
XAPP1175 (v2.2) January 14, 2021 1
www.xilinx.com

Summary
The Zynq®-7000 SoC integrates a system on-chip (SoC) and programmable logic (PL). The boot
mechanism, unlike previous Xilinx®devices, is processor driven. This application note shows
how to boot the Zynq device securely using Quad Serial Peripheral Interface (QSPI) and secure
digital (SD) modes. The optimal use of authentication and encryption for different security
requirements is described. A method of handling private keys securely is provided. Multiboot
examples show how to boot a golden image if the boot of an image fails. Examples show how
to generate and program keys. Applications using Zynq security features are discussed.

Download the reference design files for this application note from the Xilinx website. For
detailed information about the design files, see Reference Designs.

Introduction
To protect your valuable intellectual property (IP), it is important to always securely boot fielded
Zynq devices—especially because the incremental effort and cost to boot securely is relatively
small. Secure boot of Zynq devices uses Advanced Encryption Standard (AES) symmetric and
Rivest, Shamir, Adleman (RSA) asymmetric cryptographic algorithms. This application note
provides the concepts, tools, and methods to implement a secure boot. It shows how to create
a secure embedded system, and how to generate, program, and manage the AES symmetric
secret key and the RSA asymmetric private/public key pair.

To build and boot a secure embedded Linux system quickly, skip to the section Booting the TRD
Securely, and use the zc702_linux_trd reference design (TRD) system. Secure boot does not
require programmable logic (PL) resources which are otherwise available to the user. The boot
time of a secure Linux system is approximately the same as a non-secure system.

Application Note: Zynq-7000 SoC

XAPP1175 (v2.2) January 14, 2021

Secure Boot of Zynq-7000 SoC
Author: Ed Peterson

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=339774

Introduction

XAPP1175 (v2.2) January 14, 2021 2
www.xilinx.com

How to Read this Document
Figure 1 shows the secure boot topics discussed.

The Boot Architecture, Boot Process, AES Encryption and RSA Authentication, Security in
Embedded Devices, and Secure System Development sections provide background information
on Zynq secure boot. Users familiar with booting Zynq devices on the zc702 board can skip to
the Booting the TRD Securely section and quickly boot the zc702_linux_trd system.

The Building and Booting a Secure System section shows new users how to build and boot a
secure system using the Xilinx graphical user interface (GUI). The system built is not used in
other sections, so readers experienced with Xilinx tools can skip this section.

The Secure Boot Image Considerations section shows how to build custom secure embedded
systems. A wide variety of use cases are supported.

The Generating and Programming Keys section shows how to create AES and RSA keys, and how
to program the control functions and keys into Zynq devices for a secure embedded system.

The Advanced Key Management Options section shows how to protect RSA keys.

The Secure Embedded Systems Applications provides examples using the included reference
systems. The Multiboot section develops systems which combine security and multiboot. The
zc702_data system shows how to load data into Zynq devices securely. The zc702_jtag_en
system discusses the use of JTAG after a secure boot.

X-Ref Target - Figure 1

Figure 1: Topics in Secure Boot
XAPP1175_01_070813

Quickly Building and Booting

Zynq Security Components

a Secure Embedded Linux System

Creating Secure Embedded Systems

Generating and Programming
 Cryptographic Keys

Secure Embedded Systems Applications

Advanced Key Management Options

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=2

Hardware and Software Requirements

XAPP1175 (v2.2) January 14, 2021 3
www.xilinx.com

Hardware and Software Requirements
The hardware requirements for the reference systems are as follows:

• ZC702 Evaluation Board with Revision C xc7020 silicon
• AC Power Adapter (12 VDC)
• USB Type-A to USB Mini-B Cable (for UART communication)
• Xilinx Platform Cable or Digilent USB Type-A to USB Micro B cable for programming and

debugging using JTAG
• Secure Digital Multimedia Card (SD) flash card
• Ethernet cable to connect the target board with host machine (optional)
• Xilinx Software Development Kit 2014.4 (or later)
• Xilinx Vivado® Design Suite 2014.4 (or later)

Boot Architecture
This section provides an overview of the hardware and software components used in the boot
process.

Hardware Components Used in Boot
The two functional blocks in Zynq devices are the processing system (PS) and programmable
logic (PL). The PS contains dual Arm® Cortex™-A9 MPCores and ten (x2) hard IP peripherals.
The PL is derived from Xilinx® 7 series FPGA technology.

The hardware components used to boot are the CPU, system level control register (SLCR),
non-volatile memory (NVM), secure storage, JTAG, AES/HMAC, on-chip memory (OCM), dual
data rate random access memory (DDR), and BootROM. Figure 2 is a diagram of the hardware
components used in boot. The NVM and DDR memory are off chip. Booting typically uses only
one NVM type.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=3

Boot Architecture

XAPP1175 (v2.2) January 14, 2021 4
www.xilinx.com

Central Processing Unit

The Arm Cortex-A9 MPcore contains two central processing units (CPUs). CPU0 is used for boot.
The CPU controls boot and other operations by writing/reading registers in the Device
Configuration (DEVCFG) and other System Level Control Registers.

System Level Control Register

The System Level Control Register (SLCR) consists of approximately 150 registers. The registers
used in boot are the Boot Mode, PS Reset Control, FPGA Reset, Reboot Status, Reset Reason, PS
Level Shifter, Control Register, Miscellaneous Register, Reboot Status Register, Lock,
Configuration, and Interrupt registers. The registers for Direct Memory Access Controller
(DMAC), NVM, and DDR controllers used in boot are also in the SLCR, but these generally do
not require modification for boot.

X-Ref Target - Figure 2

Figure 2: Zynq-7000 SoC Hardware Components Used in Boot

CPU

OCM

SD

NAND

NOR

QSPI

DDR
Controller

Processing System

Programmable Logic

Device Configuration Interface
AXI

PCAP

DMA
Controller

Secure
Vault

Boot
ROM

AES HMAC

JTAG

DDR

SD

NAND

NOR

QSPI

eFuse Array

Controllers

DAP

SLCR

Config
Registers

Config
Memory

eFUSE
SHA256(PPK)

XAPP1175_03_052813

BBRAM

Decryptor

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=4

Boot Architecture

XAPP1175 (v2.2) January 14, 2021 5
www.xilinx.com

Device Configuration Interface

The Device Configuration Interface contains the direct memory access controller DMAC used in
boot. The DMAC transfers partitions from one memory, usually NVM, to another memory,
usually DDR, at a high transfer rate. The DMAC interfaces to the PS using the AXI bus, and to the
PL using the PCAP interface.

Secure Storage

Secure storage is on-chip memory which is inaccessible to an adversary. The memory resides
within the security perimeter of Zynq devices. At build time, the designer controls input/outputs
(I/Os) and internal switches to restrict access to Zynq device internal components. The OCM, L1
and L2 cache, AXI block RAM, PL configuration memory, BBRAM, and eFUSE array are secure
storage in Zynq devices.

Nonvolatile Memory

The types of NVM used to boot Zynq devices are Secure Digital (SD), Quad Serial Peripheral
Interface (QSPI), NAND, and NOR. The ZC702 and ZC706 Evaluation Boards support SD and
QSPI, but not NAND and NOR NVM.

BootROM

The BootROM is 128K mask programmed boot Read Only Memory (BootROM) which contains
the BootROM code. The BootROM is not visible to the user or writable. The BootROM code
reads the Boot Mode Register, and initializes essential clocks and NVM at startup or power on
reset. For all boot modes except JTAG, the BootROM code uses the memory controller to copy
the FSBL partition from the specified NVM to the OCM.

On-chip Memory

The OCM is 256K random access memory (RAM). The initial function of the OCM is to store the
first stage boot loader (FSBL) when the Zynq device is booted. The maximum allowable size of
the FSBL is 192K. Since the OCM has no address or data lines at Zynq device pins, OCM is secure
storage. The OCM can be used as secure storage for sensitive software after boot. OCM is very
fast memory. After boot, the full 256K OCM is available.

AXI Block RAM

The AXI block RAM is PL RAM. It is not used in boot. It provides secure storage for sensitive
software or data. AXI block RAM is used by both the Arm and MicroBlaze™ CPUs.

eFUSE Array

The PL eFUSE array is on-chip one-time programmable (OTP) NVM. The eFUSE array stores the
256-bit AES key. It is also used to control security functions, including enabling/disabling the
JTAG port. The PS eFUSEs store the RSA_Enable bit and the hash of the Primary Public Key (PPK)
used in RSA authentication.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=5

Boot Architecture

XAPP1175 (v2.2) January 14, 2021 6
www.xilinx.com

Battery Backed Up RAM

The battery-backed RAM (BBRAM) is an on-chip alternative to eFUSE for nonvolatile AES key
storage. BBRAM is reprogrammable and zeroizable NVM. BBRAM is NVM when an off-chip
battery is connected to the Zynq device. The ZC702 board provides the battery, the Zed board
does not. The BBRAM can be used to store the AES key when a battery is not attached, but it is
volatile.

AES/HMAC

The Advanced Encryption Standard (AES) is used for symmetric (secret) key
encryption/decryption. The Hashed Message Authentication Code (HMAC) provides private key
authentication using the SHA-256 hash function.

AES cryptography is used by Zynq devices to provide confidentiality. The Zynq device contains
a hardened AES decryption engine which is coupled to the HMAC engine. The AES
decryption/HMAC authentication cannot be decoupled. The software development kit (SDK)
Bootgen tool encrypts the software in the software development process, at the customer’s
manufacturing end. Decryption is done in the fielded embedded device. The AES decryption
uses a secret (or red) key programmed into either eFUSE or BBRAM.

JTAG Debug Access

The JTAG test access port (TAP) is a boundary scan chain used by the PL. The debug access port
(DAP) is a boundary scan chain used by the PS. The two chains can be cascaded or used
independently. Overall, they can load PS and PL code, program the keys in eFUSE and BBRAM,
and be used for Arm debugging.

Software Components Used in Boot
The Xilinx Vivado Design Suite is used for system development and to implement VHDL/Verilog
code. SDK is used to compile C code, generate a boot image, load the boot image, and debug
the software and hardware.

SDK is used to create software projects, and download and debug the projects. SDK runs on a
workstation under Windows or Linux. The software programs which run on Zynq devices and
are used in boot are the BootROM code, FSBL, ps7_init, U-Boot, and the DEVCFG code.

Boot Header

The Boot Header defines characteristics of the FSBL partition. The image ID and Header
Checksum fields in the Boot Header allow the BootROM code to run integrity checks. The
Encryption Status field specifies whether the FSBL is non-secure or secure, and if secure,
whether the key source is eFUSE or BBRAM. The Boot Header format is provided in the
Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 1]. For additional information see
Zynq-7000 SoC Software Developers Guide (UG821) [Ref 2].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=6

Boot Architecture

XAPP1175 (v2.2) January 14, 2021 7
www.xilinx.com

Bitgen/Write Bitstream

Bitgen (ISE) or write_bitstream (Vivado) generates an unencrypted bit file for the bitstream
partition. Bitgen or write_bitstream are not used for encryption in Zynq devices. See the following
Bootgen section for details.

Bootgen

Bootgen is a SDK tool which generates the image for booting. Bootgen generates the image
which is loaded into NVM. Bootgen accepts a user generated Bootgen Image Format (BIF) file
that lists the partitions which are to be included in the image. Bootgen outputs a single image
file in MCS or BIN format. Bootgen optionally encrypts and signs partitions, using AES and RSA
algorithms respectively.

