroup-petalinux-
alsa in <plnx-proj-root>/project-spec/meta-user/conf/user-rootfsconfig to
reflect in menuconfig.

Then launch petalinux-config -c rootfs, select user packages → packagegroup-
petalinux-alsa, save and exit. Then run petalinux-build.

Appending Root File System Packages
In earlier releases, to add new packages to the root file system, you had to edit the <plnx-
proj-root>/project-spec/meta-user/recipes-core/images/petalinux-image-
full.bbappend file. For example:

IMAGE_INSTALL_APPEND = "opencv"

From 2020.1 release onwards, you have to use the <plnx-proj-root>/project-spec/
meta-user/conf/user_rootfsconfig file to append new root file system packages to
PetaLinux images. For example:

CONFIG_opencv

Chapter 8: Customizing the Root File System

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=97

Chapter 9

Debugging

Debugging the Linux Kernel in QEMU
This section describes how to debug the Linux Kernel inside QEMU using the GNU debugger
(GDB). Note that this function is only tested with Zynq®-7000 devices. For more information, see
Vitis Unified Software Platform Documentation: Embedded Software Development (UG1400).

Prerequisites
This section assumes that you have built PetaLinux system image. For more information, see
Build System Image.

Steps to Debug the Linux Kernel in QEMU
1. Launch QEMU with the currently built Linux by running the following command:

$ petalinux-boot --qemu --kernel

2. Watch the QEMU console. You should see the details of the QEMU command. Get the GDB
TCP port from -gdb tcp:<TCP_PORT>.

3. Open another command console (ensuring the PetaLinux settings script has been sourced),
and change to the Linux directory:

$ cd "<plnx-proj-root>/images/linux"

4. Start GDB on the vmlinux kernel image in command mode:

$ petalinux-util --gdb vmlinux

You should see the GDB prompt. For example:

GNU gdb (GDB) 8.3.1
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/
gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-oesdk-linux --target=aarch64-
xilinx-elf".

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 98Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=98

Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
vmlinux: No such file or directory.
(gdb)

5. Attach to the QEMU target in GDB by running the following GDB command:

(gdb) target remote :9000

6. To let QEMU continue execution:

(gdb) continue

7. You can use Ctrl+C to interrupt the kernel and get back the GDB prompt.

8. You can set break points and run other GDB commands to debug the kernel.

CAUTION! If another process is using port 9000, petalinux-boot  attempts to use a different port. See the
output of petalinux-boot  to determine what port was used. In the following example, port 9001 is used:
INFO: qemu-system-arm ... -gdb tcp::9001 ...

TIP: It may be helpful to enable kernel debugging in the kernel configuration menu (petalinux-config --kernel → 
Kernel hacking → Kernel debugging), so that kernel debug symbols are present in the image.

Troubleshooting
This section describes some common issues you may experience while debugging the Linux
kernel in QEMU.

Table 18: Debugging the Linux Kernel in QEMU Troubleshooting

Problem / Error Message Description and Solution
(gdb) target remote W.X.Y.Z:9000:9000:
Connection refused.

Problem Description:
GDB failed to attach the QEMU target. This is most likely because
the port 9000 is not the one QEMU is using
Solution:
Check your QEMU console to ensure QEMU is running.
Watch the Linux host command line console. It should show the full
QEMU commands and you should be able to see which port is
being used by QEMU.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=99

Debugging Applications with TCF Agent
This section describes debugging user applications with the Eclipse Target Communication
Framework (TCF) Agent. The procedure for debugging applications with TCF agent remains the
same for Zynq® UltraScale+™ MPSoC, and Zynq-7000 devices. This section describes the basic
debugging procedure for Zynq platform user application myapp.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• Working knowledge of the Vitis™ software platform. For more information, see Vitis Unified
Software Platform Documentation: Embedded Software Development (UG1400).

• The PetaLinux Working Environment is properly set. For more information, see PetaLinux
Working Environment Setup.

• You have created a user application and built the system image including the selected user
application. For more information, see Building User Applications.

Preparing the Build System for Debugging
1. Change to the project directory:

$ cd <plnx-proj-root>

2. Run petalinux-config -c rootfs on the command console:

$ petalinux-config -c rootfs

3. Scroll down the Linux/RootFS configuration menu to file system packages.

admin --->
audio --->
base --->
baseutils --->
benchmark --->
bootloader --->
console --->
devel --->
fonts --->
kernel --->
libs --->
misc --->
multimedia --->
net --->
network --->
optional --->
power management --->
utils --->
x11 --->

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 100Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=100

4. Select misc submenu:

admin --->
audio --->
base --->
baseutils --->
benchmark --->
bootloader --->
console --->
devel --->
fonts --->
kernel --->
libs --->
misc --->
multimedia --->
net --->
network --->
optional --->
power management --->
utils --->
x11 --->

5. Packages are in alphabetical order. Navigate to the letter ‘t’, as shown below:

serf --->
sysfsutils --->
sysvinit-inittab --->
tbb --->
tcf-agent --->
texi2html --->
tiff --->
trace-cmd --->
util-macros --->
v4l-utils --->

6. Ensure that tcf-agent is enabled.

[*] tcf-agent
[] tcf-agent-dev
[] tcf-agent-dbg

7. Select console/network submenu, and then click into dropbear submenu. Ensure "dropbear-
openssh-sftp-server" is enabled.

[*] dropbear

8. Select console/network → openssh. Ensure that "openssh-sftp-server" is enabled.

9. Exit the menu.

10. Rebuild the target system image including myapp. For more information, see Build System
Image.

Performing a Debug Session

1. Launch the Vitis software platform.

2. Create a Linux application.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=101

3. Select the application you want to debug.

4. Select Run → Debug Configurations.

5. Click Launch on Hardware (Single Application Debug) to create a new configuration.

6. In the Debug Configuration window:

a. Click the Target Setup tab.

b. From the Debug Type drop-down list, select Linux Application Debug.

c. Provide the Linux host name or IP address in the Host Name field.

d. By default, tcf-agent runs on the 1534 port on the Linux. If you are running tcf-agent on a
different port, update the Port field with the correct port number.

e. In the Application Tab, click Browse and select the project name. The Vitis software
platform automatically fills the information in the application.

f. In the Remote File Path field, specify the path where you want to download the
application in Linux.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=102

g. If your application is expecting some arguments, specify them in the Arguments tab.

h. If your application is expecting to set some environment variables, specify them in the
Environments tab.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=103

i. Click the Debug button. A separate console automatically opens for process standard I/O
operations.

j. Click the Terminate button to terminate the application.

7. Enter the Local File Path to your compiled application in the project directory. For example,
<TMPDIR>/work/aarch64-xilinx-linux/hello-linux/1.0-r0/image/usr/
bin/.

Note: While creating the application, you need to add RM_WORK_EXCLUDE += "hello-linux" in
project-spec/meta-user/conf/petalinuxbsp.conf, otherwise the images will not be
available for debugging.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=104

8. The remote file path on the target file system should be the location where the application
can be found. For example, /usr/bin/hello-linux.

9. Select Debug to Apply the configuration and begin the Debug session. (If asked to switch to
Debug Perspective, accept).

Debugging Zynq UltraScale+ MPSoC
Applications with GDB

PetaLinux supports debugging Zynq® UltraScale+™ MPSoC user applications with GDB. This
section describes the basic debugging procedure. For more information, refer to Vitis Unified
Software Platform Documentation: Embedded Software Development (UG1400).

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• The PetaLinux Working Environment is properly set. For more information, see PetaLinux
Working Environment Setup.

• You have created a user application and built the system image including the selected user
application. For more information, see Building User Applications.

Preparing the Build System for Debugging
1. Change to the project directory:

$ cd <plnx-proj-root>

2. Add the following lines in <plnx-proj-root>/project-spec/meta-user/conf/
user-rootfsconfig:

CONFIG_myapp-dev
CONFIG_myapp-dbg

3. Run petalinux-config -c rootfs on the command console:

$ petalinux-config -c rootfs

4. Scroll down the user packages Configuration menu to Debugging:

Filesystem Packages --->
PetaLinux Package Groups --->
apps --->
user packages --->
PetaLinux RootFS Settings --->

5. Select user packages.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 105Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=105

[X] myapp-dbg

[] myapp-dev

6. Select myapp-dbg. Exit the myapp sub-menu.

7. Exit the user packages sub-menu, and select Filesystem Packages → misc → gdb.

8. Select gdb, and ensure that the GDB server is enabled:

[] gdb

[] gdb-dev

[X] gdbserver

[] gdb-dbg

9. Exit the menu and select <Yes> to save the configuration.

10. Rebuild the target system image. Add the below line in <plnx-proj-root>/project-
spec/meta-user/conf/petalinuxbsp.conf.

RM_WORK_EXCLUDE += "myapp"

For more information, see Build System Image.

Performing a Debug Session
1. Boot your board (or QEMU) with the new image created above.

2. Run gdbserver with the user application on the target system console (set to listening on
port 1534):

root@plnx_aarch64:~# gdbserver host:1534 /usr/bin/myapp
Process /bin/myapp created; pid = 73
Listening on port 1534

1534 is the gdbserver port - it can be any unused port number

3. On the workstation, navigate to the compiled user application’s directory:

$ cd <<TMPDIR>/work/aarch64-xilinx-linux/myapp1/1.0-r0/image/usr/bin/
myapp

4. Run GDB client.

$ petalinux-util --gdb myapp

The GDB console starts:

...
GNU gdb (crosstool-NG 1.18.0) 7.6.0.20130721-cvs
...
(gdb)

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=106

5. In the GDB console, connect to the target machine using the command:

• Use the IP address of the target system, for example: 192.168.0.10. If you are not sure
about the IP address, run ifconfig on the target console to check.

• Use the port 1534. If you select a different GDB server port number in the earlier step,
use that value instead.

IMPORTANT! If debugging on QEMU, refer to the QEMU Virtual Networking Modes for information regarding
IP and port redirection when testing in non-root (default) or root mode. For example, if testing in non-root mode,
you should use localhost as the target IP in the subsequent steps.

(gdb) target remote 192.168.0.10:1534

The GDB console attaches to the remote target. The GDB server on the target console
displays the following confirmation, where the host IP is displayed:

Remote Debugging from host 192.168.0.9

6. Before starting the execution of the program, create some breakpoints. Using the GDB
console you can create breakpoints throughout your code using function names and line
numbers. For example, create a breakpoint for the main function:

(gdb) break main
Breakpoint 1 at 0x10000444: file myapp.c, line 10.

7. Run the program by executing the continue command in the GDB console. GDB begins the
execution of the program.

(gdb) continue
Continuing.
Breakpoint 1, main (argc=1, argv=0xbffffe64) at myapp.c:10
10 printf("Hello, PetaLinux World!\n");

8. To print a list of the code at current program location, use the list command.

(gdb) list
5 */
6 #include <stdio.h>
7
8 int main(int argc, char *argv[])
9 {
10 printf("Hello, PetaLinux World!\n");
11 printf("cmdline args:\n");
12 while(argc--)
13 printf("%s\n",*argv++);
14

9. Try the step, next and continue commands. Breakpoints can be set and removed using
the break command. More information on the commands can be obtained using the GDB
console help command.

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=107

10. The GDB server application on the target system exits when the program has finished
running. Here is an example of messages shown on the console:

Hello, PetaLinux World!
cmdline args:
/usr/bin/myapp
Child exited with status 0
GDBserver exiting
root@plnx_aarch64:~#

TIP: A .gdbinit  file is automatically created to setup paths to libraries. You may add your own GDB
initialization commands at the end of this file.

Going Further with GDB
Visit www.gnu.org for more information. For information on general usage of GDB, refer to the
GDB project documentation.

Troubleshooting
This section describes some common issues you may experience while debugging applications
with GDB.

Table 19: Debugging Zynq UltraScale+ MPSoC Applications with GDB Troubleshooting

Problem / Error Message Description and Solution
GDB error message: <IP Address>:<port>:
Connection refused. GDB cannot connect to the
target board using <IP>: <port>

Problem Description:
This error message indicates that the GDB client failed to
connect to the GDB server.
Solution:
Check whether the gdbserver is running on the target
system.
Check whether there is another GDB client already
connected to the GDB server. This can be done by looking at
the target console. If you can see Remote Debugging from
host <IP>, it means there is another GDB client connecting
to the server.
Check whether the IP address and the port are correctly set.