Secure Key Driver

The Secure Key Driver software programs the PS and PL eFUSE array. The Secure Key Driver runs
on Zynq devices and requires an external physical connection between the Zynq external JTAG
pins and the Zynq external MIO pins. See Changing the Cryptographic Key in Zynq-7000 AP SoC
(XAPP1223) for details [Ref 3]. If RSA authentication is used, the Secure Key Driver must be used
to program the PS eFUSE array. If AES Encryption is used, th eFUSE Driver is an alternative to
using iMPACT to program the AES key. The steps to use the Secure Key Driver are given in the
Secure Key Driver section.

First Stage Boot Loader (FSBL)

The FSBL is the partition loaded into OCM by the BootROM code. The FSBL loads partitions
(software programs, the bitstream) in the image, which is stored in NVM, to the partitions
destination. The destination of software partitions is usually DDR, OCM, or AXI BBRAM. The
destination of the bitstream is the PL configuration memory. Using the AES/HMAC engine and
the RSA libraries, the FSBL controls the decryption and authentication process. Although the
functionality of the FSBL meets most user load requirements, the source code is editable if there
are custom requirements. For example, the RSA_SUPPORT symbol needs to be defined in the
fsbl.h header file to enable RSA authentication within the FSBL.

iMPACT/Hardware Manager

iMPACT (ISE) or Hardware Manager (Vivado) are used to program FPGAs, including the PL,
principally in development. The iMPACT or Hardware Manager tools program the PL eFUSE
array or BBRAM, including control parameters and the 256-bit AES key.

Xilinx Microprocessor Debugger (XMD) / Xilinx Software Command-Line Tool
(XSCT)

XMD/XSCT are SDK tools commonly used to load PL and PS partitions in development. In
addition to loading partitions. XMD/XSCT are used to quickly test device functionality.
XMD/XSCT uses the JTAG port, so it cannot be used in secure boot.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=7

Boot Architecture

XAPP1175 (v2.2) January 14, 2021 8
www.xilinx.com

Note: XMD has been deprecated and is only available in tools older than 2018.1.

U-Boot

U-Boot is open source software that runs on Zynq devices. It is commonly used to load Linux.
Other U-Boot functions include reading DDR memory, and erasing, reading, writing NVM.
U-Boot is loaded by the FSBL, XMD, or XSCT. It is used in both secure and non-secure boot, but
is not required for either.

BootROM Code

BootROM code is metal-masked and immutable ROM code which runs at power-up and in some
cases in a multiboot. The BootROM code determines the boot mode, initializes the memory
controllers used in boot, and if in a boot mode other than JTAG, loads FSBL into the OCM.

Chain of Trust

Booting a device securely starts with the BootROM code loading the FSBL and continues serially
with the FSBL loading the bitstream and software. With a secure boot foundation established by
the boot ROM code, the chain of trust is created by the successive authentication of all software
loaded into the device. This prevents an adversary from tampering with software or the
bitstream file.

Device Configuration (devcfg)

The devcfg is the Xilinx device configuration driver which uses the direct memory access
controller (DMAC) to load the bitstream and software. Typical uses of the devcfg software are to
load the bitstream from non-volatile memory (NVM) to random access or configuration
memory.

Image

An image is a file which contains the PL bitstream and PS software which define Zynq
functionality. Typically, an image is loaded into NVM first. At power up, the image is copied
from NVM into RAM and/or configuration memory as part of the boot process. An image
consists of one or more partitions (typically more than one). In addition to the bitstream and
software partitions, the image contains header (boot, partition) information used to define the
characteristics of the partitions and image.

Partition

Partitions are the individual PL bitstream and PS software (ELF, BIN) that comprise an image.
Example partitions are system.bit, fsbl.elf, hello_world.elf, u-boot.elf,
uImage.bin, devicetree.dtb, and uramdisk.image.gz.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=8

Boot Process

XAPP1175 (v2.2) January 14, 2021 9
www.xilinx.com

Boot Image Format (BIF)

The BIF is the input file into Bootgen that lists the partitions (bitstream, software) which
Bootgen is to include in the image. The BIF also includes attributes for the partitions. Partition
attributes allow the user to specify if the partition is to be encrypted and/or authenticated.

ps7_init

The ps7_init command is an alternative to using an FSBL in a non-secure boot. The ps7_init
command provides a simple method to initialize boot components during development when
XSCT is used.

RSA

RSA is a public key algorithm used to authenticate software, including ELF, BIN, and BIT
partitions. Authentication verifies that software has not been modified. In Zynq devices, each
software partition can be individually authenticated. RSA uses a public/private key pair. The
private key is used by Bootgen in signing the partition at the customer’s manufacturing facility.
The public key is used in verifying the partition in the fielded Zynq device.

Software Development Kit

SDK is Eclipse-based software which is downloadable from the Xilinx website. In addition to
software development, SDK supports creating images, downloading software and the bitstream
into the Zynq device, writing the image into QSPI, and debugging software programs.

Boot Process
This section provides an overview of boot modes, boot steps, boot flows, and maintaining
security after boot. Following this, the software used in boot, including the BootROM code,
FSBL, and U-Boot, is discussed.

Boot Modes
The boot modes are PS Master Non-secure, PS Master Secure, and JTAG. The master modes use
QSPI, SD, NAND, or NOR NVM.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=9

Boot Process

XAPP1175 (v2.2) January 14, 2021 10
www.xilinx.com

Secure Boot Steps
Figure 3 shows the steps to develop a secure embedded system.

Boot Flows
To boot the Zynq device, software (FSBL, U-Boot) is developed on a workstation using SDK, and
the image is created by Bootgen. Running on Zynq devices, the FSBL loads the software used by
Zynq devices.

Two distinct load operations are required: loading an image into NVM, and copying partition(s)
from NVM to DDR (or OCM). The SDK Flash Programmer, zynq_flash, or U-Boot load an image
into QSPI.

If SD is used, a BIN image is written to the SD card. This uses a SD card reader/writer which is
connected to the workstation with a USB cable. The SD card goes into the ZC702 Evaluation
Board SDIO slot (J64).Copying the image from the SD card or QSPI is done by FSBL or U-Boot.
In loading NVM, all partitions are typically loaded into flash or SD. Booting Zynq is commonly a
two step process, with the FSBL loading the bitstream file and U-Boot partitions, and U-Boot
loading the remaining partitions. The remaining partitions are usually Linux partitions,
including Linux applications.

While it is common for U-Boot to load Linux and Linux applications, in most of the use cases in
this application note, the FSBL loads U-Boot, Linux, and the Linux applications. U-Boot is still
loaded because it is used for functions other than loading Linux. Using the FSBL to load Linux
partitions allows the user to specify whether each partition is encrypted or authenticated.

If the boot mode pins specify JTAG, the BootROM code enables the JTAG port. XSCT is used to
load and run software. In the JTAG boot mode, the FSBL displays a message that JTAG boot
mode is used. The FSBL does not load partitions when JTAG mode is used. In a non-secure JTAG
boot, either the FSBL or ps7_init initializes boot components.

X-Ref Target - Figure 3

Figure 3: Steps in Developing a Secure System

Generate AES, RSA Keys

Use the Secure Key Driver to Program

Program AES Key

Use Bootgen to Create Image
in MCS or BIN Format

Program QSPI with MCS File

XAPP1175_3_070513

RSA Enable, PPK Hash

or
Program SD with BIN file

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=10

Boot Process

XAPP1175 (v2.2) January 14, 2021 11
www.xilinx.com

BootROM code

The BootROM code does the initial setup at boot. If the boot is a Master Secure or Master
Non-Secure boot, the BootROM code initializes the NVM controller specified by the boot mode
register, parses the boot header, and copies the FSBL to OCM.

Figure 4 shows the BootROM code flow. The BootROM code reads the boot mode register to
determine if a master or slave boot mode is used, and if master, the type of NVM used. The
BootROM code reads the Boot Header to determine whether the boot is non-secure or secure,
and if secure, whether the key source is BBRAM or eFUSE. If there is a key mismatch between the
key source specified in the PL eFUSE array and the key source specified in the boot header, the
BootROM code transitions the Zynq device to a secure lockdown state. If the BootROM code
determines that the device is in an illegal boot mode based on its state, the BootROM code
transitions the Zynq device to a secure lockdown state. An example of an invalid state is a Boot
Header in which the Encryption Status field specifies encryption using BBRAM and the PL eFUSE
array specifies an eFUSE only key source. In a secure boot, the BootROM code executes
proprietary tests to ensure security before it authenticates the FSBL.

In the eXecute In Place (XIP) mode, the CPU runs code directly from NVM rather than DDR. The
XIP mode cannot be used in secure boot.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=11

Boot Process

XAPP1175 (v2.2) January 14, 2021 12
www.xilinx.com

First Stage Boot Loader

The first stage boot loader (FSBL) is loaded into OCM by the BootROM code. The FSBL is closely
aligned with Bootgen in that it reads the partitions in the image created by Bootgen. The
principle function of the FSBL is to copy partitions from NVM to DDR and PL configuration
memory. If the partition is encrypted, the partition is routed to the AES/HMAC engine for
decryption before it is loaded in DDR or other destination address. If the system.bit is in the
image, the FSBL transfers the system.bit into the PL configuration memory. It then transfers
the second stage boot loader (SSBL) or application partition(s) to their destination address,
typically DDR. The FSBL can load multiple ELF files.

A second method of loading partitions is for the FSBL to load u-boot.elf, and U-Boot loads
software partitions.

Prior to loading partitions, the FSBL completes the initialization of the device started by the
BootROM code. The multiplexed input/output (MIO), clocks, and DDR controller are initialized.

X-Ref Target - Figure 4

Figure 4: BootRom Code Flow Diagram

Power Up ||
POR

Clear PS, PL

Initial
Boot

Boot Mode Register

Boot Header

Efuse Array

Key Mismatch ||
Illegal Boot Mode ||
Boot Header Error ||
Boot Flow Error

Master (Unencrypted) Master (Encrypted)

JTAG

Secure
Lockdown

Master
NS Initial

Boot

Master
S Initial

Boot

Security Disable &
CPU Idle

Initialize Clocks, Mem Ctlrs

NS First
Stage Boot

S First
Stage Boot

Move FSBL: NVM->OCM Move FSBL:NVM->OCM
thru AES/HMAC Engine

Initialization, Move Images

Multiboot Error

Multiboot Error

XIP

BH Length = 0

Initialization, Move Images

Boot Flow
Error || XIP

Unlock/Lock
Subsystems &&
pcfg_aes_en=1

S - Secure

NS - Non-secure

XAPP1175_05_061513

Authenticate, Enable Decryption if Specified

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=12

Boot Process

XAPP1175 (v2.2) January 14, 2021 13
www.xilinx.com

The FSBL supports most user's software load requirements. In some cases, users need to edit
the FSBL source code to meet additional load or functional requirements. As an example, the
User Defined Field in the Authentication Certificate can be used for a function such as defining
the software version being loaded. To support this, the FSBL code would require edits which
check that the correct software version is loaded. The FSBL source code is in the src directory
of the zynq_fsbl_0 software project.

Note: The FSBL code most likely to be edited is in main.c and image_mover.c

FSBL hooks provide a framework to plug in user-defined functions. An example use of the FSBL
hooks is to initialize PL cores after a bitstream is downloaded. The FSBL hook functions in
fsbl_hook.c are:

• FsblHookBeforeBitstreamDload: Provides a region for FSBL edits before bitstream
download

• FsblHookAfterBitstreamDload: Provides a region for FSBL edits after bitstream download
• FsblHookBeforeHandoff: Provides a region for FSBL edits before the FSBL hands off to the

SSBL or an application.

The TRD system in zc702_linux_trd provides an example of FSBL edits in initializing an I2C. In
XAPP1078 Simple AMP Running Linux and Bare-Metal System on Both Zynq SoC Processors, the
FSBL searches for additional partitions to load.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=13

Boot Process

XAPP1175 (v2.2) January 14, 2021 14
www.xilinx.com

Figure 5 shows a flow chart of the FSBL.

The FSBL parses the boot image to determine if the image is to be RSA authenticated and/or
AES decrypted. If the partition is AES encrypted, the FSBL routes the partition to the AES/HMAC
engine, and then to its final destination. If the partition is RSA authenticated, the FSBL reads the
authentication certificate (AC) which contains the public key and the signature.

X-Ref Target - Figure 5

Figure 5: FSBL Flow

N

Y

N

Read Partition Header

Authentication Certificate?

RSA Verify Partition

Partition Encrypted?

Route Partition to
AES-HMAC Engine

Last Partition

Initialization

XAPP1175_06_080113

Y

N

Route Partition to
Destination

Handoff Executable
Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=14

AES Encryption and RSA Authentication

XAPP1175 (v2.2) January 14, 2021 15
www.xilinx.com

The FSBL uses the sha256 and rsa2048_ext library functions to authenticate the partition. The
sha256 and rsa2048_ext compiled functions reside in $XILINX_EDK/lib. The FSBL parses the
image in NVM, executing these steps:

• Verify the Secondary Public Key (SPK) using RSA
• Verify the partition using RSA

The RSA functions called in the FSBL code are conditionally executed based on the existence of
partition authentication certificates in the image.

U-Boot

U-Boot is an open source boot loader commonly used in embedded systems. U-Boot performs
similar functions to the FSBL. U-Boot has additional functions, such as reading and writing NVM
and DDR. The zc702_uboot reference system provides a system with U-Boot. U-Boot typically
runs in DDR, not OCM. The wiki.xilinx.com site provides information on configuring and
building U-Boot. In addition to loading Linux from NVM to DDR, U-Boot is used to read DDR,
and to erase, write, and read NVM. The U-Boot erase, read, and write operations on QSPI are an
alternative to the SDK Flash Writer, which runs on a workstation. U-Boot runs on Zynq devices.

U-Boot can run interactively, providing a zynq-uboot prompt, or it can run automatically at
power up. The zynq_common.h file in the include/configs directory contains options
which set U-Boot functionality. After configuration edits, U-Boot must be re-compiled as
described in wiki.xilinx.com. For development, configure U-Boot with a 5 second delay. For
production, particularly for secure boot, re-configure with a 0 delay, and rebuild U-Boot.

AES Encryption and RSA Authentication
Bootgen and FSBL software support AES encryption, HMAC authentication, and RSA
authentication. RSA is effective for authentication. AES is more efficient than public key
cryptography in encryption. Private keys are used in AES encryption and HMAC authentication,
and private/public key pairs are used in RSA authentication. For RSA authentication, Bootgen
signs partitions and the BootROM code and the FSBL verifies partitions.

The private/public key pair used in RSA authentication have significant security advantages
over cryptography which only uses private keys. In RSA, the private key is used at the
manufacturing facility which usually has physical security. The public key is loaded into the
embedded device. If an adversary steals the embedded device and extracts the public key, the
damage is limited. The RSA key pairs can be changed as often as needed. Changing the key
reduces the risk that the key is compromised, and reduces the vulnerability of the IP the key is
protecting.

Zynq devices provide a silicon based AES/HMAC engine which decrypts/authenticates at
100 MB/s. The AES/HMAC engine does not encrypt. AES-256 is used for encryption/decryption
and HMAC is used for private key authentication. AES encryption is done by Bootgen. The AES
and HMAC functions in the AES/HMAC engine cannot be used independently to

Send Feedback

https://www.xilinx.com
https://www.wiki.xilinx.com/
https://www.wiki.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=15

AES Encryption and RSA Authentication

XAPP1175 (v2.2) January 14, 2021 16
www.xilinx.com

decrypt/authenticate partitions. AES is a symmetric cryptographic algorithm which uses a
private 256 bit key. The HMAC key is a 256 bit private key.

The RSA asymmetric cryptographic algorithm in Zynq devices uses a 2,048 bit modular.
Modular is the generally accepted description of the key length. The BootROM code
authenticates the FSBL partition, and the FSBL authenticates the partitions it loads. The
BootROM code and FSBL use the identical RSA algorithm.

Since Bootgen signs partition(s) and the BootROM code and the FSBL verify the partitions,
Bootgen, BootROM code, and FSBL software must agree on the image format. For each partition
authenticated, an authentication certificate (AC) field in the image is used for RSA
authentication.

Figure 6 shows the interaction between Bootgen and the FSBL. Bootgen runs on a workstation,
and the FSBL runs on Zynq devices. For each partition, Bootgen executes the cryptographic
functions in the order shown. Similarly, in loading each partition, the FSBL executes the
cryptographic functions in the order shown.

In Bootgen, the HMAC is generated first, followed by AES encryption, followed by RSA signing.
In Zynq devices, these steps are reversed: the partition is RSA authenticated, AES decrypted,
and then HMAC authenticated. Note that the data, HMAC signature, and HMAC key are all
encrypted (wrapped) by the AES encryption process.

In RSA authentication, the partition is not signed. Instead, a hash of the partition is generated,
using a SHA256 function. The SHA256 hash is a one way function which produces the same size
output, independent of whether the partition size is 1,000 bytes or 1 MB. The hash is signed
using the private key. For each partition which is RSA authenticated, Bootgen writes an
Authentication Certificate (AC) which contains the public keys and the signatures for the
partition.

X-Ref Target - Figure 6

Figure 6: FSBL — Bootgen Interaction

Bootgen

HMAC Sign

AES Encrypt

RSA Sign

Customer’s Workstation ZC702

FSBL

RSA Verify

AES Decrypt

HMAC Verify

XAPP1175_25_050119

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=16

Security in Embedded Devices

XAPP1175 (v2.2) January 14, 2021 17
www.xilinx.com

Security in Embedded Devices
Security should be considered at the beginning of embedded device development, starting
with identifying potential threats. Potential threats to an embedded device are provided in the
following list:

• Theft of the Embedded Device
• Privacy of the data in the Embedded Device or System
• Cloning of the Embedded Device
• Denial of Service
• Insertion of malware to change the behavior of the Embedded Device
• Insider Providing Key to Adversary

Figure 7 is a boot flow in which authentication is used to load partitions in a chain of trust. The
BootROM code loads the FSBL. The FSBL and U-Boot boot loaders load the hardware and
software partitions. The principle objectives in a secure boot are to prevent an adversary from
loading a modified partition, and to keep proprietary partitions confidential.

In Bootgen, users define which partitions are encrypted, and which partitions are authenticated
using a RSA private/public key pair. Authenticating all partitions in a chain of trust ensures that
only partitions which have not been tampered with are loaded.

An important part of embedded device security is key security. An advantage of RSA is that the
private key is not loaded into the device. A second advantage is that different RSA keys can be
specified for each partition, and the RSA key can be changed when partitions are updated.
Changing the key limits the time an adversary has to attack the key, and limits the information
that is vulnerable.

To facilitate key security, Bootgen provides the ability to handle RSA keys securely, limiting
access to an Infosec staff. Since only the Infosec staff has access to keys used in the final
embedded product, this reduces the threat of an insider attack.

Zynq devices also provide security by integrating a large amount of software and hardware IP
within its security perimeter. A combination of build options and software allows the protection
of IP within the security perimeter. Additionally, Zynq devices have a relatively large amount of
secure storage available for sensitive program and data storage. Since this storage is not large
enough to hold the Linux OS, system partitioning of sensitive and non-sensitive functions is
required. Linker script and BIF attributes allow open source code to run from DDR and sensitive

X-Ref Target - Figure 7

Figure 7: Chain of Trust in Secure Boot

FSBL
SSBL OS

Apps
BootROM

Code
Bitstream

U-Boot Linux

XAPP1175_02_050119

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=17

Secure System Development

XAPP1175 (v2.2) January 14, 2021 18
www.xilinx.com

applications to run from on-chip secure storage. The Secure Key Driver section provides a linker
script which locates code from On-Chip Memory (OCM).

Embedded systems are commonly attacked after a secure boot (i.e., during operation). The
loaded software, such as the operating system, should not allow an adversary access to Zynq
hardware or software resources.

In a secure boot, all partitions are loaded in a chain of trust. After the transition from the boot
stage to an operational stage (i.e. when Linux applications have been loaded), the OS must
maintain the system as secure. In a non-secure boot, U-Boot and Linux applications can load
the bitstream. After Linux is loaded, an application can use the devcfg driver to load a bitstream.

Restated, the OS should not allow access to the devcfg driver to non-trusted users/applications.
The most direct method to do this is to keep the module out of the kernel build. Linux has
supervisor/user modes. If the devcfg driver is included in the Linux build, the supervisor needs
to restrict access, requiring passwords for users and limiting the devcfg file permissions to only
the supervisor.

The PS-PL architecture provides the user with the ability to provide redundancy in recovering
from operational failure in either the PS or PL. The PS can monitor the PL for a tamper event
triggered by single event upset (SEU) activity. The PL can monitor the PS using a security
monitor.

In addition to secure boot, embedded device security requirements may include anti-tamper
and information assurance. Xilinx sells a high-end, fully tested security monitor IP which
executes from the PL. Alternatively, a user can develop a security monitor which does not
consume PL logic resources. Using the Zynq-7000 Processing System to Xilinx Analog to Digital
Converter Dedicated Interface to Implement System Monitoring and External Channel
Measurements (XAPP1172) [Ref 5] is recommended as a good start in developing a lite security
monitor.

Anti-tamper (AT) is discussed in Developing Tamper Resistant Designs with Xilinx Virtex Series 6
and 7 FPGAs [Ref 14]. Information assurance (IA) is discussed in Solving Today’s Design Security
Concerns (WP365) [Ref 6].

Secure System Development
The steps in Creating a Project Using the Vivado Design Suite are used to initially test a basic
secure system. Zynq devices have many security options not discussed in this section. Figure 8
shows a typical secure development process which allows users to incrementally learn to use
Zynq device security features. This approach is used because once the eFUSE key and eFUSE
only control bit are programmed, there is no returning to using the BBRAM key if the eFUSE key
is lost. Also, once the RSA Enable eFUSE is programmed, a board cannot be used without at
least FSBL authentication in the master mode.

The process described in this section is not required, and is presented because Zynq devices
provide many security options with RSA and AES/HMAC. After starting with a non-secure
design, a subsequent step is a secure design using a BBRAM AES key. The BBRAM AES key is

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=18

Secure System Development

XAPP1175 (v2.2) January 14, 2021 19
www.xilinx.com

reprogrammable. The next step is to enable RSA authentication. The RSA Enable eFUSE control
bit and the hash of the PPK are programmed into the PS eFUSE area using the Secure Key Driver.
BBRAM can still be used as the source of the key for AES decryption.

The next step is to use the eFUSE key for AES decryption. At this stage, a non-secure boot, RSA
authentication, secure boot with BBRAM AES key, and a secure boot with an eFUSE key are
possible. The board must be powered down to change the AES key source. If the RSA Enable bit
is programmed, the FSBL must be authenticated. An RSA enabled “non-secure” boot differs
from the un-authenticated non-secure boot.