Debugging Individual PetaLinux Components
PMU Firmware
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841724/PMU
+Firmware#PMUFirmware-DebuggingPMUFWusingSDK

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 108Send Feedback

http://www.gnu.org/software/gdb/documentation/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841724/PMU+Firmware#PMUFirmware-DebuggingPMUFWusingSDK
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841724/PMU+Firmware#PMUFirmware-DebuggingPMUFWusingSDK
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=108

FSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/FSBL#FSBL-
WhatarevariouslevelsofdebugprintsinFSBL

U-Boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842557/Debug+U-boot

Linux

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011167/Linux+Debug+infrastructure
+KProbe+UProbe+LTTng

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011146/Linux+Debug+infrastructure
+Kernel+debugging+using+KGDB

Chapter 9: Debugging

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 109Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/FSBL#FSBL-WhatarevariouslevelsofdebugprintsinFSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/FSBL#FSBL-WhatarevariouslevelsofdebugprintsinFSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842557/Debug+U-boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011167/Linux+Debug+infrastructure+KProbe+UProbe+LTTng
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011167/Linux+Debug+infrastructure+KProbe+UProbe+LTTng
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011146/Linux+Debug+infrastructure+Kernel+debugging+using+KGDB
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/123011146/Linux+Debug+infrastructure+Kernel+debugging+using+KGDB
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=109

Chapter 10

Advanced Configurations

Menuconfig Usage
To select a menu/submenu which was deselected before, press the down arrow key to scroll
down the menu or the up arrow key to scroll up the menu. Once the cursor is on the menu, then
press y. To deselect a menu/submenu, follow the same process and press n at the end.

PetaLinux Menuconfig System
The PetaLinux menuconfig system configuration for Zynq® UltraScale+™ MPSoC is shown in the
following figure:

Figure 2: PetaLinux Menuconfig System

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=110

Linux Components Selection
For Zynq UltraScale+ MPSoC, the Linux system components available in the sub-menu are as
follows:

Figure 3: Linux Components Selection

• First stage boot loader

• PMU firmware, for Zynq® UltraScale+™ MPSoC only

• U-Boot

• Kernel

• ATF, for Zynq UltraScale+ MPSoC

For ATF, U-Boot, and kernel there are three available options:

• Default: The default component is shipped through PetaLinux tool.

• External source: When you have a component downloaded at any specified location, you can
feed your component instead of the default one through this configuration option.

Note: The external source folder is required to be unique to a project and its user, but the content can
be modified. If the external source is a git repository, its checked out state should be appropriate for
building this project.

• Remote: If you want to build a component which was on a custom git repository, this
configuration option has to be used.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=111

Auto Config Settings
When a component is selected to enable automatic configuration (autoconfig) in the system-level
menuconfig, its configuration files are automatically updated when the petalinux-config is
run.

Figure 4: Auto Config Settings

Table 20: Components and their Configuration Files

Component in the Menu Files Impacted when the Autoconfig is enabled
Device tree The following files are in <plnx-proj-root>/components/plnx_workspace/

device-tree/device-tree/

• skeleton.dtsi (Zynq-7000 devices only)

• zynq-7000.dtsi (Zynq-7000 devices only)

• zynqmp-clk-ccf.dtsi (Zynq UltraScale+ MPSoC only)

• pcw.dtsi (Zynq-7000 devices and Zynq UltraScale+ MPSoC)

• pl.dtsi

• system-conf.dtsi

• system-top.dts

• <board>.dtsi

kernel The following files are in <plnx-proj-root>/project-spec/configs/linux-xlnx/
plnx_kernel.cfg

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=112

Table 20: Components and their Configuration Files (cont'd)

Component in the Menu Files Impacted when the Autoconfig is enabled
U-Boot The following files are in <plnx-proj-root>/project-spec/configs/u-boot-

xlnx/config.cfg

• config.mk (MicroBlaze only)

• platform-auto.h

Subsystem AUTO Hardware Settings
The Subsystem AUTO Hardware settings menu allows you to customize how the Linux system
interacts with the underlying hardware platform.

Figure 5: Subsystem AUTO Hardware Settings

System Processor

The System processor menu specifies the CPU processor on which the system runs.

Memory Settings

The memory settings menu allows you to:

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=113

• Select which memory IP is the primary system memory

• Set the system memory base address

• Set the size of the system memory

• Set the U-Boot text base address offset to a memory high address

The configuration in this menu impacts the memory settings in the device tree and U-Boot
automatic configuration (autoconfig) files.

If manual is selected as the primary memory, you are responsible for ensuring proper memory
settings for the system.

Serial Settings

The Serial Settings sub-menu allows you to select which serial device is the system’s primary
STDIN/STDOUT interface. If manual is selected as the primary serial, you are responsible for
ensuring proper serial interface settings for the system.

Ethernet Settings

The Ethernet Settings sub-menu allows you to:

• Select which Ethernet is the systems’ primary Ethernet

• Select to randomize MAC address

• Set the MAC address of the primary Ethernet

If MAC address is programmed into EEPROM, keep this empty here. Refer to the U-Boot
documentation for commands to program EEPROM and to configure for the same.

• Set whether to use DHCP or static IP on the primary Ethernet

If manual is selected as the primary Ethernet, you are responsible for ensuring proper Ethernet
settings for the system.

Flash Settings

The Flash Settings sub-menu allows you to:

• Select which flash is the system’s primary flash

• Set the flash partition table

If manual is selected as the primary flash, you are responsible for the flash settings for the
system.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=114

SD/SDIO Settings

The SD/SDIO Settings sub-menu is for Zynq-7000 devices and Zynq UltraScale+ MPSoC only. It
allows you to select which SD controller is the system’s primary SD card interface.

If manual is selected as the primary flash, you are responsible for the flash settings for the
system.

Timer Settings

The Timer Settings sub-menu is for MicroBlaze processors and Zynq UltraScale+ MPSoC. It
allows you to select which timer is the primary timer.

IMPORTANT! A primary timer is required for a MicroBlaze system.

Reset GPIO Settings

The Reset GPIO Settings sub-menu is for MicroBlaze processors only. It allows you to select
which GPIO is the system reset GPIO.

TIP: MicroBlaze systems use GPIO as a reset input. If a reset GPIO is selected, you can reboot the system from
Linux.

RTC Settings

Select an RTC instance that is used as a primary timer for the Linux kernel. If your preferred RTC
is not on the list, select manual to enable the proper kernel driver for your RTC.

Advanced Bootable Images Storage Settings

The advanced bootable images storage settings sub-menu allows you to specify where the
bootable images are located. The settings in this sub-menu are used by PetaLinux to configure U-
Boot.

If this sub-menu is disabled, PetaLinux uses the flash partition table specified in the Flash
Settings sub-menu to define the location of the bootable images.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=115

Figure 6: Advanced Bootable Images Storage Settings

Table 21: Flash Partition Table

Bootable Image/U-Boot
Environment Partition

Default
Partition

Name
Description

Boot Image boot BOOT.BIN for Zynq-7000 devices and Zynq UltraScale+ MPSoC
Relocatable U-Boot BIN file (u-boot-s.bin) for MicroBlaze
processors

U-Boot Environment Partition bootenv U-Boot environment variable partition. When primary sd is
selected, U-Boot environment is stored in the first partition. When
primary flash is selected, U-Boot environment is stored in the
partition mentioned in flash partition name option.

Kernel Image kernel Kernel image image.ub (FIT format)

DTB Image dtb If "Advanced bootable images storage Settings" is disabled and a
DTB partition is found in the flash partition table settings,
PetaLinux configures U-Boot to load the DTB from the partition
table. Else, it assumes a DTB is contained in the kernel image.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=116

DTG Settings
Figure 7: DTG Settings

Machine Name

For custom boards it is template. For Xilinx® evaluation boards the following values are
supported:

ac701-full, ac701-lite, kc705-full, kcu105, zcu1275-revb, zcu1285-reva, zc1751-dc1, zc1751-
dc2, zc702, zc706, avnet-ultra96-rev1, zcu100-revc, zcu102-rev1.0, zcu104-revc, zcu106-reva,
zcu111-reva, zedboard, vcu118- rev2.0, sp701-rev1.0,zcu216-reva, zcu208-reva.

Kernel Bootargs

The Kernel Bootargs sub-menu allows you to let PetaLinux automatically generate the kernel
boot command-line settings in DTS, or pass PetaLinux user defined kernel boot command-line
settings. The following are the default bootargs.

Microblaze-full -- console=ttyS0,115200 earlyprintk
Microblaze-lite -- console=ttyUL0,115200 earlyprintk
zynq -- console=ttyPS0,115200 earlyprintk
zynqmp -- earlycon clk_ignore_unused root=/dev/ram0 rw

Note: In Zynq UltraScale+ MPSoC, if you want to see kernel panic prints on console, add earlycon
console=<device>,<baud rate> clk_ignore_unused root=/dev/ram0 rw. Example:
earlycon console=/dev/ttyPS0,115200 clk_ignore_unused root=/dev/ram0 rw in
system_user.dtsi.

For more information, see kernel documentation.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=117

Device Tree Overlay Configuration for Zynq-7000 Devices and Zynq UltraScale+
MPSoC

Select this option to separate pl from base DTB and build the pl.dtsi to generate pl.dtbo.
After creating a PetaLinux project follow the below steps to add overlay support:

1. Go to cd <proj root directory>.

2. In the petalinux-config command, select DTG Settings → Device tree overlay.

3. Run petalinux-build to generate the pl.dtbo in images/linux directory.

FPGA manager overrides all the options. This come into play only when FPGA manager is not
selected.

Converting Bitstream from .bit to .bin

1. Create a bif file with the following content:

all:
{
 [destination_device = pl] <bitstream in .bit> (Ex:
systemdesign_1_wrapper.bit)
}

2. Run following command:

bootgen -image bitstream.bif -arch zynqmp -process_bitstream bin

Note: The bit/bin file name should be same as the firmware name specified in pl.dtsi
(design_1_wrapper.bit.bin).

Removing PL from the Device Tree

Select this configuration option to skip PL nodes if the user does not depend on the PL IPs. Also,
if any PL IP in DTG generates an error then you can simply enable this flag and the DTG will not
generate any PL nodes.

1. Go to cd <proj root directory>.

2. In the petalinux-config command, select DTG Settings → Remove PL from device tree.

3. Run petalinux-build.

Note: FPGA manager overrides all these options. This come into play only when FPGA manager is not
selected.

Note: If you select both device tree overlay and remove PL from device tree, then base DTB has entry for
overlay support but there is no PL DTBO generated.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=118

PMU Firmware Configuration for Zynq UltraScale+
MPSoC
You can provide compiler flags for the PMU firmware application. For example: -
DENABLE_IPI_CRC to enable CRC check on IPI messages.

Figure 8: PMU Firmware Configuration

FSBL Configuration for Zynq UltraScale+ MPSoC
• FSBL BSP extra compiler flags: You can put multiple settings there, separated with space. For

example: -DENABLE_IPI_CRC for enabling CRC check on IPI messages.

• FSBL compilation Settings: You can put multiple settings there, separated with space. For
example: -DFSBL_PROT_BYPASS.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=119

Figure 9: FSBL Configuration

Arm Trusted Firmware Configuration for Zynq
UltraScale+ MPSoC
The ATF Compilation configuration sub-menu allows you to set:

• Extra ATF compilation settings

• Change the base address of bl31 binary

• Change the size of bl31 binary

• Enable debug in ATF.

Figure 10: Arm Trusted Firmware Configuration

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=120

FPGA Manager Configuration and Usage for
Zynq-7000 Devices and Zynq UltraScale+ MPSoC
FPGA manager provides an interface to the Linux for configuring the programmable logic (PL). It
packs bitstreams and dtbos to the /lib/firmware directory in the root file system.

After creating a PetaLinux project for Zynq UltraScale+ MPSoC, follow the following steps to
build FPGA manager support:

1. Go to cd <plnx-proj-root>.

2. In the petalinux-config command, select FPGA Manager → [*] Fpga Manager.

Note: PetaLinux FPGA manager configuration when selected:

1. Generates the pl.dtsi nodes as a dt overlay (dtbo).

2. Packs bitstreams in .bin form and dtbos to the /lib/firmware/base directory in the root file
system.

3. The BOOT.BIN generated using petalinux-package command does not have bitstream.

3. Specify extra hardware files in FPGA Manager → Specify hardware directory path.

Note: This step is optional. It is required only if multiple bitstreams for same PS and corresponding
dtbos, need to be packed into the root file system. It generates and pack bitstream in .bin form and its
dtbo in the RootFS at /lib/firmware/<XSA name>. Ensure that PS design is same for XSA at hw
directory path and <plnx-proj-root>/project-spec/hw-description/system<.xsa>.

4. Run petalinux-build.

Example loading full bitstream on target:

root@xilinx-zcu102-2020_1:~# fpgautil -o /lib/firmware/base/pl.dtbo -b
/lib/firmware/base/design_1_wrapper.bit.bin

Time taken to load DTBO is 239.000000 milli seconds. DTBO loaded through
ZynqMP FPGA manager successfully.

Refer to petalinux-package command for generating BOOT.BIN.

Loading a full bitstream through sysfs – loading bitstream only:

root@xilinx-zcu102-2020_1:~# fpgautil -b /mnt/design_1_wrapper.bit.bin

Time taken to load BIN is 213.000000 milli seconds. BIN FILE loaded through
zynqMP FPGA manager successfully.