Key Swapping eFUSE and BBRAM keys

Keys can be programmed in either eFUSE or BBRAM NVM. The advantages of BBRAM is that it
can be reprogrammed, and it can be erased if there is a tamper event. The eFUSE array control
bits eFUSE Secure Boot and BBRAM Key Disable prohibit swapping between the eFUSE and
BBRAM key. If these bits are not programmed, either key source can be used after a power
down. If BBRAM Key Disable is programmed but eFUSE Secure Boot is not programmed, a
non-secure boot or a secure boot using the eFUSE key can be done. To use only the eFUSE as
the AES key source, the eFUSE Secure Boot Only bit is programmed in the PL eFUSE control

X-Ref Target - Figure 8

Figure 8: Learning to Use Zynq-7000 SoC Security Options

Non-Secure Design

Secure Boot - BBRAM

Secure Boot - eFUSE

Secure Boot - eFUSE only

Bootgen

Debug Mode -> Release Mode

XAPP1175_24_051613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=19

Booting the TRD Securely

XAPP1175 (v2.2) January 14, 2021 20
www.xilinx.com

array. The PL eFUSEs can be programmed either with iMPACT, HW Manager, or the Secure Key
Driver. The Secure Key Driver section shows how to program this functionality.

The last option in the figure, Bootgen Release mode, is used by the Infosec staff for the
production release of the secure embedded device. In this stage, Bootgen Release mode can be
used to increase the security of the RSA private key. This is discussed in the Advanced Key
Management Options section.

Booting the TRD Securely
The source files for booting the ZC702 Base System TRD quickly are provided in the
zc702_linux_trd reference system. This section provides an example, the Target Reference
Design, which shows that the creation of a secure boot image is straightforward. This section
uses pre-existing keys in the reference design systems. There is a section on Generating Keys
later in this document.

Note: Using the following step, the PS eFUSEs are blown. After this, in all subsequent tests using the
ZC702, at least the FSBL partition must be authenticated.

Use the following steps to boot the TRD securely.

1. Setup the ZC702 board. See the Setup the ZC702 Evaluation Board section. Set the Boot
mode switches to JTAG boot mode.

2. Invoke the Tera Term communication terminal and set Baud Rate = 115200, Data = 8 Bits,
Parity = None, Stop Bit = 1, Flow Control = None.

3. Change to the xapp1175/zc702_secure_key_driver/ready_for_download
directory. This directory contains the ps_secure_key_read.elf and
ps_secure_key_write.elf files. If the eFUSEs are programmed, run the
ps_secure_key_read.elf in step 4. If the eFUSEs need to be programmed, and it is
acceptable to use the Xilinx provided keys for the evaluation board, run the
ps_secure_key_write.elf in step 4.

4. Run xsct at a command prompt or from SDK, and run the following:

connect arm hw

source ps7_init.tcl

ps7_init

then either:

dow ps_secure_key_write.elf (if programming the eFUSEs)

or

dow ps_secure_key_read.elf (if reading the eFUSEs)

con

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=20

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 21
www.xilinx.com

5. Optionally, verify that the hash of the PPK displayed in the communication terminal matches
the values in
xapp1175/zc702_efuse_driver/ready_for_download/hash_ppk.txt.

6. Change to the xapp1175/zc702_linux_trd directory.
7. Run bootgen -image zc702_linux_trd.bif -o zc702_linux_trd.mcs

-encrypt bbram.
8. Invoke SDK. Select the workspace as xapp1175/zc702_linux_trd/SDK.
9. In SDK, enter Xilinx Tools > Program Flash.
10. Specify the image by browsing to

xapp1175/zc702_linux_trd/zc702_linux_trd.mcs.
11. Set the offset to 0x0. Set the flash type to QSPI Single. Click Program.
12. On the ZC702 Evaluation Board, change the boot mode switch to QSPI boot mode by

moving the J25 jumper to 1 (or 4 if the evaluation board uses the single switch).
13. Power cycle. Verify that Zynq boots to the PetaLinux prompt. To login, use root for the user

name and root for the password.
14. To compare non-secure and secure boot time, repeat step 7 to step 13. When re-running

step 7 for a non-secure BIF, eliminate the -encrypt bbram argument, but program QSPI
instead with zc702_linux_trd_ns.mcs.

Building and Booting a Secure System
This section provides the steps to develop a Zynq system using the GUIs provided by the Xilinx
Vivado Design Suite and SDK. The steps for AES key generation and creating non-secure and
secure images are provided. The steps for setting up the ZC702 evaluation board are given. The
zc702_uboot system is booted using JTAG mode. This is followed by non-secure and secure
boots using ZC702 SD and QSPI memory.

The required tasks for a secure boot are:

• Create the Zynq hardware and software using Xilinx software
• Use Bootgen Advanced Tab to generate a secure image
• Use Bootgen to generate the AES key
• Use iMPACT, HW Manager, or the Secure Key Driver to program the AES key to either

BBRAM or eFUSE
• Load the SD Card or Program QSPI flash on ZC702 Evaluation Board

This section provides an introduction to developing a system and using the Bootgen GUI.
Bootgen supports mixed encrypted/unencrypted partitions, user selectable security on
partitions, and RSA authentication when run at the command line.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=21

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 22
www.xilinx.com

Note: The steps in this section only work on a board on which the RSA Enable has not been
programmed. The design files for this section are meant to be created by the reader. The design files in
the zc702_uboot system are for a board in which RSA_Enable has been programmed.

Details on advanced security functionality are provided in later sections. The later sections do
not require the files produced in this section.

Creating a Project Using the Vivado Design Suite
In this section, the Vivado Design Suite is used to create the zynq_example project. The system
includes AXI GPIO and AXI block RAM in the PL.

Note: Depending on the version of the Vivado tools you are using, the figures and filenames might
somewhat differ.
1. Under Search Programs, select Xilinx Design Tools > Vivado <version> > Vivado

<version>. Figure 9 shows the Vivado Design Suite GUI.
X-Ref Target - Figure 9

Figure 9: Vivado Design Suite GUI
X1175_07_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=22

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 23
www.xilinx.com

2. Click Open Example Project (see Figure 10). Click Embedded Design. Click Next. Click
Create a Template Based Vivado Project. Click Next. Provide the name and location of the
project as shown in the figure. Select Base Zynq Design. Click Next. Select Zynq-7 ZC702
Evaluation Board. Click Next. Click Finish.

X-Ref Target - Figure 10

Figure 10: Selecting the ZC702 Evaluation Platform
X1175_08_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=23

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 24
www.xilinx.com

3. Under IP Integrator (or Flow Navigator depending on Vivado version), select Open Block
Design. Click Validate Design. Under Sources, right-click base_zynq_design, and select
Generate Output Products. Under IP Integrator (or Flow Navigator), click Generate
Bitstream (see Figure 11).
Note: It might take several minutes to complete all the steps up to and including bitstream
generation.

X-Ref Target - Figure 11

Figure 11: Zynq Example Board Design Schematic
X1175_09_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=24

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 25
www.xilinx.com

4. Select File > Export - Export Hardware (see Figure 12). Check Include Bitstream. Select
File > Launch SDK - Local to Project >OK (see Figure 13).

X-Ref Target - Figure 12

Figure 12: Exporting Hardware Design to SDK (1 of 2)
X1175_10_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=25

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 26
www.xilinx.com

X-Ref Target - Figure 13

Figure 13: Exporting Hardware Design to SDK (2 of 2)
X1175_60_010415

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=26

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 27
www.xilinx.com

5. Create the FSBL project. Select File > New > Application Projct. The Application Project
dialog box is displayed. Enter fsbl as the project name. Select the Create New Board
Support Package option. Click Next. The New Project Templates dialog box is displayed.
Figure 14 shows the creation of the FSBL project. Select Zynq FSBL and click Finish.

X-Ref Target - Figure 14

Figure 14: Creating the First Stage Boot Loader (FSBL) Software Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=27

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 28
www.xilinx.com

6. Right-click on the FSBL in the Project Explorer pane and select Properties. As shown
in Figure 15, edit FSBL compilation options so that debug information is displayed in the
SDK or communication terminal window. With the Debug options used in compilation, FSBL
provides useful information on the partitions in the image. If the SD or QSPI boot modes are
used, the debug information is useful. If JTAG boot mode is used the FSBL does not copy
partitions, and therefore information is not provided.

To view details of the boot process in a FSBL debug file and enable RSA authentication
functionality, select C/C++ Build > Settings > ARM gcc compiler > Symbols and compile
using DEBUG, FSBL_DEBUG_GENERAL, FSBL_DEBUG_INFO, and RSA_SUPPORT symbols. In
the Defined Symbols pane, click the “+” icon to iteratively select the symbols. The figure
shows the entry of FSBL_DEBUG_INFO in the Enter Value dialog box. Perform this step four
times, once for each symbol.

Click Apply, then click OK. The FSBL software project is compiled. The ELF (fsbl.elf) is in
the fsbl/Debug directory.

X-Ref Target - Figure 15

Figure 15: Using Symbol Compile Options for the FSBL Software Application
X1175_13_120414

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=28

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 29
www.xilinx.com

7. In SDK, select Xilinx Tools > Create Zynq Boot Image to invoke Bootgen. Figure 16 shows
the invocation of the Bootgen GUI.

8. Use the Basic tab in the Create Zynq Boot Image dialog box to specify the directory and
name of the BIF file. Use the Browse button to select the fsbl.elf file from the
fsbl/Debug directory, where fsbl was specified as the project name. Add system.bit to
the list of partitions. If used, the bitstream partition must follow the FSBL partition. Add
u-boot.elf to the list of partitions. Click Create Image to generate the BIF and
non-secure BIN and MCS files (see Figure 17). The file is the input file into Bootgen that lists
the partitions to include in the image. The MCS formatted image is used in QSPI boot mode.
The BIN formatted image is used in SD boot mode. Create a directory that will contain the
resultant image file within the project area. Use the Browse button to select the new
directory as the Output folder.

X-Ref Target - Figure 16

Figure 16: Invoking Bootgen
X1175_14_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=29

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 30
www.xilinx.com

9. When encryption is selected, SDK Bootgen GUI generates a secure image in which all
partitions in the image are encrypted. The AES/HMAC engine requires a 256-bit AES key and
a 256-bit HMAC key. The AES key can be generated using the Xilinx Bootgen tool or an
external tool. To generate a development AES key using the Xilinx Bootgen software, create
a generate_aeskey.bif file with the following content:
generate_aeskey_image:
{
[aeskeyfile] bbram.nky
[bootloader, encryption=aes] fsbl.elf
}

Use the following Bootgen command to generate an AES key:

bootgen -image generate_aeskey.bif -o temp.mcs -encrypt bbram

If the specified AES key does not exist, Bootgen generates the key with the name in the
generate_aeskey.bif file (bbram.nky in this case).

10. To create a secure image, specify partitions in the Basic tab in the Create Zynq Boot Image
dialog box using the same method used for the non-secure image. Create an output
directory for the secure image. Specify this directory in the Output folder. Click on the
Advanced tab in the Create Zynq Boot Image dialog box, click Enable encryption, and
browse to the key generated in step 9. Click Create Image to create the secure boot image
(see Figure 18). Bootgen writes the image in either MCS or BIN format.

X-Ref Target - Figure 17

Figure 17: Creating a Non-secure BIF Using the Bootgen GUI
X1175_15_120414

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=30

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 31
www.xilinx.com

Setup the ZC702 Evaluation Board
1. Connect the power cable to the 12V J60 Connector.
2. Connect the USB cable from the workstation to the USB UART J17 Connector.
3. Connect the Platform USB Cable II to JTAG Connector J2.

Table 1 provides the function of mode select switch on the ZC702. Some ZC702 boards use
SW16, and some ZC702 boards use the J25, J22, and J20 jumpers.

After the board is setup, use the following steps to program the AES key, load the boot image,
and boot an encrypted image.