See help section for more option: root@xilinx-zcu102-2020_1:~# fpgautil -h. For
more information, see http://www.wiki.xilinx.com/Solution+ZynqMP+PL+Programming.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 121Send Feedback

http://www.wiki.xilinx.com/Solution+ZynqMP+PL+Programming
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=121

Figure 11: FPGA Manager

Adding Custom dtsi and bit Files to the FPGA Manager for
Zynq-7000 Devices and Zynq UltraScale+ MPSoCs

This section provides the mechanism and infrastructure required to work with readily (hand-
stitched) available dtsi files instead of relying on the XSA to generate them when the FPGA
manager is enabled. This generates the dtbo and bin files and copies them into the
rootfs /lib/firmware directory and loads them when the system boots.

1. Create the FPGA manager template:

$ petalinux-create -t apps --template fpgamanager -n can-interface --
enable
 INFO: Create apps: can-interface
 INFO: New apps successfully created in <project-root-dir>/
project-spec/meta-user/recipes-apps/can-interface
 INFO: Enabling created component...
 INFO: sourcing build environment
 INFO: silentconfig rootfs
 INFO: can-interface has been enabled

2. Replace default files with your own files:

$ cp can.dtsi can.bit project-spec/meta-user/recipes-apps/can-interface/
files/

3. Build the application:

$ petalinux-build

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=122

4. Check the target for dtbo and .bin files:

$ ls /lib/firmware/can-interface/
 pl.dtbo system.bit.bin

To stop loading the dtbo and .bin files at system boot, add FPGA_INIT = "0" to the
<project-root-dir>/project-spec/meta-user/recipes-apps/can-interface/
can-interface.bb file.

U-Boot Configuration
The U-Boot configuration sub-menu allows you to select a U-Boot automatic configuration
(autoconfig) by PetaLinux or a U-Boot board configuration target.

Figure 12: U-Boot Configuration

By default, PetaLinux uses the board configuration "other". If you want configurations from
design, select PetaLinux u-boot config.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=123

Figure 13: U-Boot Default Configuration

Image Packaging Configuration
The Image Packaging Configuration sub-menu allows you to set the following image packaging
configurations:

• Adding required root file system types.

• File name of the generated bootable kernel image.

• Linux kernel image hash function.

• DTB padding size.

• Whether to copy the bootable images to host TFTP server directory.

TIP: The petalinux-build  tool always generates a FIT image as the kernel image.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=124

Figure 14: Image Packaging Configuration

Note: You can add extra spaces in the root file system by adding value to this variable<project>/
project-spec/meta-user/conf/petalinuxbsp.conf IMAGE_ROOTFS_EXTRA_SPACE.

Firmware Version Configuration
The Firmware Version Configuration sub-menu allows you to set the firmware version
information:

Table 22: Firmware Version Options

Firmware Version Option File in the Target RootFS
Host name /etc/hostname

Product name /etc/petalinux/product

Firmware Version /etc/petalinux/version

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=125

Figure 15: Firmware Version Configuration

TIP: The host name does not get updated. Please see Xilinx Answer 69122 for more details.

Yocto Settings
Yocto settings allows you to configure various Yocto features available in a project.

Table 23: Yocto Settings

Parameter Description
TMPDIR Location This directory is used by BitBake to store logs and build artifacts

YOCTO_MACHINE_NAME Specifies the Yocto machine name for the project

Parallel thread execution To limit the number of threads of BitBake instances

Add pre-mirror url Adds mirror sites for downloading source code of components

Local sstate feeds settings To use local sstate cache at a specific location

Enable Network sstate feeds Enabled NW sstate feeds

User layers Adds user layers into projects

BB_NO_NETWORK When enabled, internet access is disabled on the build machine

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=69122.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=126

Figure 16: Yocto Settings

Open Source Bootgen for On-target Use for
Zynq Devices and Zynq UltraScale+ MPSoC

If you want to build an open source bootgen as part of the root file system, follow these steps.

1. Go to the PetaLinux project: cd <plnx-proj-root>

2. Run petalinux-config -c rootfs and select Filesystem Packages → Bootgen

3. Run petalinux-build.

Once the target is up, you can find the bootgen binary in /usr/bin.

Configuring Out-of-tree Build
PetaLinux has the ability to automatically download up-to-date kernel/U-Boot source code from
a git repository. This section describes how this features works and how it can be used in system-
level menu config. It describes two ways of doing the out-of-tree builds.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=127

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have PetaLinux Tools software platform ready for building a Linux system customized to
your hardware platform. For more information, see Importing Hardware Configuration.

• Internet connection with git access is available.

Steps to Configure Out-of-tree Build
Use the following steps to configure UBOOT/Kernel out-of-tree build.

1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu.

$ petalinux-config

3. Select Linux Components Selection sub-menu.

• For kernel, select linux-kernel () → remote.

() linux-xlnx

(X) remote

() ext-local-src

• For U-Boot, select u-boot () → remote.

() u-boot-xlnx

(X) remote

() ext-local-src

4. For kernel, select Remote linux-kernel settings → Remote linux-kernel git URL, and enter git
URL for Linux kernel.

For example: To use https://github.com/Xilinx/linux-xlnx, enter:

git://github.com/Xilinx/linux-xlnx.git;protocol=https

For U-Boot, select Remote U-Boot settings → Remote u-boot git URL and enter git URL for
U-Boot. For example:

git://github.com/Xilinx/u-boot-xlnx.git;protocol=https

Once a remote git link is provided, you must provide any of the following values for "git TAG/
Commit ID" selection, otherwise an error message is expected.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 128Send Feedback

https://github.com/Xilinx/linux-xlnx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=128

You have to set any of the following values to this setting, otherwise an error message
appears.

• To point to HEAD of repository of the currently checked out branch:

${AUTOREV}

• To point to any tag:

tag/mytag

• To point to any commit id:

commit id sha key

Once you select git Tag/Commit ID, you can see a prompt to enter a string value as shown
in the following figure. Enter any of the above set values.

5. To specify BRANCH to kernel/u-boot/arm-trusted-firmware, select Remote
settings (Optional).

For example: To specify the master branch, type masteras shown in the following figure:

6. To specify LICENSE checksum to kernel/u-boot/arm-trusted-firmware, select
Remote settings (Optional).

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=129

For example: To specify file://
license.rst;md5=e927e02bca647e14efd87e9e914b2443, enter the string value as
shown in the following figure:

7. Exit the menu, and save your settings.

Using External Kernel and U-Boot with PetaLinux
PetaLinux includes kernel source and U-Boot source. However, you can build your own kernel
and U-Boot with PetaLinux.

PetaLinux supports local sources for kernel, U-Boot and ATF.

For external sources create a directory <plnx-proj-root>/components/ext_sources/.

1. Copy the kernel source directory:

<plnx-proj-root>/components/ext_sources/<MY-KERNEL>

2. Copy the U-Boot source directory:

<plnx-proj-root>/components/ext_sources/<MY-U-BOOT>

3. Run petalinux-config, and go into Linux Components Selection sub-menu.

• For kernel, select linux-kernel () ---> and then select ext-local-src.

() linux-xlnx

() remote

(X) ext-local-src

• For U-Boot, select u-boot () ---> and then select ext-local-src.

() u-boot-xlnx

() remote

(X) ext-local-src

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=130

4. Add external source path.

• For kernel, select External linux-kernel local source settings --->. Enter the path:

${TOPDIR}/../components/ext_sources/<MY-KERNEL>

• For U-Boot, select External u-boot local source settings --->. Enter the path:

${TOPDIR}/../components/ext_sources/<MY-U-BOOT>

${TOPDIR} is a Yocto variable pointing to <plnx-proj-root>/build directory. You
can also specify an absolute path of the source. The sources can be placed outside the
project as well.

Note: If after setting ext-local-src, you try to change it to linux-xlnx/u-boot-xlnx in
petalinux-config, it will give the following warning.

WARNING: Workspace already setup to use from <ext-local-src path>,
Use 'petalinux-build -c linux-xlnx -x reset' To remove this (or) Use
this for your development.

Note: When creating a BSP with external sources in project, it is your responsibility to copy the sources
into the project and do the packing. For more information, see BSP Packaging.

IMPORTANT! It is not mandatory to have external sources under components/ . You can specify any
location outside the project as well. However, while packaging the BSP, you are responsible for copying the
external sources into components/  and setting relative path.

Note: If the external source is a git repo, its checked out state must be appropriate for the project that is
being built.

Troubleshooting
This section describes some common issues you may experience while configuring out-of-tree
build.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=131

Table 24: Configuring Out-of-Tree Build Troubleshooting

Problem / Error Message
fatal: The remote end hung up unexpectedly
ERROR: Failed to get linux-kernel

Problem Description:
This error message indicates that system is unable to
download the source code (Kernel/UBOOT) using remote
git URL and hence can not proceed with petalinux-build.
Solution:
Check whether entered remote git URL is proper or not.
If above solution does not solve the problem, cleanup the
build with the following command:
$ petalinux-build -x mrproper

Above command will remove following directories.
< plnx-proj-root>/images/

<plnx-proj-root>/build/

Re-build the system image. For more information, see the
Build System Image.

Configuring Project Components
If you want to perform advanced PetaLinux project configuration such as enabling Linux kernel
options or modifying flash partitions, use the petalinux-config tool with the appropriate -c
COMPONENT option.

IMPORTANT! Only Xilinx® drivers or optimizations in the Linux kernel configuration are supported by Xilinx
technical support. For more information on Xilinx drivers for Linux, see https://xilinx-wiki.atlassian.net/wiki/
spaces/A/pages/18841873/Linux+Drivers.

The examples below demonstrate how to use petalinux-config to review or modify your
PetaLinux project configuration.

1. Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top level system configuration menu and configure it to meet your requirements:

$ petalinux-config

3. Launch the Linux kernel configuration menu and configure it to meet your requirements:

$ petalinux-config -c kernel

4. Launch the root file system configuration menu and configure it to meet your requirements:

$ petalinux-config -c rootfs

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 132Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=132

5. Use --silentconfig for the components when you do not have Kconfig/Menuconfig
support or to skip the launching of configuration menu

$ petalinux-config -c <COMPONENT> --silentconfig

Note: petalinux-config -c <COMPONENT> command creates the workspace directory <plnx-
proj-root>/components/yocto/workspace/sources/<COMPONENT> by fetching the source. For
example, petalinux-config -c u-boot fetches the U-Boot source and create the workspace in
<plnx-proj-root>/components/sources/u-boot-xlnx. You can use this in your development.

Note: Using petalinux-config -c <COMPONENT> the component changes will be stored in
workspace directory (<project-root-dir>/components/yocto/workspace). To apply workspace
changes to the recipe in the meta-user user must run -x finish command to return their build location, for
example, petalinux-build -c <COMPONENT> -x finish.

Warning message for petalinux-config or petalinux-build commands:

The following warning message appears when you run the petalinux-config or
petalinux-build for components (Ex: petalinux-build -c u-boot) and this can be
ignored.

WARNING: SRC_URI is conditionally overridden in this recipe, thus several
devtool-override-* branches have been created, one for each override that
makes changes to SRC_URI. It is recommended that you make changes to the
devtool branch first, then checkout and rebase each devtool-override-*
branch and update any unique patches there (duplicates on those branches
will be ignored by devtool finish/update-recipe).

TIP: Set U-Boot target in petalinux-config  menuconfig as required, for your custom board. Set $
petalinux-config → U-Boot Configuration → u-boot config target  as required.
Possible values for Xilinx evaluation boards which are default set are as follows:

• For Zynq devices, xilinx_zynq_virt_defconfig

• For Zynq UltraScale+ MPSoC, xilinx_zynqmp_virt_defconfig

• For MicroBlaze processors, microblaze-generic_defconfig

Note: Please make sure board and user specific dtsi entries are added to project-spec/meta-user/
recipes-bsp/device-tree/files/system-user.dtsi.

Using template flow, for zcu102 and zcu106 boards, add the following line to <plnx-proj-
root>/project-spec/meta-user/recipes-bsp/fsbl/fsbl_%.bbappend for FSBL
initializations.

YAML_COMPILER_FLAGS_append = " -DXPS_BOARD_ZCU102" #for zcu102
YAML_COMPILER_FLAGS_append = " -DXPS_BOARD_ZCU106" # for zcu106

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=133

Device Tree Configuration
This section describes which files are safe to modify for the device tree configuration and how to
add new information into the device tree.

Prerequisites

This section assumes that you have PetaLinux tools software platform ready for building a Linux
system customized to your hardware platform. For more information, see Importing Hardware
Configuration. Knowledge of DTS syntax is required to customize the default DTS.

Configuring Device Tree

User-modifiable PetaLinux device tree configuration is associated with following config files, that
are located at <plnx-projroot>/project-spec/meta-user/recipes-bsp/device-
tree/files/:

• system-user.dtsi

• xen.dtsi

• pl-custom.dtsi

• openamp.dtsi

• xen-qemu.dtsi

The generated files are in the <plnx-proj-root>/components/plnx_workspace/
device-tree/device-tree/ directory.

CAUTION! These dtsi files are auto-generated. Do not edit these files

For more details on device tree files, see Appendix B: PetaLinux Project Structure.

If you wish to add information, like the Ethernet PHY information, this should be included in the
system-user.dtsi file. In this case, device tree should include the information relevant for
your specific platform as information (here, Ethernet PHY information) is board level and board
specific.

The system-user.dtsi is automatically created when you configure your PetaLinux project.
Once created, the tools do not update it automatically.

Note: The need for this manual interaction is because some information is "board level" and the tools do
not have a way of predicting what should be here. Refer to the Linux kernel Device Tree bindings
documents (Documentation/devicetree/bindings from the root of the kernel source) for the
details of bindings of each device.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=134

An example of a well-formed device tree node for the system-user.dtsi is shown below:

/dts-v1/;
/include/ "system-conf.dtsi"
/ {
};
&gem0 {
 phy-handle = <&phy0>;
 ps7_ethernet_0_mdio: mdio {
 phy0: phy@7 {
 compatible = "marvell,88e1116r";
 device_type = "ethernet-phy";
 reg = <7>;
 };
 };
};

IMPORTANT! Ensure that the device tree node name, MDIO address, and compatible strings correspond to the
naming conventions used in your specific system.

The following example demonstrates adding the sample-user-1.dtsi file:

1. Add /include/ "system-user-1.dtsi" in project-spec/meta-user/recipes-
bsp/device-tree/files/system-user.dtsi. The file should look like the following:

/include/ "system-conf.dtsi"
/include/ "system-user-1.dtsi"
/ {
};

2. Add file://system-user-1.dtsi to project-spec/meta-user/recipes-bsp/
device-tree/device-tree.bbappend. The file should look like this:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://system-user.dtsi"
SRC_URI += "file://system-user-1.dtsi"

It is not recommended to change anything in <plnx-proj-root>/components/
plnx_workspace/device-tree/device-tree/.

It is recommended to use system user DTSIs for adding, modifying and deleting nodes or
values. System user DTSIs are added at the end, which makes the values in it at higher
priority.

You can overwrite any existing value in other DTSIs by defining in system user DTSIs.

U-Boot Configuration
This section describes which files are safe to modify for the U-Boot configuration and discusses
about the U-Boot CONFIG_ options/settings.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=135

Prerequisites

This section assumes that you have PetaLinux tools software platform ready for building a Linux
system customized to your hardware platform. Refer to section Importing Hardware
Configuration for more information.

Configuring U-Boot

Universal boot loader (U-Boot) configuration is usually done using C pre-processor. It defines:

• Configuration _OPTIONS_:

You can select the configuration options. They have names beginning with CONFIG_.

• Configuration _SETTINGS_:

These depend on the hardware and other factors. They have names beginning with
CONFIG_SYS_.

TIP: Detailed explanation on CONFIG_  options/settings documentation and README on U-Boot can be found
at Denx U-Boot Guide.

PetaLinux U-Boot configuration is associated with config.cfg and platform-auto.h
configuration files which are located at <plnx-proj-root>/project-spec/configs/u-
boot-xlnx/ and platform-top.h located at <plnx-proj-root>/project-spec/
meta-user/recipes-bsp/u-boot/files/.

For setting U-Boot environment variables, edit CONFIG_EXTRA_ENV_SETTINGS variable in
platform-auto.h. Note that platform-auto.h is regenerated each time petalinux-
config is run.

CAUTION! config.cfg  and platform-auto.h  files are automatically generated; edit them with
caution.

PetaLinux does not currently automate U-Boot configuration with respect to CONFIG_ options/
settings. You can add these CONFIG_ options/settings into platform-top.h file.

Steps to add CONFIG_ option (For example, CONFIG_CMD_MEMTEST) to platform-top.h:

• Change into the root directory of your PetaLinux project.

$ cd <plnx-proj-root>

• Open the file platform-top.h

$ vi project-spec/meta-user/recipes-bsp/u-boot/files/platform-top.h

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 136Send Feedback

http://www.denx.de/wiki/view/DULG/UBoot
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=136

• If you want to add CONFIG_CMD_MEMTEST option, add the following line to the file. Save
the changes.

#define CONFIG_CMD_MEMTEST

TIP: Defining CONFIG_CMD_MEMTEST enables the Monitor Command "mtest", which is used for simple RAM
test.

• Build the U-Boot image.

$ petalinux-build -c u-boot

• Generate BOOT.BIN using the following command.

$ petalinux-package --boot --fsbl <FSBL image> --fpga <FPGA bitstream> --
u-boot

• Boot the image either on hardware or QEMU and stop at U-Boot stage.

• Enter the mtest command in the U-Boot console as follows:

ZynqMP mtest

• Output on the U-Boot console should be similar to the following:

Testing 00000000 ... 00001000:
 Pattern 00000000 Writing... Reading...Iteration:
20369

IMPORTANT! If CONFIG_CMD_MEMTEST  is not defined, output on U-Boot console is as follows:

U-Boot-PetaLinux> mtest Unknown command ’mtest’ - try ’help’

For more information on U-Boot, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842223/U-boot.

Chapter 10: Advanced Configurations

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 137Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842223/U-boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842223/U-boot
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=137

Chapter 11

Yocto Features

SDK Generation (Target Sysroot Generation)
The OpenEmbedded build system uses BitBake to generate the Software Development Kit (SDK)
installer script standard SDKs. PetaLinux builds and installs SDK. The installed SDK can be used
as sysroot for the application development.

Building SDK
The following command builds SDK and copies it at <proj_root>/images/linux/sdk.sh.

petalinux-build --sdk

The following is the equivalent BitBake command.

bitbake petalinux-image-minimal -c do_populate_sdk

Installing SDK
The generated SDK has to be installed/extracted to a directory. The following command extracts
the SDK to a specified directory. The default SDK is <proj_proot>/images/linux/sdk.sh
and default installation directory is <proj_proot>/images/linux/sdk/.

petalinux-package --sysroot -s|--sdk <custom sdk path> -d|--dir <custom
directory path>

Examples
1. Adding a cross compiling qt toolchain

To build SDK with qt toolchain:

a. Create the <proj-root>/project-spec/meta-user/recipes-core/images/
petalinux-image-minimal.bbappend file.

b. Add inherit populate_sdk_qt5 in the newly created file.

c. Run petalinux-config -c rootfs and select packagegroup-petalinux-qt.

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=138

d. Run petalinux-build -s.

e. Run petalinux-package --sysroot.

To verify:

a. Open a new terminal.

b. Go to <plnx-proj>/image/linux/sdk.

c. Run source environment-setup-aarch64-xilinx-linux.

d. Run which qmake. This confirms that the qmake is coming from the SDK.

2. Building OpenCV applications

a. Create a PetaLinux project.

b. Add packagegroup-petalinux-opencv in the RootFS menu config.

c. Build SDK

petalinux-build --sdk

This command builds SDK and deploys it at <proj_root>/images/linux/sdk.sh.

d. Install SDK.

petalinux-package --sysroot

This command installs SDK at <proj_root>/images/linux/sdk.

e. Use the images/linux/sdk directory as sysroot for building the OpenCV applications.

Building and Installing eSDK
Building eSDK

The following command builds the eSDK(extensible SDK) and copies it at <proj_root>/
images/linux/esdk.sh.

petalinux-build --esdk

The following is the equivalent BitBake command.

bitbake petalinux-image-minimal -c do_populate_sdk_ext

Installing eSDK

To install the eSDK, follow these steps:

1. Source the PetaLinux tool.

2. Run: petalinux-upgrade -f <esdk path> -p <platform>

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=139

Packaging Sources and Licenses
In PetaLinux, you can package all the sources and licenses of the built packages which you build
as part petalinux-build/petalinux-build --sdk to this, follow these steps.

1. Create a project.

2. Go to the project.

3. To pack all the components of petalinux-build, issue the following commands.

petalinux-build --archiver

4. To pack only the sysroot components, use the following command.

petalinux-build --sdk --archiver

Note: You can find the archiver tar in <plnx-proj-root>/images/linux.

Accessing BitBake/Devtool in a Project
BitBake is available only in the bash shell.

Steps to Access the BitBake Utility
1. Run petalinux-config or petalinux-config --silentconfig at least once after

creating the project, so that the required environment is setup.

2. Source the PetaLinux tools script:

source /opt/pkg/petalinux/settings.sh

3. Source the Yocto e-SDK:

source <plnx-proj-root>/components/yocto/environment-setup-aarch64-
xilinx-linux

4. Source the environment setup script to be redirected to the build directory:

source <plnx-proj-root>/components/yocto/layers/core/oe-init-build-env

Stay in the build directory to run BitBake.

5. Export XSCT:

export PATH=/opt/pkg/petalinux/tools/xsct/bin:$PATH

6. Parse the PetaLinux variable to recipes:

export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE PETALINUX"

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=140

7. To test if the BitBake is available, run:

bitbake strace

The generated images are placed in the deploy directory. You have to copy the generated
images into <plnx-proj-root>/images/linux directory to work with the other
commands.

Steps to Access the Devtool Utility
1. Follow steps 3-7 as described in Steps to Access the BitBake Utility.

2. Create a workspace for devtool:

devtool create-workspace ../components/plnx_workspace/

3. Add the recipe to workspace directory:

devtool add --version 1.0 gpio-demo ../project-spec/meta-user/recipes-
apps/gpio-demo

4. Build the recipe:

devtool build gpio-demo

For more devtool commands, type devtool --help.

Shared State Cache
Yocto e-SDK contains minimal shared state (sstate) cache. Xilinx® hosts the full petalinux-
image sstate cache at http://petalinux.xilinx.com/sswreleases/rel-v2020/.

During petalinux-build, BitBake searches for the sstate cache in http://petalinux.xilinx.com/
sswreleases/rel-v2020/. If it fails to find the sstate cache, BitBake will build it from scratch.
sstate is signature locked.

For a .bbappend file which you create for any root file system component, you must add
SIGGEN_UNLOCKED_RECIPES += "<recipe-name>" or SIGGEN_UNLOCKED_RECIPES
+= "u-boot-xlnx" in <plnx-proj-root>/project-spec/meta_user/conf/
petalinuxbsp.conf.

Sharing your Shared State Cache
If you want to share/use your previously build sstate cache,you can follow either of the following
approaches.

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 141Send Feedback

http://petalinux.xilinx.com/sswreleases/rel-v2020/
http://petalinux.xilinx.com/sswreleases/rel-v2020/
http://petalinux.xilinx.com/sswreleases/rel-v2020/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=141

As an optimization, the Yocto Project optimizes downloads of the sstate cache items to only the
minimal items required for the current build. This needs to be factored in when sharing your
sstate cache with another user. The second user's configuration may be different causing a
different set of sstate cache items to be required. There are two approaches to optimizing your
downstream user and their usage of the sstate cache. The first approach is that the second user
should include both the sstate cache directory you provided as well as the original Xilinx sstate
cache directory in <plnx-proj-root>/build/conf/plnxtool.conf.

SSTATE_MIRRORS = " \
file://.* file://<your-sstate-cache>/PATH \n \
file://.* http://petalinux.xilinx.com/sswreleases/rel-v2020/aarch64/sstate-
cache/PATH;downloadfilename=PATH \n \
"

The second approach is to fetch all of the sstate cache items that can be required for a particular
build. This is required if you want to share your build sstate with the downstream user. There is
an option called --setscene-only that will fetch all of the sstate objects that might be
needed for a particular target recipe. For example, if you used petalinux-build (bitbake
petalinux-image-minimal), you should run the following command first to fetch all the
required sstate from Xilinx provided sstate.

petalinux-build -c "petalinux-image-minimal --setscene-only"(bitbake
petalinux-image-minimal --setsecene-only)

Downloading Mirrors
Xilinx® hosts all source download tar files for each release at https://www.xilinx.com/support/
download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html. By default,
PetaLinux points to pre-mirrors usingpetalinux-config command.

If any component is rebuilt from scratch, BitBake or devtool searches for its source in pre-mirrors
and downloads the mirror URL. Later, it searches in SRC_URI of recipes for downloading the
source of that component. If you configure any value through petalinux-config → yocto settings 
→ premirrors, it will first search in the configured pre-mirrors, then on petalinux.xilinx.com, and
finally in the SRC_URI in recipes.

You can add more mirrors by adding SOURCE_MIRROR_URL += file:///home/you/your-
download-dir/ in <proj-root>/project-spec/meta-user/conf/
petalinuxbsp.conf.