X-Ref Target - Figure 18

Figure 18: Creating an Encrypted Image

Table 1: ZC702 Boot Mode Selection
MIO[5] - J25 MIO[4] - J22 MIO[3] - J20

JTAG 0 0 0

NOR 0 0 1

NAND 0 1 0

Quad-SPI 1 0 0

Secure Digital 1 1 0

XAPP1175_18_120414

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=31

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 32
www.xilinx.com

1. Open the Hardware Manager in Vivado (see Figure 19).
X-Ref Target - Figure 19

Figure 19: Opening the Hardware Manager in Vivado
X1175_17_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=32

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 33
www.xilinx.com

2. Use the Vivado Hardware Manager to program the BBRAM key (see Figure 20). Right-click
xc7z020 and click Program. Select Cancel when the Device Programming Properties is
displayed. The Hardware Manager can also program the eFUSE key. If eFUSE and BBRAM
keys are programmed, the Bootgen -encrypt efuse | bbram argument specifies which key is
used. Bootgen writes the key source to the Boot Header region of the image. At power up,
the BootROM code reads the Boot Header to determine which key source to use. The eFUSE
control register is also programmed with the Hardware Manager.

X-Ref Target - Figure 20

Figure 20: Using Vivado Hardware Manager to Program the BBRAM Key
X1175_18_040115

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=33

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 34
www.xilinx.com

3. Invoke SDK by running xsdk & at the Linux prompt, or Xilinx Design Tools > SDK
<version> > Xilinx SDK <version> from the Program Start Menu. Set the workspace at
zc702_uboot/SDK. Click the Terminal tab to setup a terminal window. Figure 21 shows how
to set up the SDK communication terminal to use a 115200 baud rate. Alternatively,
minicom, Tera Term, or Hyperterminal can be used as the communication terminal.

X-Ref Target - Figure 21

Figure 21: SDK Communication Terminal
X1175_20_120414

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=34

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 35
www.xilinx.com

4. From SDK, click Xilinx Tools > Program Flash. Optionally, click Verify after Flash, and
Click Program. Figure 22 shows programming the NVM QSPI flash memory.

To program QSPI at the command prompt, enter the following XSCT command (either from
within the GUI or in command line mode):

zynq_flash -f u-boot.mcs -offset 0x0

Note: This assumes the u-boot.mcs is in the current directory. Use the full path if it is in a different
directory.

X-Ref Target - Figure 22

Figure 22: Programming QSPI NVM

x1175_21_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=35

Building and Booting a Secure System

XAPP1175 (v2.2) January 14, 2021 36
www.xilinx.com

5. Set the J20/22/25 switches to select the QSPI boot mode. Power cycle the board. Figure 23
shows the communication terminal output with the U-Boot prompt.

6. To boot using the SD card, copy the <design>.bin created by Bootgen to BOOT.bin.
Connect a SD/MMC Card Reader/Writer to a workstation using a USB cable. Copy
BOOT.BIN to the SD card. Insert the card into the SD MMC slot. Set the Boot Mode settings
to SD (011). Power cycle. Verify that the same output is displayed in the communication
terminal as when QSPI boot mode is used.

Debugging QSPI Boot Failure

If there is a functional failure after booting from QSPI mode, verify that the function works as
expected after the partitions are loaded using JTAG boot mode. Enter the following XSCT
commands:

fpga -debugdevice devicenr 2 -f system.bit
connect arm hw
rst -processor
source ps7_init.tcl
ps7_init
ps7_post_config
dow u-boot.elf
con
exit

Note: If the files are not in the current directory, use full paths to the files.

X-Ref Target - Figure 23

Figure 23: Communication Terminal Output after Running U-Boot Application

x1175_22_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=36

Secure Boot Image Considerations

XAPP1175 (v2.2) January 14, 2021 37
www.xilinx.com

Failure to boot is usually due to incorrect setup of the clocks or memory controllers. The clock
frequencies may change across releases of different versions of silicon and software.

If the JTAG boot works, the next step to debug the QSPI failure is to create a version of the FSBL
which provides debug information. This is defined in the Creating a Project Using the Vivado
Design Suite section. Create the new FSBL, and see the steps to include the debug FSBL in the
BIF. Re-run the QSPI boot, and read the FSBL debug log file to locate the boot error.

Secure Boot Image Considerations
The system architect has two considerations in creating a secure boot image. One is to specify
which partitions are encrypted and which partitions are authenticated. The other is to architect
the system so that sensitive programs and sensitive data are located in secure storage, within
the security perimeter of Zynq.

A typical software image consists of relatively large open source U-Boot and Linux partitions,
and proprietary partitions which contain software and PL IP. In most cases, only the proprietary
or sensitive partitions are encrypted. When large partitions are unencrypted, the key is exposed
less. Conventionally, open source software such as U-Boot and Linux should be authenticated to
ensure that the partitions are not modified, but not encrypted. Encryption is not a factor in
booting with a chain of trust. Encryption ensures that the partition is not readable and is
confidential. The Bootgen Image Format (BIF) file is a Bootgen input file used to specify
encryption/authentication on a partition basis.

When decryption is used, the AES/HMAC engine runs at a lower clock frequency than other
circuitry. This means that boot time can be slower than when encryption is used. The option to
leave open source partitions unencrypted may decrease boot time. In tests of QSPI on the
ZC702 board, the boot time for non-secure and secure boot are the same. The boot time can
differ for different NVM configurations and speed grades.

The first step in creating a secure system is to write the BIF file. Appendix B defines the security
requirements for sample embedded systems. The use cases provided are secure U-Boot, Linux,
and multiboot systems. Use cases are also provided for data partitions. The BIFs for the use
cases in Appendix B are given in Appendix C. The use cases are for boot at power-up, so the use
cases include the FSBL partition. Bootgen does not require the FSBL partition to be included in
the BIF. Bootgen can AES encrypt and RSA authenticate a single software or data partition. This
supports a post-boot load operation without the use of the FSBL.

The Zynq device's secure storage and security perimeter are useful in maintaining security after
handoff to Linux applications. The PL partition, which is encrypted in NVM, is decrypted and
stored in the PL configuration memory. The PS partitions can be encrypted in NVM and
decrypted by the AES/HMAC engine. The software in DDR is usually unencrypted, outside of the
Zynq security perimeter.

To protect sensitive software and data, the destination address needs to be within the Zynq
device's security perimeter, typically OCM or AXI block RAM. The Building and Booting a Secure
System section shows how to use AXI block RAM with the Arm CPUs. The eFUSE Driver section
shows how to locate code/data in OCM. Since the amount of secure storage is limited, this

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=37

Secure Boot Image Considerations

XAPP1175 (v2.2) January 14, 2021 38
www.xilinx.com

requires architecting the software memory map. Open source code can be stored in plain text
in DDR. Sensitive software should be stored in secure storage. If the code in a software partition
does not need to be protected but the data is sensitive, the sensitive data can be loaded into
OCM using the linker script.

Bootgen can load data only partitions. If only the data is sensitive, data partitions are an
effective use of secure storage. Bootgen allows the data partitions to be encrypted and/or
authenticated.

In addition to authenticating software and the bitstream, RSA authentication and AES
encryption can be used on software updates, and partial bitstreams.

Bootgen
Bootgen is workstation-based software which generates the image loaded into NVM. The BIF
file lists the partitions and specifies authentication/encryption requirements for each partition.
Bootgen outputs a single image file in binary or MCS format. Attributes in the BIF file are used
to specify load addresses on a partition basis, and whether a partition is encrypted and/or
authenticated.

Bootgen operates in a Debug mode or a Release mode. Debug mode is easier to use, and meets
many users’ security requirements. Release mode provides improved security for RSA keys.
Debug mode is easier to use because RSA signatures for the partitions do not need to be
provided. In Debug mode, the user provides private RSA keys in the BIF, and Bootgen generates
the hashes and signatures. Bootgen Release mode uses public keys and signatures in the BIF.

Bootgen is available in SDK and as a standalone tool.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=38

Secure Boot Image Considerations

XAPP1175 (v2.2) January 14, 2021 39
www.xilinx.com

Figure 24 shows the Bootgen flow.

To use Bootgen, create a Bootgen Image File (BIF) such as bootimage.bif, and run Bootgen
at the command line as follows:

bootgen -image bootimage.bif -o <design>.mcs -encrypt bbram

If the -encrypt <efuse | bbram> argument is used and an AES key file is not included,
Bootgen generates an AES (design.nky) key file with the prefix name of the [aeskeyfile]
attribute argument. This key filename must be used as the argument to the
[aeskeyfile=<design>.nky] attribute in the BIF file.

The following BIF is an example of a Linux image in which all partitions are authenticated, and
the FSBL, the Linux application, and the bit file are all encrypted:

image: {
[aeskeyfile] bbram.nky
[pskfile] psk.pem
[sskfile] ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
[authentication=rsa,load=0x3000000,offset=0x100000] uImage.bin
[authentication=rsa,load=0x2A00000,offset=0x600000] devicetree.dtb
[authentication=rsa,load=0x2000000,offset=0x620000] uramdisk.image.gz
[authentication=rsa, encryption=aes] sobel_cmd.elf
}

X-Ref Target - Figure 24

Figure 24: Bootgen Flow Diagram

Read Partition Attributes

Encrypted Partition

Encrypt Partition

Authenticated Partition

Read Keys

Generate Signatures
Generate Authentication

Certificate

Concatenate Partition,

Authentication Certificate

Last Partition

Generate BIN, MCS files

Y

N

N

Y

N

BIF

Y

XAPP1175_26_080113

Partitions

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=39

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 40
www.xilinx.com

In this BIF, the pskfile attribute is for the primary secret key (psk.pem), and the sskfile
attribute is for the secondary secret key (ssk.pem). The [aeskeyfile] attribute specifies the AES
key. All partitions are authenticated. The fsbl.elf, system.bit, and sobel_cmd.elf
are encrypted. The load attribute causes the FSBL to copy the partition to the specified address.

Using these attributes, the FSBL copies the partition from the [offset] address in NVM to the
[load] address in DDR. When these attributes are used in the FSBL, U-Boot must be configured
and built such that U-Boot does not load the partitions. To define this U-Boot configuration,
edit:

u-boot-xlnx/include/configs/zynq_common.h

as follows:

Remove the sf read operations under the following line.

#define CONFIG_EXTRA_ENV_SETTINGS
qspi=echo Copying Linux from QSPI flash to RAM

Do not change the following command:

bootm 0x3000000 0x2000000 0x2A00000

When this BIF is used, the image is too large for the QSPI on the ZC702 board. One option is to
remove the system.bit partition or boot from an SD card.

Generating and Programming Keys
This section discusses the keys used, key format, key generation, and how keys are used by
Bootgen and the FSBL code. The zc702_secure_key_driver system programs keys and control
information. The use of Vivado HW Manager to program PL keys and control information was
shown in the Building and Booting a Secure System section.

The cryptographic keys used by Zynq are:

• AES 256-bit key
• HMAC key
• RSA Primary Secret Key (PSK)
• RSA Primary Public Key (PPK)
• RSA Secondary Secret Key (SSK)
• RSA Secondary Public Key (SPK)

As noted, RSA authentication in Zynq uses primary and secondary keys. The primary keys
authenticate the secondary keys. The secondary key(s) authenticate partition(s). In Bootgen
Debug mode, the user only provides private keys in the BIF.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=40

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 41
www.xilinx.com

Generating Keys
A developer’s key for AES/HMAC engine is generated using Bootgen. The AES key is
programmed into either eFUSE or BBRAM using Vivado HW Manager or the Secure Key Driver.

OpenSSL is used to generate RSA keys in this application note. There are other methods of
generating RSA keys. The primary and secondary secret RSA keys are generated using the
following OpenSSL command:

openssl genrsa -out psk.pem 2048
openssl genrsa -out ssk.pem 2048

Note: OpenSSL is in Linux distributions. Windows users can use Cygwin openssl or download OpenSSL
from the Win32/Win64 OpenSSL Installation Project.

The format of these Privacy Enhanced Mail (PEM) key files is a Base64 encoding of a binary DER
file. These files can be recognized by their first line, which is “-----BEGIN RSA PRIVATE KEY-----”.
In RSA, the public key is contained in the private key. The openssl command to extract the
public key from the private key is:

openssl rsa -pubout -in psk.pem -out ppk.pub
openssl rsa -pubout -in ssk.pem -out spk.pub

In the naming convention for these files, PEM files are private (secret) and PUB files are public.
Both files are PEM format, but the extensions are different.

Note: There is nothing that enforces this convention, and the file extensions are ignored by Bootgen.

The PEM and PUB files can be used directly with Bootgen. Other tools may require these files to
be converted to a simple text format that displays the N, E, and D coefficients directly. This can
be performed with the convert_key.pl Perl script (in the zc702_secure_key directory of
the supplied example files), which uses OpenSSL to extract the coefficients.

convert_key.pl psk.pem psk.pem
convert_key.pl ssk.pem ssk.pem

Note: It might be necessary to precede convert_key.pl with xilperl, Active State Perl, or
/usr/local/bin/perl.

The.pem files contain N, E, D, P, and Q fields. The *.pem files can also be used with Bootgen,
instead of the PEM/PUB files. Bootgen automatically determines the format of the key file.

The AES key can be stored in a *.nky file, and referenced in the BIF using the [aeskeyfile]
attribute. While storing a key in a file is usually necessary, it increases the exposure of the key.
To avoid using a file containing a private key, specify the AES and HMAC keys on the command
line as:

bootgen -image zc702_u-boot.bif -o zc702_u-boot.mcs -w on -encrypt efuse key=<aeskey>
StartCBC=<initialization_vector> hmac=<hmac_key>

eFUSE / BBRAM in Zynq Security

For RSA authentication, the hash of the PPK is stored in the PS eFUSE array. For AES decryption,
the key is stored in either the eFUSE or BBRAM in the PL. The PL eFUSE control bits for eFUSE

Send Feedback

https://www.xilinx.com
http://slproweb.com/products/Win32OpenSSL.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=41

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 42
www.xilinx.com

Secure Boot, BBRAM Key Disable, and JTAG Chain Disable are programmed using Vivado HW
Manager or the Secure Key Driver. The eFUSEs are OTP. A power on reset (POR) is required after
programming the eFUSEs.

Secure Key Driver
The Secure Key Driver programs the eFUSEs in the PS and the PL.

To compile and run the driver to program eFUSEs, the following tasks may be required.

• Generate the AES key
• Generate the hash of the PPK
• Edit the xilskey_input.h with the generated AES and hash (PPK) values
• Define XSK_EFUSEPS_DRIVER and XSK_EFUSEPL_DRIVER in xilskey_input.h as required
• Use SDK to build the Secure Key Driver software project
• Run the Secure Key Driver using XSCT or load the driver in NVM and power cycle

The Secure Key Driver can program the PS and/or PL eFUSEs. To program the PL eFUSEs, four
MIO outputs must be routed out of the MIO outputs into the JTAG pins. These are external
connections which must be made on the printed circuit board. Table 2 provides a sample pinout
which matches the connections used in the driver for the ZC702 board. If other MIO pins are
used, change the locations specified in the XilSkey driver.

For development, it is usually simpler to use iMPACT or Vivado Hardware Manager to program
the AES key.

Generate Hash of PPK

After generating the RSA keys using openssl, use Bootgen to generate the hash of the PPK.

Create a gen_hash_ppk.bif file with the following content:

gen_hash_ppk:
{
[pskfile] psk.pem
[sskfile] ssk.pem
[bootloader, authentication=rsa] fsbl.elf
}

Table 2: eFuse Connections
MIO JTAG

17 TDI

21 TDO

19 TCK

20 TMS

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=42

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 43
www.xilinx.com

Run

bootgen -image gen_hash_ppk.bif -efuseppkbits hash_ppk.txt

This Bootgen command produces the hask_ppk.txt file, which contains the hash of the PPK.
Using eFUSEs for the hash of the PPK is an efficient use of silicon.

Generate the ELF for the Secure Key Driver

To use SDK to create a Secure Key Driver application, change to the zc702_secure_key_driver
directory. The functionality of the Secure Key Driver is controlled by editing the
xilskey_efuse_example.c and xilskey_input.h files. If the PL eFUSEs are not
programmed with the driver, comment the

#define XSK_EFUSEPL_DRIVER

line. To only read the PS eFUSE, comment the write function in xilskey_efuse_example.c.

The xilskey_input.h file can be edited to program PS eFUSEs, PL eFUSEs, or both. Edit
xilskey_input.h using the following steps:

1. If used, define the XSK_EFUSEPS_DRIVER and XSK_EFUSEPL_DRIVER.
2. Copy the PPK hash from hash_ppk.txt to XSK_EFUSEPS_RSA_KEY_HASH_VALUE.
3. Set XSK_EFUSEPS_ENABLE_RSA_KEY_HASH to TRUE to program RSA PPK hash.
4. Set XSK_EFUSEPS_ENABLE_RSA_AUTH to TRUE to enable RSA authentication.
5. If programming the PL, copy the AES key to XSK_EFUSEPL_AES_KEY.
6. Set XSK_EFUSEPL_PROGRAM_AES_AND_USER_LOW_KEY to TRUE to program the AES key.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=43

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 44
www.xilinx.com

Compile the zc702_Secure Key Driver. Run xsdk & and change to the zc702_secure_key_driver
SDK workspace (see Figure 25).
X-Ref Target - Figure 25

Figure 25: Create zc702_secure_key_driver SDK Workspace

x1175_29_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=44

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 45
www.xilinx.com

Click File > New > Application Project and define an application project as
secure_key_driver (see Figure 26). Click Next.
X-Ref Target - Figure 26

Figure 26: Define secure_key_driver Application Project

x1175_30_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=45

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 46
www.xilinx.com

Select Empty Application (see Figure 27), and when the dialog box is displayed, name the
project secure_key_driver. Click Finish.

Note: It might be necessary to close a Welcome screen which hides the SDK display.
X-Ref Target - Figure 27

Figure 27: Create Empty Application
X1175_31_052313

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=46

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 47
www.xilinx.com

Right-click secure_key_driver_bsp Board Support Package (see Figure 28), and click Board
Support Package Settings.
X-Ref Target - Figure 28

Figure 28: Specifying BSP Settings

x1175_32_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=47

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 48
www.xilinx.com

Select the xilskey library (see Figure 29) and Click OK to rebuild the BSP.
X-Ref Target - Figure 29

Figure 29: Selecting the Secure Key Library

x1175_33_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=48

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 49
www.xilinx.com

Figure 30 shows the compiled xilskey library.

With efuse_driver selected, enter File > Import > General File System, click Next, and browse
to the src directory containing and import xilskey_efuse_example.c and

X-Ref Target - Figure 30

Figure 30: Compiled xilskey Library

x1175_34_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=49

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 50
www.xilinx.com

xilskey_input.h. Select the two files and click Finish. Select the secure_key_driver project,
and run Project > Build Project. Figure 31 shows a compiled efuse_driver software project.
X-Ref Target - Figure 31

Figure 31: Compiled Secure Key Driver

x1175_35_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=50

Generating and Programming Keys

XAPP1175 (v2.2) January 14, 2021 51
www.xilinx.com

To run the Secure Key Driver from OCM rather than DDR, edit the linker script lscript.ld as
shown in Figure 32. The linker script in SDK is opened by selecting
efuse_driver/src/lscript.ld in Project Explorer, right-clicking lscript.ld, and
selecting Open.

Change the location of the sections to ps7_ram_0_S_AXI_BASE_ADDR.

Add the ps7_init.c and ps7_init.h files from the hw_platform directory to the source
files. Uncomment the ps7_init() call in the ps7_init.c source file. Rebuild the efuse_driver
software application.

By default xapp1175\zc702_secure_key_driver\src* *xilskey_efuse_example.c has commented out the
write eFUSE code at line numbers 206 to 211. This project generates the secure_key_driver.elf which is
used for reading the eFUSE from the device. Rename this secure_key_driver.elf file to ps_efuse_read.elf.

Remove the comment from lines 206 to 211, re-compile the project, and rename it to
ps_efuse_write.elf.

Run the Secure Key Driver

The eFUSE driver can be run using any boot mode. The simplest is to use XSCT in the JTAG boot
mode. The xapp1175/zc702_secure_key_driver/ready_for_download directory

X-Ref Target - Figure 32

Figure 32: Loading the Secure Key Driver in OCM

x1175_36_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=51

Advanced Key Management Options

XAPP1175 (v2.2) January 14, 2021 52
www.xilinx.com

contains the ps_secure_key_write.elf and ps_secure_key_read.elf files. If the PS
eFUSES have been programmed, use ps_secure_key_read.elf.

Run the Secure Key Driver in XSCT to write eFUSEs using the following steps:

connect arm hw
source ps7_init.tcl
ps7_init
stop
dow ps_secure_key_write.elf (if writing)
dow ps_secure_key_read.elf (if reading)
con
stop

The output of the eFUSE driver can be viewed in a communication terminal such as Tera Term or
the SDK terminal. Creating a communication terminal is shown in the Booting the TRD Securely
section. An alternative to running the Secure Key Driver in XSCT is to load it into QSPI or SD. To
do this, create a BIF containing the FSBL and Secure Key Driver.

secure_key_driver:
{
[bootloader] fsbl.elf
ps_secure_key_write.elf
}

The FSBL is not included in the BIF when the Secure Key Driver is executed from OCM. The FSBL
is included in the BIF when the driver is executed from DDR. When executed from OCM, the
base address of the OCM must be used.

Use Bootgen to create a MCS or BIN file. For additional information, see XilSkey Library
(UG1191), located in the OS and Libraries Document Collection (UG643) [Ref 7].

If using QSPI, run SDK > Program Flash to program the QSPI. If using the SD card, load
BOOT.bin on the SD card and insert the card into the ZC702 card slot (J64 SDIO). Set the boot
mode pins to SD and power cycle.

Additional information is on the secure key driver is available in OS and Libraries Document
Collection (UG643) [Ref 7].

Advanced Key Management Options
The Bootgen Release mode increases key handling security since the BIF attributes use public
rather than private RSA keys. In some organizations, an Infosec staff is responsible for the
production release of a secure embedded product. The Infosec staff's key handling
responsibilities differ from those in the product development organization. The Infosec staff
may use a Hardware Security Module (HSM) for digital signatures and a separate secure server
for encryption. The HSM and secure server typically reside in a secure area. The HSM is a secure
key/signature generation device which generates private and public keys, signs partitions using
the private key, and provides the public part of the RSA key to Bootgen. The private keys do not
leave the HSM. The BIF for Bootgen Release mode uses public keys and signatures generated by
the HSM. The public keys associated with the private keys are ppk.pem and spk.pem.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=52

Advanced Key Management Options

XAPP1175 (v2.2) January 14, 2021 53
www.xilinx.com

The HSM accepts hash values of partitions generated by Bootgen and returns a signature block
based on the hash and the secret key. To emulate a HSM, the xil_rsa_sign software is provided
in the xapp1175/xc702_secure_key/xil_rsa_sign_src directory, with instructions on
compiling the executable with a make file. Analogous to the HSM, xil_rsa_sign signs the hashes
provided by Bootgen. To build the xil_rsa_sign executable, change to the xil_sign_rsa_src
directory, copy makefile_linux(makefile_xp) to Makefile, and run:

make xil_rsa_sign

Note: If make fails when Windows is used, edit the source of the GCC in makefile_xp. There are many
embedded processor specific gcc.exe in $XILINX_SDK. Do not use these gcc.exe executables. Change
the GCC to a full path as c:/cygwin/bin/gcc.exe or
$XILINX/gnu/MinGW/5.0.0/nt/bin/gcc.exe.