For more information on how to set SSTATE and DL_DIR, see How to Reduce Build Time using
SSTATE Cache.

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 142Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
http://petalinux.xilinx.com
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoreducebuildtimeusingSSTATECACHE
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips#PetaLinuxYoctoTips-HowtoreducebuildtimeusingSSTATECACHE
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=142

Machine Support
The Yocto machine specifies the target device for which the image is built. The variable
corresponds to a machine configuration file of the same name, through which machine-specific
configurations are set. Currently, PetaLinux supports the user machine configuration file.

You can add your own machine configuration file under <proj_root>/project-spec/
meta-user/conf/machine/ or you can add your machine configuration file in any additional
layers and add it into project through petalinux-config.

Follow these steps to specify the user machine configuration file name in the PetaLinux project:

1. Go to the PetaLinux project.

2. Select petalinux-config → Yocto settings  → () MACHINE NAME.

3. Specify your machine configuration file name.

The BSPs are now updated with the meta-xilinx machines.

Table 25: Machine Name Change for Templates

Template Machine
zynq zynq-generic

zynqmp zynqmp-generic

microblaze microblazeel-v11.0-bs-cmp-mh-div-generic

Table 26: Machine Name Change for BSPs

BSP Machine
zc702 zc702-zynq7

zc706 zc706-zynq7

zcu102 (All variants) zcu102-zynqmp

zcu106 zcu106-zynqmp

zcu104 zcu104-zynqmp

kc705 microblazeel-v11.0-bs-cmp-mh-div-generic

ac701 microblazeel-v11.0-bs-cmp-mh-div-generic

kcu105 microblazeel-v11.0-bs-cmp-mh-div-generic

zcu111 zcu111-zynqmp

zcu1285 zcu1285-zynqmp

zcu1275 zcu1275-zynqmp

sp701 microblazeel-v11.0-bs-cmp-mh-div-generic

zcu216 zcu216-zynqmp

zcu208 zcu208-zynqmp

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=143

Table 26: Machine Name Change for BSPs (cont'd)

BSP Machine
zed zedboard-zynq7

zynqmp-common zynqmp-generic

zynq-common zynq-generic

SoC Variant Support
Xilinx® delivers multiple devices for each SoC product. Zynq® UltraScale+™ MPSoC is shipped in
three device variants. For more information see here. Zynq-7000 devices are shipped in two
variants. For more information, see here.

SOC_VARIANT extends overrides with ${SOC_FAMILY}${SOC_VARIANT}. It further extends
overrides with components on the SoC (for example, Mali™, VCU). This makes reusing the
component overrides depending on the SoC. This feature is mainly used to switch to hardware
acceleration automatically if the hardware design has the corresponding IP (VCU or USP). Xilinx
distributes SoCs with multiple variants as shown below.

1. Zynq-7000 devices are distributed under Zynq7000zs and Zynq7000z. The available
SOC_VARIANTs are:

• "7zs" - Zynq-7000 Single A9 Core

"7z" - Zynq-7000 Dual A9 Core

• Default SOC_VARIANT for Zynq-7000 devices is "7z". For 7000zs devices, add the
SOC_VARIANT = "7zs" in petalinuxbsp.conf

There are no additional overrides for Zynq-7000 devices.

2. Zynq UltraScale+ MPSoC is shipped in three device variants. The available SOC_VARIANTs
are:

• "cg" - Zynq UltraScale+ MPSoC CG Devices

• "eg" - Zynq UltraScale+ MPSoC EG Devices

• "ev" - Zynq UltraScale+ MPSoC EV Devices

• "dr" - Zynq UltraScale+ MPSoC RFSoC devices

The default value is "eg". PetaLinux automatically assigns "ev" and "dr" based on the presence
of IP in the XSA.

Note: You have to explicitly set SOC_VARIANT = "cg" in petalinuxbsp.conf for "CG" devices.

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 144Send Feedback

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=144

Image Features
The contents of images generated by the OpenEmbedded build system can be controlled by the
IMAGE_FEATURES and EXTRA_IMAGE_FEATURES variables that you typically configure in your
image recipes. Through these variables, you can add several different predefined packages such
as development utilities or packages with debug information needed to investigate application
problems or profile applications.

To remove any default feature, add the following code in the petalinuxbsp.conf:

IMAGE_FEATURES_remove = "ssh-server-dropbear"

To add any new feature, add the following command in the petalinuxbsp.conf:

IMAGE_FEATURES_append = " myfeature"

Filtering RootFS Packages Based on License
The INCOMPATBLE_LICENSE flag is used to control which packages are included in the final
root file system configuration based on the license.

If you want to exclude packages based on license, you can edit the <plnx-proj>/project-
spec/conf/petalinuxbsp.conf file. For example, set INCOMPATBLE_LICENSE = "GPLv3",
then run the petalinux-build command.

Creating and Adding Patches For Software
Components within a PetaLinux Project

To create and add patches for software components within a PetaLinux project, follow these
steps:

1. Select devtool as the build tool: petalinux-config → Yocto settings → Build tool (devtool)

2. Get the source code from git url specified in meta-layers:

petalinux-build -c <recipe-name> -x modify

Note: petalinux-build -c <recipe-name> or petalinux-config -c <recipe-name>
will automatically fetch the source to the workspace directory.

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=145

The above command fetches the sources for the recipe and unpack them to a <plnx-proj-
root>/components/yocto/workspace/sources/<recipe-name> directory and
initialize it as a git repository if it isn't already one.

3. Make the changes you want to make to the source.

4. Run a build to test your changes. You can just petalinux-build -c <recipename> or
even build an entire image using petalinux-build incorporating the changes assuming a
package produced by the recipe is part of an image. There is no need to force anything; the
build system will detect changes to the source and recompile as necessary.

5. Optional: Test your changes on the target.

6. Place your changes in the form of a patch to the PetaLinux project. To commit your changes,
use the following commands.

git add <filename>
git commit -s

petalinux-build -c <recipe-name> -x finish creates a patch for the committed
changes in recipe sources directory and removes the source from workspace.

petalinux-build -c <recipe-name> -x update-recipe creates a patch for the
committed changes in recipe sources directory.

7. Once you have finished working on the recipe, run devtool reset <recipe-name> to
remove the source directory for the recipe from workspace.

Adding Extra Users to the PetaLinux System
You can make the changes using the following steps:

1. Go to project: petalinux-config -c rootfs → PetaLinux Rootfs Settings → Add extra users

2. Provide the users. To add extra users to the PetaLinux system, provide the user ID (userid)
and password (passwd) separated by :; for multiple users, separate sets of user IDs and
passwords using ;.

Examples:

To add a passwd1 for user1:

user1:passwd1; or user1:passwd1

To add an empty passwd for the user1:

user1:

To add user1 and user2 with passwd1 and passwd2, respectively:

user1:passwd1;user2:passwd2;

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=146

To add an empty passwd for user1 and passwd2 for user2

user1:;user2:passwd2

Chapter 11: Yocto Features

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=147

Chapter 12

Technical FAQs

Troubleshooting
This section details the common errors that appear, while working with the PetaLinux commands,
and also lists their recovery steps in detail.

For Yocto related information, please see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842475/PetaLinux+Yocto+Tips.

TMPDIR on NFS
The error displayed is:

“ERROR: OE-core's config sanity checker detected a potential
misconfiguration”. Either fix the cause of this error or disable the
checker at your own risk (see sanity.conf). For the list of potential
problems or advisories.

The TMPDIR: /home/user/xilinx-kc705-axi-full-2020.1/build/tmp cannot be
located on NFS.

When TMPDIR is on NFS, BitBake throws an error at the time of parsing. You have to change it
from petalinux-config and then provide any local storage. To do this, select Yocto-settings 
→ TMPDIR.

Do not configure the same TMPDIR for two different PetaLinux projects. This can cause build
errors.

Recipe Name Having ' _ '
If the app name is plnx_myapp, BitBake throws an error. A version number has to be entered
after ' _ '.

For example, myapp_1 is an accurate app/module name.

Chapter 12: Technical FAQs

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 148Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=148

To recover, you have to sstateclean the app created and then delete it. Also, delete the line in
conf/user-rootfsconfig.

CONFIG_plnx_myapp

Recover from Corrupted Terminal
When PetaLinux is exited forcefully by pressing Ctrl+C twice, the following error appears:

NOTE: Sending SIGTERM to remaining 1 tasks
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
 File
"<plnx-proj-root>/components/yocto/layers/core/bitbake/lib/bb/ui/k
notty.py", line 313, in finish
 self.termios.tcsetattr(fd, self.termios.TCSADRAIN, self.stdinbackup)
termios.error: (5, 'Input/output error')

After this error, the console is broken and you cannot see the text that you typed. To restore the
console, enter stty sane and press Ctrl+J twice.

Python Language Settings
The following errors appear when the language settings are missing:

• Could not find the /log/cooker/plnx_microblaze in the /tmp directory
during petalinux-config

• Please use a locale setting which supports UTF-8 (such as
LANG=en_US.UTF-8).

Python cannot change the file system locale after loading, therefore, we need a UTF-8 when
Python starts, else it will not work.

ERROR: Failed to build project

To resolve the above errors, set the following:

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8

Menuconfig Hang for Kernel and U-Boot
For petalinux-config -c, sometimes when the kernel and U-Boot BitBake try to open a
new terminal inside, they fail. The following are the possible error messages:

1. ERROR: Unable to spawn new terminal

2. ERROR: Continuing the execution without opening the terminal

Chapter 12: Technical FAQs

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=149

The solutions can be:

1. Use ssh -X <hostname>.

2. Uncomment the OE_TERMINAL line in <plnx-proj-root>/project-spec/meta-
user/conf/petalinuxbsp.conf. You can set any terminal which suits you (possibles
values could be auto, screen, tmux, xterm, and konsole). You have to change the
OE_TERMINAL as it cannot get through default. For this, you must have the corresponding
utility installed in your PC.

Menuconfig Not Seen for Kernel and U-Boot
Set SHELL=/bin/bash before issuing petalinux-config -c kernel/ petalinux-
config -c u-boot.

External Source Configurations
The cfg or scc files are not applied with external source in the Yocto flow (upstream behavior).
PetaLinux needs to handle external source with configurations applied. Therefore, it is always
recommended to use cfgs instead of sccs.

Xen and openamp are handled through distro features. Adding distro features does not enable
their corresponding configurations in kernel as they are handled in scc file. The solution is to edit
<plnx-project-root>/project-spec/meta-user/recipes-kernel/linux/linux-
xlnx_%.bbappend.

Add the following lines:

SRC_URI += "file://xilinx-kmeta/bsp/xilinx/xen.cfg"

To work with the scc files, replace their respective cfg files using external source methodology.

do_image_cpio: Function Failed
CPIO format does not support sizes greater than 2 GB. Therefore, you cannot use INITRAMFS
for larger sizes. The following steps describes the process for larger image sizes (greater than 2
GB).

1. Change the root file system type to EXT4 (SD/eMMC/SATA/USB).

$ petalinux-config

Select Image Packaging Configuration → Root filesystem type → EXT4 (SD/eMMC/SATA/
USB).

Chapter 12: Technical FAQs

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=150

2. Add the following lines in the <proj-root>/project-spec/meta-user/conf/
petalinuxbsp.conf.

IMAGE_FSTYPES_remove = "cpio cpio.gz cpio.bz2 cpio.xz cpio.lzma cpio.lz4
cpio.gz.u-boot"
IMAGE_FSTYPES_DEBUGFS_remove = "cpio cpio.gz cpio.bz2 cpio.xz cpio.lzma
cpio.lz4
cpio.gz.u-boot"

3. Build the project.

$ petalinux-build

Note: Unlike earlier, currently PetaLinux does not generate the global DTS file. Use the following
command to generate the global DTS file:

dtc -I dtb -O dts -o system.dts system.dtb

CAUTION! Do not use the symlinked path to the project directories for any build operations, including simply
"cd"ing into the directory.

Package Management
PetaLinux supports package management system for Zynq UltraScale+ MPSoC. Use the following
steps to configure and use the package management system:

1. Enable DNF through petalinux-config -c rootfs. Enable the following configs to use
DNF.

• Image Features --> [*] package management

• Set the package feed url from Image Features --> http://petalinux.xilinx.com/sswreleases/
rel-v2020/feeds/ultra96-zynqmp) Package feed url.

Check the available package feeds in http://petalinux.xilinx.com/sswreleases/rel-v2020/
feeds.