To use xil_rsa_sign, add <path>/xapp1175/zc702_secure_key/xil_rsa_sign_src to $PATH.

Figure 33 shows the flow for Bootgen Release mode. The stages labeled "xil_rsa_sign" can be
performed either by the HSM (Standard mode) or by xil_rsa_sign.
X-Ref Target - Figure 33

Figure 33: Bootgen Release Mode Flow

bootimage_spk.bif

spk.pk1.sha256

spk.pk1.sha256.sig

bootimage_partitions.bif

fsbl.elf.sha256
uboot.elf.sha256
system.bit.sha256

fsbl.elf.sha256.sig
uboot.elf.sha256.sig
system.bit.sha256.sig

bootimage_presign.bif

<design>.mcs|bin

bootgen -generate_hashes

Bootgen

xil_rsa_sign -gensig

XAPP1175_28_060613

xil_rsa_sign -gensig

bootgen -generate_hashes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=53

Advanced Key Management Options

XAPP1175 (v2.2) January 14, 2021 54
www.xilinx.com

In this section, Bootgen is run using the Debug mode and the Release mode. The output image
files, zc702_uboot_dm.mcs and zc702_uboot_rm.mcs, are shown to be identical. To run
Bootgen in Debug and Release modes, change to the xapp1175/zc702_secure_key directory.

Bootgen Debug Mode Step

Run Bootgen as follows:

bootgen -image bootimage_dm.bif -o zc702_uboot_dm.mcs -encrypt efuse

In which bootimage_dm.bif is:

bootimage_dm:
{
[aeskeyfile] efuse.nky
[pskfile] psk.pem
[sskfile] ssk.pem
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
}

Bootgen Release Mode Steps

The xapp1175/zc702_secure_key directory provides an example
(release_mode_OPENSSL_HSM.bat) of running Bootgen in Release mode. See Bootgen User
Guide (UG1283), Chapter 5: Boot Time Security - Using HSM Mode section [Ref 4]. A description
of what each step does follows. You can open release_mode_OPENSSL_HSM.bat to see the
exact commands.

The steps in generating the keys and signatures using the Release mode are:

1. Key management (Stage 1)
a. Initial image creation with Bootgen

2. Key management (Stage 2)
a. Generate SPK hash with Bootgen
b. Swap the bytes in SPK hash with gcc compiler
c. Generate SPK signature with openssl
d. Swap the bytes in SPK signature with gcc compiler
e. Generate the partition hash with Bootgen
f. Swap the bytes in partition hashes with gcc compiler
g. Generate partition signatures with openssl
h. Swap the bytes in partition signatures with gcc compiler
i. Generate final bootable image with Bootgen

3. Key management (Stage 3)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=54

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 55
www.xilinx.com

a. Generate SPK hash with Bootgen
b. Generate SPK signature with xil_rsa_sign
c. Generate partition hash with Bootgen
d. Generate partition signatures with xil_rsa_sign
e. Generate final bootable image with Bootgen

The default is to create zc702_*.bin files. To create MCS files, change bin to mcs in the
Makefile.

Secure Embedded Systems Applications
This section provides applications which use the security features in Zynq. A number of
multiboot examples are provided that combine security and high reliability. The GDB debugger
is used to analyze the RSA authentication and the multiboot flow using the ps_autherr
multiboot reference design. Two methods of testing Linux boot time using QSPI are described.
The use of Bootgen to create a user-defined field in the authentication certificate is provided.
The zc702_data reference system shows how to load a data file into the Zynq device’s secure
storage. The use of hierarchical control of the JTAG debug port for different security
requirements is discussed.

Multiboot
Multiboot is used to ensure that the device boots a golden image in the event of a failure to
boot the original update boot image. Examples of multiboot are given in the zc702_multiboot
reference system. Alternative multiboot implementations are possible. In this implementation,
the update and golden image are identical, with the intent that the golden image is a backup if
there is a problem loading the update image. The term fallback is sometimes used for this
functionality. For encrypted images, both must use the same key source (BBRAM or eFUSE).
There are limitations when the AES key is in eFUSE since an SRST doesn't reload the AES key
from eFUSE. See details in Zynq-7000 SoC Software Developers Guide (UG821) [Ref 2].

A different multiboot requirement provides a software update. If the software update image
fails to load, the FSBL loads the original image. For device security, it is critical that the device
boot to a known working state. The multiboot methodology provided can be used for either of
these multiboot requirements.

The multiboot systems are intended to show how to create testable multiboot systems. To be
testable, an intentional failure must be introduced into the system. For the zc702_multiboot
systems, Figure 34 shows the layout of QSPI for multiboot using three images. The first image
is the FSBL image, located at 0x0. The second image is the update image, located at 0x400000.
The third image is the golden image, located at 0xA00000. All images use identical FSBLs. The
start addresses of the second and third images can be changed based on the image size.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=55

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 56
www.xilinx.com

The BIFs for the creating the three images are the bootimage_fsbl.bif,
bootimage_update.bif, and bootimage_golden.bif files. Create MCS files for the three
images using the following Bootgen commands:

bootgen -image bootimage_fsbl.bif -o fsbl.mcs -encrypt efuse
bootgen -image bootimage_update.bif -o update.mcs -encrypt efuse
bootgen -image bootimage_golden.bif -o golden.mcs -encrypt efuse

Note: In the xapp1175/zc702_multiboot directory, there are five multiboot systems. This section
provides generic instructions to any of the examples. Change to the multiboot system directory of
interest (e.g., ps_autherr) and follow the steps listed in this section.

For the zc702_multiboot examples, the update image is intentionally corrupted. Note that the
image output of Bootgen is corrupted, not the partition input into Bootgen. In multiboot, the
corrupted image is detected in the boot process, followed by a load of the uncorrupted golden
image.

As an example, in the xapp1175/zc702_multiboot/ps_autherr system, the intent is to
induce a RSA error in the software (PS). After creating update.mcs as shown previously in this
section, use

cp update.mcs update.mcs$

so that an original version is kept. The diff instruction can be used to verify that the corruption
was done. The corruption to induce an RSA authentication error is done in line 15900 of
update.mcs. The update.mcs$ is the original update MCS file, which in this case is the same
as the golden MCS image.

X-Ref Target - Figure 34

Figure 34: zc702_multiboot Flash Layout

XAPP1175_56_080213

FSBL

FSBL

system_corrupt.bit

u-boot.elf

FSBL

u-boot.elf

system.bit

0x0

0x400000

0xA00000

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=56

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 57
www.xilinx.com

Figure 35 shows the use of the SDK > Program Flash to write the FSBL image to QSPI location
0x0. Repeat this process, programming update.mcs to location 0x400000, and golden.mcs
to location 0xA00000.

A second method to load the three images for the zc702_multiboot examples is to use U-Boot.
Use the following steps to use U-Boot to load the images.

1. Create the images with the BIN output format using the following Bootgen commands:
bootgen -image bootimage_fsbl.bif -o fsbl.bin -encrypt efuse

bootgen -image bootimage_update.bif -o update.bin -encrypt efuse

bootgen -image bootimage_golden.bif -o golden.bin -encrypt efuse

2. Corrupt update.bin as follows:
cp update.bin update.bin$

Use a hex editor (such as gvim or hd) as in the following example:

gvim update.bin

The bitstream starts at 0x194C0.

Change a character in a line such as line 19570.

Save the update.bin file.

X-Ref Target - Figure 35

Figure 35: Programming FSBL Image

x1175_41_080913

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=57

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 58
www.xilinx.com

3. Verify the change with:
diff update.bin update.bin$

4. In the zc702_multiboot/ready_for_download directory, the BOOT.bin file includes
the FSBL and U-Boot partitions. When this BOOT.bin is booted from the SD card, U-Boot is
run on Zynq. Copy BOOT.bin, fsbl.bin, update.bin and golden.bin to the SD card.
Set the Boot Mode to SD. Open a communication terminal and power cycle.

Enter the commands in step 5 to step 12 at the U-Boot prompt.

5. mmcinfo

6. fatload mmc 0 0x100000 fsbl.bin

7. sf probe 0 0 0

8. sf write 0x100000 0 0x20000

9. fatload mmc 0 0x100000 update.bin

10. sf write 0x100000 0x400000 ${filesize}
11.fatload mmc 0 0x100000 golden.bin

12. sf write 0x100000 0xA00000 ${filesize}
13. Power down. Change from SD to QSPI boot mode. Power up.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=58

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 59
www.xilinx.com

Figure 36 shows the programming of QSPI using U-Boot for multiboot operation. This is a
display of the commands provided in steps 5-12 of this procedure.

View the log output displayed in the communication terminal to verify that multiboot functions
as expected. If the multiboot successfully loads the golden image, the U-Boot prompt is
displayed in the communication terminal window, and DS19 blinks after the successful load of
system.bit. This indicates that the multiboot procedure successfully loads the golden image
after the load of the update image failed.

The FSBL debug log provides definitive verification that the multiboot operation functions as
designed. The FSBL debug log indicates the number of partitions, and for each partition, the
load address, length, whether the partition is encrypted and/or RSA signed. All DEVC register
values are displayed for each partition. These registers are defined in the Zynq-7000 SoC
Technical Reference Manual (UG585) [Ref 8]. While DEVC register values make the debug log

X-Ref Target - Figure 36

Figure 36: Programming with U-Boot
X1175_42_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=59

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 60
www.xilinx.com

relatively long, much of the information is repetitive, so the debug log is easy to read. A portion
of the FSBL debug log file is shown in Figure 37.
X-Ref Target - Figure 37

Figure 37: FSBL Debug Log Output
X1175_43_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=60

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 61
www.xilinx.com

In the communication terminal, save the log file as shown in Figure 38. This allows the complete
debug log to be reviewed easily in a text editor.

The multiboot reference design provides several multiboot systems. To test that multiboot
functions correctly in response to a contrived error, the systems require the development of a
working image and an image which fails in a specific manner. Since the failure mode is not
always the expected failure mode, the user must examine the log file to verify that the cause of
the multiboot is the one intended.

In some multiboot systems, the error is generated correctly, but the error is not the cause of the
multiboot. The BIF needs to be constructed so that the expected failure mode occurs. Using the
zc702_pl_encerr system as an example, an authentication error can mask an encryption error. To
prevent this, omit the [authentication=rsa] attribute on the partition in which an encryption
error is intended.

Table 3 lists zc702_multiboot systems. In the examples, independent hello_update and
hello_golden ELFs are used. The C print statements in the hello partitions indicate which
partition is running. In the zc702_ps_autherr system, the golden image is booted after an
authentication error in the software (PS).

X-Ref Target - Figure 38

Figure 38: Capturing Multiboot Log

Table 3: Multiboot Examples
Project BIF Error Log

zc702_ps_autherr ps_autherr.bif update_ps_autherr.bin ps_autherr.log

zc702_pl_autherr pl_autherr.bif update_pl_autherr.bin pl_autherr.log

zc702_pl_encerr pl_encerr.bif update_pl_encerr.bin pl_encerr.log

X1175_44_052313

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=61

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 62
www.xilinx.com

The steps to create and run the zc702_ps_autherr project are:

1. Use the following BIF, bootimage_update.bif, for the update image.
the_image
{
[pskfile] psk.pem
[sskfile] ssk.pem
[aeskeyfile] efuse.nky
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[authentication=rsa] hello_update.elf
}

2. Use Bootgen to create the update.bin file:
bootgen -image bootimage_update.bif -o update.bin -encrypt efuse
Use the gvim text editor (or similar) to insert an error:
gvim update.bin

3. As shown in Figure 39, run:
Tools > Convert to Hex

to view the update.bin file in hex format.

zc702_ps_checksum ps_checksum.bif update_s_checksum.bin ps_checksum.log

zc702_pl_checksum pl_checksum.bif update_pl_checksum.bin pl_checksum.log

X-Ref Target - Figure 39

Figure 39: Using gvim to Generate An Error

Table 3: Multiboot Examples (Cont’d)

Project BIF Error Log

X1175_45_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=62

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 63
www.xilinx.com

4. As shown in Figure 40, search for Hello, which occurs on line 01eba0.

5. As shown in Figure 41, change the first nibble on line 1eba0 from 4865 to 5865. Notice that
Hello changes to Xello. Enter
Tools > Convert Back

and save update.bin.