2. Build the project.

#petalinux-build

3. Boot Linux in SD or in JTAG boot mode.

4. Check for .repo file on target in /etc/yum.repos.d/ as shown below.

[oe-remote-repo-sswreleases-rel-v2020-feeds-ultra96-zynqmp]
name=OE Remote Repo: sswreleases rel-v2020 feeds ultra96-zynqmp
baseurl=http://petalinux.xilinx.com/sswreleases/rel-v2020/feeds/ultra96-
zynqmp
gpgcheck=0

5. List all available packages.

#dnf repoquery

Chapter 12: Technical FAQs

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 151Send Feedback

http://petalinux.xilinx.com/sswreleases/rel-v2020/feeds/ultra96-zynqmp
http://petalinux.xilinx.com/sswreleases/rel-v2020/feeds/ultra96-zynqmp
http://petalinux.xilinx.com/sswreleases/rel-v2020/feeds
http://petalinux.xilinx.com/sswreleases/rel-v2020/feeds
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=151

6. Install a specific package.

#dnf install <pkg name>

Example: #dnf install packagegroup-petalinux-matchbox

Once the matchbox package is installed, reboot the target and you should get the desktop
environment.

Linux Boot Hang with Large INITRAMFS Image in
Zynq-7000 Devices and Zynq UltraScale+ MPSoC
When petalinux-boot command is issued, the following warning message is displayed:

"Linux image size is large (${imgsize}). It can cause boot issues. Please
refer to Technical FAQs. Storage based RootFilesystem is recommended for
large images."

If your INITRAMFS image size is large, use storage based boot.

Chapter 12: Technical FAQs

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=152

Appendix A

Migration
This section describes the migration details of the current release versus the previous release.

Tool/Project Directory Structure
Following is the tool directory structure:

• For earlier releases, the tool contained the minimal downloads and sstate-cache. From this
release onwards, those downloads and sstate-cache are no longer a part of the tool. The
project build will use sstate-cache and downloads from the petalinux-xilinx.com.

• The Yocto SDK will be part of each project <plnx-proj-root>/components/yocto.

• <plnx-proj-root>/project-spec/meta-plnx-generated has been removed. The
required Yocto variables are now part of <plnx-proj-root>/build/conf/
plnxtool.conf.

• From this release onwards, there is an option to specify user-specified eSDK/platform while
installing the tool.

plnx.run -d <destination-path> -p <platform>

DT Overlay Support
• The bitstream filename in <plnx-proj>/images/linux/ is system.bit but if you

enable DT Overlay Support, it will be with design name.

• DT Overlay Support has been added for Zynq®-7000 devices.

Linux and U-Boot Default Configurations
For earlier releases of the tool, each PetaLinux BSP had its own Linux and U-Boot default
configurations but from this release onwards, each SOC family has a default configuration. They
are as follows:

Appendix A: Migration

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 153Send Feedback

http://petalinux-xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=153

• For Zynq UltraScale+ MPSoC:

○ Zynq UltraScale+ MPSoC linux defconfig: xilinx_zynqmp_defconfig

○ Zynq UltraScale+ MPSoC u-boot defconfig: xilinx_zynqmp_virt_defconfig

• For Zynq-7000 devices:

○ Zynq linux defconfig: xilinx_zynq_defconfig

○ Zynq u-boot defconfig: xilinx_zynq_virt_defconfig

• For MicroBlaze devices:

○ Microblaze linux defconfig: mmu_defconfig

○ Microblaze u-boot defconfig: microblaze-generic_defconfig

Note: For MicroBlaze processors, PetaLinux generates configs from the design on top of the default configs
for Linux and U-Boot.

Build Changes
Default PetaLinux images are built as INITRD. Use the following images for boot:

• BOOT.BIN, Image, rootfs.cpio.gz.u-boot, and boot.scr

• BOOT.BIN, image.ub, and boot.scr

Note: system.dtb is part of BOOT.BIN.

In this release, there is an option to build eSDK:

petalinux-build --esdk

From this release onwards, there is an option to pack sources and licenses as tar:

petalinux-build --archiver
petalinux-build --sdk --archiver

Menuconfig Changes
In this release, Image Packaging Configuration → Root Filesytem type → EXT (SD/eMMC/QSPI/
SATA/USB) has changed to Image Packaging Configuration → Root Filesystem type → EXT4
(SD/eMMC/SATA/USB).

Appendix A: Migration

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=154

• To build open source bootgen and to use on target, select petalinux-config -c rootfs → 
Filesystem Packages → bootgen.

• To switch between bitbake and devtool, select petalinux-config → Yocto Settings → Build tool

• To provide any compilation flags for the FSBL application or the BSP, use this menuconfig
option: petalinux-config → FSBL Configuration.

Note: This is only applicable for Zynq and Zynq UltraScale+ MPSoC BSPs.

• To provide any compilation flags for the PMU firmware application or BSP, use this
menuconfig option: petalinux-config → PMUFW Configuration

Note: This is only applicable for Zynq UltraScale+ MPSoC BSPs.

• To specify devtool workspace when you are building a project in NFS and want to execute
petalinux-config -c kernel/u-boot, use this option: petalinux-config → Yocto
settings → workspace location.

• To the enable debug tweaks menu change to root file system configuration, use this option.$
petalinux-config -c rootfs → Image Features → debug-tweaks

Note: This is enabled by default.

• In earlier releases for Zynq UltraScale+ MPSoC and Zynq devices, petalinux-config → Auto
Config Settings → kernel autoconfig/u-boot autoconfig would be enabled by default. From
this release onwards, to support the distro feature by default, kernel autoconfig and u-boot
autoconfig are disabled. Setting that are enabled as part Linux or U-Boot defconfig is built. If
you want read the kernel/U-Boot configs from the design (xsa file), enable the above
configurations.

Appendix A: Migration

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=155

Appendix B

PetaLinux Project Structure
This section provides a brief introduction to the file and directory structure of a PetaLinux
project. A PetaLinux project supports development of a single Linux system development at a
time. A built Linux system is composed of the following components:

• Device tree

• First stage boot loader (optional)

• U-Boot

• Linux kernel

• The root file system is composed of the following components:

○ Prebuilt packages

○ Linux user applications (optional)

○ User modules (optional)

A PetaLinux project directory contains configuration files of the project, the Linux subsystem,
and the components of the subsystem. The petalinux-build command builds the project
with those configuration files. You can run petalinux-config to modify them. Here is an
example of a PetaLinux project:

project-spec
 hw-description
 configs
 meta-user
pre-built
 linux
 implementation
 images
 xen
hardware
 xilinx-zcu104-2020.1
components
 plnx_workspace
 device-tree
config.project
README

Appendix B: PetaLinux Project Structure

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=156

Table 27: PetaLinux Project Description

File / Directory in a PetaLinux Project Description
/.petalinux/ Directory to hold tools usage and WebTalk data.
/config.project/ Project configuration file.
/project-spec Project specification.
/project-spec/hw-description Hardware description imported from Vivado® design tools.
/project-spec/configs Configuration files of top level config and RootFS config.
/project-spec/configs/config Configuration file used to store user settings.
/project-spec/configs/rootfs_config Configuration file used for root file system.
/project-spec/configs/busybox Configuration file for busybox.
/project-spec/configs/init-ifupdown Configuration file for Ethernet.
/components/plnx_workspace/device-tree/device-
tree/

Device tree files used to build device tree. The following files
are auto generated by petalinux-config:

• skeleton.dtsi (Zynq-7000 devices only)

• zynq-7000.dtsi (Zynq-7000 devices only)

• zynqmp.dtsi (Zynq UltraScale+ MPSoC only)

• pcw.dtsi (Zynq-7000 devices and Zynq UltraScale+
MPSoC only)

• pl.dtsi

• system-conf.dtsi

• system-top.dts

• <bsp name>.dtsi

It is not recommended to edit these files, as these files are
regenerated by the tools.

/project-spec/meta-user/recipes-bsp/device-
tree/files/

system-user.dtsi is not modified by any PetaLinux tools.
This file is safe to use with revision control systems. In
addition, you can add your own DTSI files to this directory.
You have to edit the <plnx-proj-root>/project-spec/
meta-user/recipes-bsp/device-tree/device-
tree.bbappend by adding your DTSI file.

/project-spec/meta-user/recipes-bsp/u-boot/
files/platform-top.h

platform-auto.h and platform-top.h is copied to
include/configs/ directory in the U-Boot source code.

/project-spec/meta-user/conf/petalinuxbsp.conf This configuration file contains all the local user
configurations for your build environment. It is a substitute
for "local.conf" in the Yocto meta layers.

Notes:
1. All the paths are relative to <plnx-projroot>.

When the project is built, three directories are auto generated:

• <plnx-proj-root>/build for the files generated for build.

• <plnx-proj-root>/images for the bootable images.

Appendix B: PetaLinux Project Structure

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=157

• <plnx-proj-root>/build/tmp for the files generated by Yocto. This directory is
configurable through petalinux-config.

• <plnx-proj-root>/components/yocto has Yocto eSDK. This file is generated when
execute petalinux-config/petalinux-build.

Here is an example:

├── build
│ ├── bitbake-cookerdaemon.log
│ ├── build.log
│ ├── cache
│ ├── conf
│ ├── downloads
│ ├── misc
│ ├── sstate-cache
│ └── tmp
├── components
│ ├── plnx_workspace
│ └── yocto
├── config.project
├── hardware
│ └── project-name
├── images
│ └── linux
├── pre-built
│ └── linux
├── project-spec
│ ├── attributes
│ ├── configs
│ ├── hw-description
│ └── meta-user
└── README

Note: <plnx-proj-root>/build/ are automatically generated. Do not manually edit files in this
directory. Contents in this directory are updated when you run petalinux-config or petalinux-
build. <plnx-proj-root>/images/ are also automatically generated. Files in this directory are
updated when you run petalinux-build.

The table below is an example for Zynq UltraScale+ MPSoC.

By default the build artifacts are removed to preserve space after petalinux-build. To
preserve the build artifacts, you have to add the INHERIT_remove = "rm_work" in <plnx-
proj-dor>/project-spec/meta-user/conf/petalinuxbsp.conf, but it increases the
project space.

Table 28: Build Directory in a PetaLinux Project

Build Directory in a PetaLinux Project Description
<plnx-proj-root>/build/build.log Logfile of the build.
<plnx-proj-root>/build/misc/config/ Directory to hold files related to the Linux subsystem build.
<plnx-proj-root>/build/misc/rootfs_config/ Directory to hold files related to the RootFS build.
${TMPDIR}/work/plnx_aarch64-xilinx-linux/
petalinux-ser-image/1.0-r0/rootfs

RootFS copy of target. This is the staging directory.

Appendix B: PetaLinux Project Structure

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=158

Table 28: Build Directory in a PetaLinux Project (cont'd)

Build Directory in a PetaLinux Project Description
${TMPDIR}/plnx_aarch64 Stage directory to hold the libs and header files required to

build user apps/libs.
${TMPDIR}/work/plnx_aarch64-xilinx-linux/
linux-xlnx

Directory to hold files related to the kernel build.

${TMPDIR}/work/plnx_aarch64-xilinx-linux/u-
boot-xlnx

Directory to hold files related to the U-Boot build.

<plnx-proj-root>/components/plnx_workspace/
device-tree/device-tree"

Directory to hold files related to the device tree build.

<plnx-proj-root>/components/yocto Directory to hold Yocto eSDK content.

Table 29: Image Directory in a PetaLinux Project

Image Directory in a PetaLinux Project Description
<plnx-proj-root>/images/linux/ Directory to hold the bootable images for Linux subsystem
<plnx-proj-root>/images/linux Directory to hold the bootable images for xen hyperviser

Project Layers
The PetaLinux project has the following layer under <proj-plnx-root>/project-spec.

meta-user

This layer is a place holder for all user-specific changes. You can add your own bbappend and
configuration files in this layer.

Appendix B: PetaLinux Project Structure

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=159

Appendix C

Generating Boot Components

First Stage Boot Loader for Zynq UltraScale+
and Zynq-7000 Devices

By default, the top level system settings are set to generate the first stage boot loader. This is
optional.

Note: If you do not want the PetaLinux build FSBL/FS-BOOT, then you will need to manually build it on
your own. Else, your system will not boot properly.

If you had disabled first stage boot loader from menuconfig previously, You can configure the
project to build first stage boot loader as follows:

1. Launch top level system settings configuration menu and configure:

$ petalinux-config

a. Select Linux Components Selection ---> sub-menu.

b. Select First Stage Boot Loader option.

[*] First Stage Bootloader

c. Select the FSBL Configuration ---> submenu.

d. For application compiler flags, select FSBL Configuration → FSBL compiler flags.

e. For BSP compiler flags, select FSBL Configuration → FSBL BSP extra compiler flags.

f. Enter your compilation flags.

g. Exit the menu and save the change.

2. Launch petalinux-build to build the FSBL:

Build the FSBL when building the project:

$ petalinux-build

Build the FSBL only:

$ petalinux-build -c fsbl (for MicroBlaze, it is fs-boot)

Appendix C: Generating Boot Components

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=160

The boot loader ELF file is installed as zynqmp_fsbl.elf for Zynq® UltraScale+™ MPSoC,
zynq_fsbl.elf for Zynq®-7000 devices and fs-boot.elf for MicroBlaze™ processors in
images/linux inside the project root directory.

For more information on FSBL, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842019/FSBL.

Arm Trusted Firmware (ATF)
This is for Zynq® UltraScale+™ MPSoC. This is mandatory. By default, the top level system
settings are set to generate the ATF.

You can set the ATF configurable options as follows:

1. Launch top level system settings configuration menu and configure:

$ petalinux-config

a. Select the Arm Trusted Firmware Compilation Configuration ---> submenu.

b. Enter your settings.

c. Exit the menu and save the change.

2. Build the ATF when building the project:

$ petalinux-build

Build the ATF only:

$ petalinux-build -c arm-trusted-firmware

The ATF ELF file is installed as bl31.elf for Zynq UltraScale+ MPSoC in images/linux
inside the project root directory.

For more information on ATF, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842107/Arm+Trusted+Firmware.

PMU Firmware
This is for Zynq® UltraScale+™ MPSoC only. This is optional. By default, the top level system
settings are set to generate the PMU firmware.

CAUTION! If you do not want PetaLinux to build the PMU firmware, you have to manually build it on your
own. Else, your system will not boot properly.

Appendix C: Generating Boot Components

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 161Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/FSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/FSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842107/Arm+Trusted+Firmware
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842107/Arm+Trusted+Firmware
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=161

You can configure the project to build PMU firmware as follows:

1. Launch top level system settings configuration menu and configure:

$ petalinux-config

a. Select Linux Components Selection.

b. Select PMU Firmware option.

[*] PMU Firmware

c. Select the PMUFW Configuration → PMUFW compiler flags submenu.

d. Enter your compilation flags.

e. Exit the menu and save the change.

2. Build the PMU firmware when building the project:

$ petalinux-build

Build the PMU firmware only:

$ petalinux-build -c pmufw

The PMU firmware ELF file is installed as pmufw.elf for Zynq UltraScale+ MPSoC in
images/linux inside the project root directory.

For more information on PMU Firmware, see http://www.wiki.xilinx.com/PMU+Firmware.

FS-Boot for MicroBlaze Platform Only
FS-Boot in PetaLinux is a first stage boot loader demo for MicroBlaze™ platform only. It is to
demonstrate how to load images from flash to the memory and jump to it. If you want to try FS-
Boot, you must have a minimum of 8 KB block RAM.

FS-Boot supports parallel flash and SPI flash in standard SPI mode and Quad SPI mode only.

In order for FS-Boot to know where in the flash should get the image, macro
CONFIG_FS_BOOT_START needs to be defined. This is done by the PetaLinux tools. PetaLinux
tools set this macro automatically from the boot partition settings in the menuconfig primary
flash partition table settings. For parallel flash, it is the start address of boot partition. For SPI
flash, it is the start offset of boot partition.

The image in the flash requires a wrapper header followed by a BIN file. FS-Boot gets the target
memory location from wrapper. The wrapper needs to contain the following information:

Appendix C: Generating Boot Components

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 162Send Feedback

http://www.wiki.xilinx.com/PMU+Firmware
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=162

Table 30: Wrapper Information

Offset Description Value
0×0 FS-Boot bootable image magic code 0×b8b40008

0×4 BIN image size User defined

0×100 FS-Boot bootable image target memory
address

User defined. PetaLinux tools automatically
calculate it from the u-boot text base address
offset from the Memory Settings from the
menuconfig.

0×10c Where the BIN file start None

The FS-Boot ignores other fields in the wrapper header. The PetaLinux tools generate the
wrapper header to wrap around the U-Boot BIN file.

The FS-Boot supports symmetric multi processing (SMP) from the 2020.1 release onwards. You
can have multiple MicroBlaze processors in your design. A maximum of eight cores is supported.

The same FS-Boot which is built as part of the petalinux-build/petalinux-build -c
fsboot works for all the cores. XSDB is needed to flash the FS-Boot on all the cores. The
following is an example for four cores. To boot your target with SMP support, follow these steps:

<pelnx-tool>/tools/xsct/bin/xsdb
xsdb > connect -url <target-url>
xsdb > fpga -f <plnx-proj>/images/linux/system.bit
xsdb > ta (this will list all avaiable cores)
xsdb > ta <core number>
xsdb > dow -f <plnx-proj>/images/linux/fs-boot.elf
the above two steps for all available cores.
xsdb > dow -f <plnx-proj>/images/linux/uboot.elf
xsdb > dow -f <plnx-proj>/images/linux/image.ub

Appendix C: Generating Boot Components

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=163

Appendix D

QEMU Virtual Networking Modes
There are two execution modes in QEMU: non-root (default) and root requires sudo or root
permission). The difference in the modes relates to virtual network configuration.

In non-root mode QEMU sets up an internal virtual network which restricts network traffic
passing from the host and the guest. This works similar to a NAT router. You can not access this
network unless you redirect tcp ports.

In root mode QEMU creates a subnet on a virtual Ethernet adapter, and relies on a DHCP server
on the host system.

The following sections detail how to use the modes, including redirecting the non-root mode so
it is accessible from your local host.

Redirecting Ports in Non-root Mode
If running QEMU in the default non-root mode, and you wish to access the internal (virtual)
network from your host machine (For example, to debug with either GDB or TCF Agent), you will
need to forward the emulated system ports from inside the QEMU virtual machine to the local
machine. The petalinux-boot --qemu command utilizes the --qemu-args option to
perform this redirection. The following table outlines some example redirection arguments. This
is standard QEMU functionality, refer to the QEMU documentation for more details.

Table 31: Redirection Arguments

QEMU Options Switch Purpose Accessing guest from host
-tftp <path-to-directory> Sets up a TFTP server at the specified

directory, the server is available on the
QEMU internal IP address of 10.0.2.2.

-redir tcp:10021:

10.0.2.15:21

Redirects port 10021 on the host to
port 21 ftp) in the guest

host> ftp localhost 10021

-redir tcp:10023:

10.0.2.15:23

Redirects port 10023 on the host to
port 23 telnet) in the guest

host> telnet localhost 10023

-redir tcp:10080:

10.0.2.15:80

Redirects port 10080 on the host to
port 80 http) in the guest

Type http://localhost:10080 in
the web browser

Appendix D: QEMU Virtual Networking Modes

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=164

Table 31: Redirection Arguments (cont'd)

QEMU Options Switch Purpose Accessing guest from host
-redir tcp:10022:

10.0.2.15:22

Redirects port 10022 on the host to
port 22 ssh) in the guest

Run ssh -P 10022 localhost on
the host to open a SSH session to the
target

The following example shows the command line used to redirect ports:

$ petalinux-boot --qemu --kernel --qemu-args "-redir tcp:1534::1534"

This document assumes the use of port 1534 for gdbserver and tcf-agent, but it is possible to
redirect to any free port. The internal emulated port can also be different from the port on the
local machine:

$ petalinux-boot --qemu --kernel --qemu-args "-redir tcp:1444::1534"

Specifying the QEMU Virtual Subnet
By default, PetaLinux uses 192.168.10.* as the QEMU virtual subnet in --root mode. If it
has been used by your local network or other virtual subnet, you may wish to use another
subnet. You can configure PetaLinux to use other subnet settings for QEMU by running
petalinux-boot as follows on the command console:

Note: This feature requires sudo access on the local machine, and must be used with the --root option.

$ petalinux-boot --qemu --root --u-boot --subnet <subnet gateway IP>/
<number of the bits of the subnet mask>

For example, to use subnet 192.168.20.*:

$ petalinux-boot --qemu --root --u-boot --subnet 192.168.20.0/24

Appendix D: QEMU Virtual Networking Modes

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=165

Appendix E

Xilinx IP Models Supported by
QEMU

Note: By default, QEMU disables any devices for which there is no model available. For this reason it is not
possible to use QEMU to test your own customized IP cores (unless you develop C/C++ models for them
according to QEMU standard).

For more information on Xilinx® IP models supported by QEMU, see Xilinx Quick Emulator User
Guide: QEMU (UG1169).

Appendix E: Xilinx IP Models Supported by QEMU

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 166Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=166

Appendix F

Xen Zynq UltraScale+ MPSoC
Example

This section details on the Xen Zynq® UltraScale+™ MPSoC example. It describes how to get
Linux to boot as dom0 on top of Xen on Zynq UltraScale+ MPSoC.

Prerequisites
This section assumes that the following prerequisites have been satisfied:

• You have PetaLinux tools software platform ready for building a Linux system customized to
your hardware platform. For more information, see Importing Hardware Configuration.

• You have created a PetaLinux project from the reference BSP.

• There are Xen related prebuilts in the pre-built/linux/xen directory, which are
xen.dtb, xen-openamp.dtb, xen-qemu.dtb, xen-Image, and xen-rootfs.cpio.gz.

Boot Prebuilt Linux as dom0
1. Copy prebuilt Xen images to your TFTP directory so that you can load them from U-Boot

with TFTP.

$ cd <plnx-proj-root>
$ cp pre-built/linux/xen/xen.dtb <tftpboot>/
$ cp pre-built/linux/xen/xen-openamp.dtb <tftpboot>/
$ cp pre-built/linux/xen/xen-qemu.dtb <tftpboot>/
$ cp pre-built/linux/xen/xen-Image <tftpboot>/
$ cp pre-built/linux/xen/xen-rootfs.cpio.gz <tftpboot>/
$ cp pre-built/linux/xen/xen_boot_tftp.scr <tftpboot>/
$ cp pre-built/linux/xen/xen_boot_sd.scr <tftpboot>/
$ cp pre-built/linux/xen/xen <tftpboot>/

2. Boot prebuilt U-Boot image on the board with either JTAG boot or boot from SD card.

Note: For SD card boot, see Boot a PetaLinux Image on Hardware with an SD Card and for JTAG boot,
see Boot a PetaLinux Image on Hardware with JTAG.

Appendix F: Xen Zynq UltraScale+ MPSoC Example

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=167

3. Setup TFTP server IP from U-Boot:

platform> setenv serverip <TFTP SERVERIP>

4. Load Xen images from U-Boot.

TFTP BOOT: xen_boot_tftp.scr, to be loaded at address 0xC00000:

tftpb 0xC00000 xen_boot_tftp.scr; source 0xC00000

SD BOOT: xen_boot_sd.scr, to be loaded at address 0xC00000:

load scsi 0:1 0xC00000 xen_boot_sd.scr; source 0xC00000

Rebuild Xen
After creating a PetaLinux project for Zynq UltraScale+ MPSoC, follow the below steps to build
Xen images:

1. Go to cd <proj root directory>.

2. In the petalinux-config command, select Image Packaging Configuration → Root
filesystem type (INITRD).

3. In petalinux-config -c rootfs, select PetaLinux Package Groups → Packagegroup-
petalinux-xen → [*] packagegroup-petalinux-xen.

4. Edit the device tree to build in the extra Xen related configs. Edit this file: project-spec/
meta-user/recipes-bsp/device-tree/files/system-user.dtsi and add this
line: /include/ "xen.dtsi"

It should look like the following:

/include/ "system-conf.dtsi"
/include/ "xen.dtsi"
/ {
};

5. Edit the file: project-spec/meta-user/recipes-bsp/device-tree/device-
tree.bbapp end and add this line to it: SRC_URI += "file://xen.dtsi"

The file should look like this:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://system-user.dtsi"
SRC_URI += "file://xen.dtsi"

6. Run petalinux-build.

7. The build artifacts are in images/linux in the project directory.

Appendix F: Xen Zynq UltraScale+ MPSoC Example

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=168

Note: By default, the petalinux-build command does not build Xen. The default root file system does
not contain the Xen tools. You have to use Xen RootFS.

IMPORTANT! You are required to update dom0 memory in xen-bootargs in the xen.dtsi  file based on the
image/RootFS size. Also, adjust the above load addresses based on the image/RootFS size without overlapping.

Boot Built Linux as dom0
1. Copy built Xen images to your TFTP directory so that you can load them from U-Boot with

TFTP.

$ cd <plnx-proj-root>
$ cp images/linux/system.dtb <tftpboot>/
$ cp images/linux/Image <tftpboot>/
$ cp images/linux/xen_boot_tftp.scr <tftpboot>/
$ cp images/linux/xen_boot_sd.scr <tftpboot>/
$ cp images/linux/xen <tftpboot>/
$ cp images/linux/rootfs.cpio.gz <tftpboot>/

2. Boot built U-Boot image on the board with either JTAG boot or boot from SD card.

Note: For SD card boot, see Boot a PetaLinux Image on Hardware with an SD Card and for JTAG boot,
see Boot a PetaLinux Image on Hardware with JTAG.

Note: You can also point the dom1 and dom2 to the domU kernels in the configuration itself so that
xen boot files get updated with that pointed images. Edit the configuration file.

$ vi images/linux/xen.cfg
$ export XEN_CONFIG="<Absolute path for xen.cfg>"
$ export XEN_CONFIG_SKIP="1"
$ export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE XEN_CONFIG
XEN_CONFIG_SKIP"
$ petalinux-build -c kernel -x do_deploy

Note: xen boot files are generated in <plnx-proj-root>/images/linux.

3. Setup TFTP server IP from U-Boot:

Platform> setenv serverip <TFTP SERVERIP>

4. Load Xen images from U-Boot:

TFTP BOOT: xen_boot_tftp.scr, to be loaded at address 0xC00000:

tftpb 0xC00000 xen_boot_tftp.scr; source 0xC00000

SD BOOT: xen_boot_sd.scr, to be loaded at address 0xC00000:

load scsi 0:1 0xC00000 xen_boot_sd.scr; source 0xC00000

Note: For more information, see http://www.wiki.xilinx.com/XEN+Hypervisor.

Appendix F: Xen Zynq UltraScale+ MPSoC Example

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 169Send Feedback

http://www.wiki.xilinx.com/XEN+Hypervisor
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=169

Appendix G

Booting Prebuilt OpenAMP
Use the following steps to execute OpenAMP:

To boot prebuilt Linux for Zynq® UltraScale+™ MPSoC, follow these steps:

$ cd <plnx-proj-root>
$ cp pre-built/linux/images/openamp.dtb pre-built/linux/images/system.dtb
$ petalinux-boot --jtag --prebuilt 3 --hw_server-url <hostname:3121>

To load OpenAMP firmware and run OpenAMP test application, run the following command:

$ echo <echo_test_firmware> > /sys/class/remoteproc/remoteproc0/firmware

For example, to load image_echo_test, run:

$ echo image_echo_test > /sys/class/remoteproc/remoteproc0/firmware
$ echo start > /sys/class/remoteproc/remoteproc0/state
$ echo_test
$ echo stop > /sys/class/remoteproc/remoteproc0/state

To stop running, run the following command:

$ echo stop > /sys/class/remoteproc/remoteproc0/state

For more examples, see Libmetal and OpenAMP for Zynq Devices User Guide (UG1186).

Appendix G: Booting Prebuilt OpenAMP

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 170Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=170

Appendix H

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix H: Additional Resources and Legal Notices

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 171Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=171

1. PetaLinux Documentation (www.xilinx.com/petalinux)

2. Xilinx Answer Record (55776)

3. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

4. PetaLinux Tools Documentation: PetaLinux Command Line Reference (UG1157)

5. Xilinx Quick Emulator User Guide (QEMU) (UG1169)

6. Libmetal and OpenAMP for Zynq Devices User Guide (UG1186)

7. www.wiki.xilinx.com/Linux

8. PetaLinux Yocto Tips

9. Yocto Project Technical FAQ

10. Vitis Unified Software Platform Documentation: Embedded Software Development (UG1400)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Appendix H: Additional Resources and Legal Notices

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 172Send Feedback

https://www.xilinx.com/petalinux
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=55776.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1157-petalinux-tools-command-line-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
http://www.wiki.xilinx.com/Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips
https://wiki.yoctoproject.org/wiki/Technical_FAQ
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=172

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2014-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used
under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali,
and MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks
are the property of their respective owners.

Appendix H: Additional Resources and Legal Notices

UG1144 (v2020.1) June 3, 2020 www.xilinx.com
PetaLinux Tools Documentation Reference Guide 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1144&Title=PetaLinux%20Tools%20Documentation&releaseVersion=2020.1&docPage=173

	PetaLinux Tools Documentation
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction

	Ch. 2: Setting Up Your Environment
	Installation Steps
	Installation Requirements
	Prerequisites
	Installing the PetaLinux Tool
	Installing a Preferred eSDK as part of the PetaLinux Tool

	Troubleshooting

	PetaLinux Working Environment Setup
	Prerequisites
	Steps to Set Up PetaLinux Working Environment
	Troubleshooting

	Design Flow Overview

	Ch. 3: Creating a Project
	PetaLinux BSP Installation
	Prerequisites
	Create a Project from a BSP
	Troubleshooting

	Configuring Hardware Platform with Vivado Design Suite
	Prerequisites
	Configure a Hardware Platform for Linux

	Exporting Hardware Platform to PetaLinux Project
	Prerequisites
	Exporting Hardware Platform

	Creating an Empty Project from a Template
	Prerequisites
	Create New Project

	Ch. 4: Configuring and Building
	Version Control
	Prerequisites
	Version Control

	Importing Hardware Configuration
	Prerequisites
	Steps to Import Hardware Configuration

	Build System Image
	Prerequisites
	Steps to Build PetaLinux System Image
	Default Image
	Troubleshooting

	Generate Boot Image for Zynq UltraScale+ MPSoC
	Prerequisites
	Generate Boot Image

	Generate Boot Image for Zynq-7000 Devices
	Prerequisites
	Generate Boot Image

	Generate Boot Image for MicroBlaze Processor
	Prerequisites
	Generate Boot Image

	Modify Bitstream File for MicroBlaze Processor
	Prerequisites
	Modify Bitstream

	Build Optimizations
	PetaLinux Commands with Equivalent devtool Commands

	Ch. 5: Booting and Packaging
	Packaging Prebuilt Images
	Prerequisites
	Steps to Package Prebuilt Image

	Using petalinux-boot Command with Prebuilt Images
	Prerequisites
	Boot Levels for Prebuilt Option

	Booting a PetaLinux Image on QEMU
	Prerequisites
	Steps to Boot a PetaLinux Image on QEMU
	Additional Options for Booting on QEMU

	Boot a PetaLinux Image on Hardware with an SD Card
	Prerequisites
	Steps to Boot a PetaLinux Image on Hardware with SD Card
	Troubleshooting

	Boot a PetaLinux Image on Hardware with JTAG
	Prerequisites
	Steps to Boot a PetaLinux Image on Hardware with JTAG
	Additional Options for Booting with JTAG
	Logging Tcl/XSDB for JTAG Boot
	Troubleshooting

	Boot a PetaLinux Image on Hardware with TFTP
	Prerequisites
	Steps to Boot a PetaLinux Image on Hardware with TFTP
	Troubleshooting

	BSP Packaging
	Prerequisites
	Steps for BSP Packaging
	Additional BSP Packaging Options

	Ch. 6: Upgrading the Workspace
	petalinux-upgrade Options
	Upgrading Between Minor Releases (2020.1 Tool with 2020.2 Tool)
	Upgrade PetaLinux Tool
	Upgrade from Local File
	Upgrade from Remote Server

	Upgrade PetaLinux Project
	Upgrade an Existing Project with the Upgraded Tool

	Upgrading the Installed Tool with More Platforms
	Upgrading the Installed Tool with your Customized Platform

	Ch. 7: Customizing the Project
	Firmware Version Configuration
	Prerequisites
	Steps for Firmware Version Configuration

	Root File System Type Configuration
	Prerequisites
	Steps for Root File System Type Configuration

	Boot Images Storage Configuration
	Prerequisites
	Steps for Boot Images Storage Configuration
	Troubleshooting

	Primary Flash Partition Configuration
	Managing Image Size
	Prerequisites
	Steps for Managing Image Size

	Configuring INITRD BOOT
	Prerequisites
	Steps to Configure INITRD Boot

	Configuring INITRAMFS Boot
	Prerequisites
	Steps to Configure INITRAMFS Boot

	Configure TFTP Boot
	Prerequisites
	PetaLinux Configuration and Build System Image

	Configuring NFS Boot
	Prerequisites
	PetaLinux Configuration and Build System Image
	Booting with NFS

	Configuring JFFS2 Boot
	Prerequisites
	Steps to Configure JFFS2 Boot

	Configuring SD Card ext File System Boot
	Prerequisites
	Preparing the SD Card
	PetaLinux Configuration and Build System Image
	Copying Image Files
	Troubleshooting

	Creating Partitioned Images Using Wic

	Ch. 8: Customizing the Root File System
	Including Prebuilt Libraries
	Prerequisites
	Steps to Include Prebuilt Applications

	Including Prebuilt Applications
	Prerequisites
	Steps to Include Prebuilt Applications

	Creating and Adding Custom Libraries
	Prerequisites
	Steps to Add Custom Libraries

	Testing User Libraries
	Prerequisites
	Steps to Test User Libraries

	Creating and Adding Custom Applications
	Prerequisites
	Steps to Add Custom Applications

	Creating and Adding Custom Kernel Modules
	Prerequisites
	Steps to Add Custom Modules

	Building User Applications
	Prerequisites
	Steps to Build User Applications

	Testing User Applications
	Prerequisites
	Steps to Test User Application

	Building User Modules
	Prerequisites
	Steps to Build User Modules

	PetaLinux Auto Login
	Prerequisites
	Steps for PetaLinux Auto Login

	Application Auto Run at Startup
	Prerequisites
	Steps for Application Auto Run at Startup

	Adding Layers
	Adding an Existing Recipe into the Root File System
	Adding a Package Group
	Appending Root File System Packages

	Ch. 9: Debugging
	Debugging the Linux Kernel in QEMU
	Prerequisites
	Steps to Debug the Linux Kernel in QEMU
	Troubleshooting

	Debugging Applications with TCF Agent
	Prerequisites
	Preparing the Build System for Debugging
	Performing a Debug Session

	Debugging Zynq UltraScale+ MPSoC Applications with GDB
	Prerequisites
	Preparing the Build System for Debugging
	Performing a Debug Session
	Going Further with GDB
	Troubleshooting

	Debugging Individual PetaLinux Components
	PMU Firmware
	FSBL
	U-Boot
	Linux

	Ch. 10: Advanced Configurations
	Menuconfig Usage
	PetaLinux Menuconfig System
	Linux Components Selection
	Auto Config Settings
	Subsystem AUTO Hardware Settings
	DTG Settings
	PMU Firmware Configuration for Zynq UltraScale+ MPSoC
	FSBL Configuration for Zynq UltraScale+ MPSoC
	Arm Trusted Firmware Configuration for Zynq UltraScale+ MPSoC
	FPGA Manager Configuration and Usage for Zynq-7000 Devices and Zynq UltraScale+ MPSoC
	Adding Custom dtsi and bit Files to the FPGA Manager for Zynq-7000 Devices and Zynq UltraScale+ MPSoCs

	U-Boot Configuration
	Image Packaging Configuration
	Firmware Version Configuration
	Yocto Settings

	Open Source Bootgen for On-target Use for Zynq Devices and Zynq UltraScale+ MPSoC
	Configuring Out-of-tree Build
	Prerequisites
	Steps to Configure Out-of-tree Build
	Using External Kernel and U-Boot with PetaLinux
	Troubleshooting

	Configuring Project Components
	Device Tree Configuration
	Prerequisites
	Configuring Device Tree

	U-Boot Configuration
	Prerequisites
	Configuring U-Boot

	Ch. 11: Yocto Features
	SDK Generation (Target Sysroot Generation)
	Building SDK
	Installing SDK
	Examples
	Building and Installing eSDK
	Packaging Sources and Licenses

	Accessing BitBake/Devtool in a Project
	Steps to Access the BitBake Utility
	Steps to Access the Devtool Utility

	Shared State Cache
	Sharing your Shared State Cache

	Downloading Mirrors
	Machine Support
	SoC Variant Support
	Image Features
	Filtering RootFS Packages Based on License
	Creating and Adding Patches For Software Components within a PetaLinux Project
	Adding Extra Users to the PetaLinux System

	Ch. 12: Technical FAQs
	Troubleshooting
	TMPDIR on NFS
	Recipe Name Having ' _ '
	Recover from Corrupted Terminal
	Python Language Settings
	Menuconfig Hang for Kernel and U-Boot
	Menuconfig Not Seen for Kernel and U-Boot
	External Source Configurations
	do_image_cpio: Function Failed
	Package Management
	Linux Boot Hang with Large INITRAMFS Image in Zynq-7000 Devices and Zynq UltraScale+ MPSoC

	Appx. A: Migration
	Tool/Project Directory Structure
	DT Overlay Support
	Linux and U-Boot Default Configurations
	Build Changes
	Menuconfig Changes

	Appx. B: PetaLinux Project Structure
	Project Layers

	Appx. C: Generating Boot Components
	First Stage Boot Loader for Zynq UltraScale+ and Zynq-7000 Devices
	Arm Trusted Firmware (ATF)
	PMU Firmware
	FS-Boot for MicroBlaze Platform Only

	Appx. D: QEMU Virtual Networking Modes
	Redirecting Ports in Non-root Mode
	Specifying the QEMU Virtual Subnet

	Appx. E: Xilinx IP Models Supported by QEMU
	Appx. F: Xen Zynq UltraScale+ MPSoC Example
	Prerequisites
	Boot Prebuilt Linux as dom0
	Rebuild Xen
	Boot Built Linux as dom0

	Appx. G: Booting Prebuilt OpenAMP
	Appx. H: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