X-Ref Target - Figure 40

Figure 40: Inducing an Authentication Error
X1175_46_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=63

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 64
www.xilinx.com

As shown earlier in this section, run steps 5-13 at the U-Boot prompt to write QSPI and boot the
system. This process can be used for all of the multiboot examples. This procedure can be used
to construct custom multiboot systems.

FSBL Debugging

In the previous section, the intent is to show how to develop a multiboot solution rather than
provide an end solution. The FSBL has a central role in multiboot. The FSBL debug log is
effective at understanding the behavior of the FSBL during the multiboot process. A second
approach to analyze the multiboot process is to use GDB to step through the FSBL. Analyzing
the FSBL in GDB is useful in understanding the behavior of the FSBL in loading partitions,
multiboot, and RSA authentication.

X-Ref Target - Figure 41

Figure 41: Update File with PS Authentication Error
X1175_47_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=64

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 65
www.xilinx.com

Figure 42 shows the setup of a debug session in SDK. Click Run > Debug Configuration and
select fsbl.elf to debug.
X-Ref Target - Figure 42

Figure 42: Starting a Debug Session in SDK
X1175_48_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=65

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 66
www.xilinx.com

Figure 43 shows the GDB debugger in SDK. This is the ps_autherr system in the multiboot
reference designs. In this system, RSA authentication fails in the hello_update partition. The
debugger location is the code pointing to the Authentication Certificate.
X-Ref Target - Figure 43

Figure 43: Running the GDB Debugger on the FSBL in SDK
X1175_49_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=66

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 67
www.xilinx.com

Figure 44 shows the GDB debugger after stepping to the location which verifies the SPK
signature.
X-Ref Target - Figure 44

Figure 44: RSA Verification of SPK
X1175_50_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=67

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 68
www.xilinx.com

Figure 45 shows GDB at the RSA code which verifies the partition.

Measuring Boot Time

Boot times are a function of the embedded device boot mode, the NVM configuration and
speed, and the size of the partitions loaded. In most cases, the configuration of NVM is
different than that of the ZC702 Evaluation Board. Contact a Xilinx field application engineer
(FAE) for boot time estimates for non-secure and secure boot modes. For more information on
the boot time estimator, see Xilinx Answer 55572. For information on flash devices supported in
the Zynq-7000 SoC tools, refer to Xilinx Answer 50991.

The zc702_linux_trd image can be used to determine an approximate order of magnitude of the
QSPI boot time. When the ZC702 board is used, it is relatively easy to compare non-secure and
secure boot times by creating BIFs which include and exclude the security functionality. There is
not a measurable difference in the non-secure and secure boot times for the PetaLinux builds.

X-Ref Target - Figure 45

Figure 45: RSA Verification of Partition
X1175_51_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/50991.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=68

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 69
www.xilinx.com

A second method of investigating boot time is to enable the FSBL performance measurement as
shown in Figure 46.

User Defined Field in Authentication Certificate

The BIF for use case 15 provides a User Defined Field (UDF) in the Authentication Certificate.
The following are potential uses of the 56 Byte UDF at offset 0x8.

• Software Versioning
• Software Provided Certificate
• Time Stamp
• Partition Identifier/Version

The UDF is written using Bootgen with the flow given in this section. In the device, processing
the information in the UDF is typically done in the FSBL. The FSBL code must be written by the
user.

To generate the user defined field, create the uboot_v10.hex file and a BIF as follows.

the_image:
{
[pskfile] psk.pem
[sskfile] ssk.pem
[aeskeyfile]efuse.nky
[bootloader, authentication=rsa, encryption=aes]fsbl.elf
[authentication=rsa, udf_data=uboot_v10.hex] u-boot.elf
}

X-Ref Target - Figure 46

Figure 46: Setting the FSBL_PERF Option in SDK
X1175_52_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=69

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 70
www.xilinx.com

The scope of the udf_data attribute is limited to the partition for which it is specified,
u-boot.elf in the previous BIF. The hex file can contain up to 56 bytes. If the hex file contains
less than 56 bytes, Bootgen pads the user defined field (UDF) with 0s to extend the UDF to
56 bytes. An error occurs if the udf_data attribute is specified for a partition in which
authentication=none, the hex file does not exist or is not readable, it contains more than
56 bytes, or uses a format other than hex.

As an example, suppose zc702_udf.hex contains

1234 5678 9ABC DEF0 9456 f232 227b dd70.

Figure 47 shows the UDF in the authentication certificate for this zc702_udf.hex.
X-Ref Target - Figure 47

Figure 47: User Defined Field in the Authentication Certificate
X1175_53_060613

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=70

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 71
www.xilinx.com

Loading Data Partitions

In addition to ELF and BIT partitions, Bootgen can load data partitions. Typical application
requirements for data partitions are DSP coefficients or health and financial records. Bootgen
attributes allow the data partition to be encrypted and/or authenticated. An example BIF is:

the_image:
{
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes, authentication=rsa, load=0xFFFFC000] coefficients.bin
}

An example data file, coefficients.bin, contains 0101010111001100.

To verify that the data file is loaded into OCM, disable the JTAG port if necessary, and run an
XSCT mrd 0xFFFFC000 8 command.

Using the DEVCFG and SLCR Registers for Boot Options

The DEVCFG registers used in boot are the Control, Lock, CFG, and MCTRL registers, located at
offsets from 0xF8007000. There are also general lock registers in the SLCR located at
0xF8000000. The Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 1] provides register
definitions. Because the CTRL register is used often, Table 4 defines this register for reference.
Some control bits are triplicated for enhanced safety and security.

Table 4: Control Register at 0xF8007000
Name Bits Description

FORCE_RST 31 Forces PS into secure lockdown

PCFG_PROG_B 30 Resets the PL

PCFG_POR_CNT_4K 29 Controls the POR timer

Reserved 28

PCAP_PR 27 Selects between PCAP and ICAP for PL reconfiguration

PCAP_MODE 26 Enables PCAP interface

PCAP_RATE_EN 25 Selects data rate

MULTIBOOT_EN 24 Enable multiboot out of reset. Cleared by PS_POR_B.

JTAG_CHAIN_DIS 23 Disables JTAG Chain

Reserved 22:16

User Mode 15 0 indicates CPU is executing BootROM code

Reserved 14:13

PCFG_AES_FUSE 12 0 - BBRAM, 1 - EFUSE

PCFG_AES_EN 11:9 000 - Disable AES; 111 - Enable AES; Others - Lockdown

SEU_EN 8 0 - Ignore SEU signal from PL; 1 - Lockdown if SEU received.

SEC_EN 7 0 - PS was not booted securely; 1- PS was booted securely

SPNIDEN 6 0 - Disable Non-invasive Debug

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=71

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 72
www.xilinx.com

JTAG Debug

In Zynq-7000 SoC, the JTAG port is used to load software and the bitstream, load the AES key,
control information, and for debug. If not disabled, JTAG ports can be used by an adversary to
insert malware, and read configuration memory and registers. The JTAG ports must be disabled
whenever it is not used in a legitimate debug operation.

The device can be debugged using a DAP controller and/or a JTAG controller. The DAP JTAG
chain and PL JTAG chain can be concatenated or used independently. When used
independently, the full SoC/FPGA does not need to be exposed to an adversary. For example, if
debug only requires access to the PL, the user can select that only PL JTAG chain is used. This
prevents access to the PS.

Figure 48 shows the independent and cascaded JTAG chains.

Zynq provides hierarchical control of the JTAG port. This allows different methods to control
access to the debug ports based on security requirements. Security requirements may change
over the life cycle the embedded device. There are three methods to disable the JTAG debug
ports. Prior to fielding an embedded device with Zynq, a one-time programmable eFUSE bit can
permanently disable access to the debug ports. Programming this eFUSE bit is irreversible, and
debug ports remain disabled after powering down and recycling power.

The second method, which can be used only if the debug port disable eFUSE is not blown,
disables/enables debug access port using the JTAG_CHAIN_DISABLE, DAP_EN, SPINDEN,

SPIDEN 5 0 - Disable Secure Invasive Debug

NIDEN 4 0 - Disable Non-invasive Debug

DBGEN 3 0 - Disable Invasive Debug

DAP_EN 2:0 111 - Enable Arm DAP

X-Ref Target - Figure 48

Figure 48: JTAG Chains

Table 4: Control Register at 0xF8007000 (Cont’d)

Name Bits Description

PS

PL

ARM DAP

FPGA TAP

PS

PL

ARM DAP

FPGA TAP

Cascade Mode

Independent Mode

XAPP1175_54_053113

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=72

Secure Embedded Systems Applications

XAPP1175 (v2.2) January 14, 2021 73
www.xilinx.com

SPIDEN, NIDEN, DBGEN bits in the Control register at 0xF8007000 (see Table 4). The debug
access control is provided independently for the two JTAG chains or the concatenated chain.

In the third method, a lock register provides semi-permanent disabling of access to the debug
ports. In this method, the debug port access disable remains in effect until a power cycle.

In a secure boot, the JTAG port is disabled early by the BootROM code. Users who will not use
the debug port after product release can disable the JTAG port permanently by writing the
eFUSE Disable JTAG register. The disable is done using Vivado HW Manager or the Secure Key
Driver. Figure 49 shows using Vivado HW Manager to write the eFUSE which disables the JTAG
port by writing the following Tcl Console command:

program_hw_devices -control_efuse {0200} [lindex [get_hw_devices
xc7z020_1] 0]

Note: Do NOT program the disable JTAG eFUSE if the RSA enable eFUSE has already been programmed
and AES encryption is not enabled. The device will enter secure lockdown otherwise.

To use the Secure Key Driver, change the following line in xilskey_input.h.

#define XSK_EFUSEPL_DISABLE_JTAG_CHAIN TRUE

X-Ref Target - Figure 49

Figure 49: Disabling the JTAG Port Using HW Manager
X1175_55_070219

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=73

Conclusion

XAPP1175 (v2.2) January 14, 2021 74
www.xilinx.com

Use the steps provided in the Secure Key Driver section to compile and run the driver.

Disabling JTAG Using the DEVCFG CTRL Register

If the JTAG_CHAIN_DISBLE eFUSE is not blown, the CPU can enable the JTAG port by writing to
CTRL(23)= 0x0. After a secure boot, enabling the JTAG port is necessary to debug a Zynq device.

The zc702_jtag_en system shows how to enable JTAG after a secure boot. The BIF creates a
secure system, with authentication and encryption. In this project, the FSBL is modified so that
the JTAG port is unlocked at the end of FSBL execution. The following code is added to the
FsblHookBeforeHandoff function in fsbl_hook.c.

ctrl_reg = Xil_In32(0xF8007000);
 fsbl_printf(DEBUG_INFO,"Before 0xF8007000 = 0x%08x\r\n");
 ctrl_reg = ctrl_reg & (~(1<<23));
 ctrl_reg = ctrl_reg | 0x7F;

Xil_Out32(0xF8007000,ctrl_reg);

ctrl_reg = Xil_In32(0xF8007000);
fsbl_printf(DEBUG_INFO,"After 0xF8007000 = 0x%08x\r\n");

Without this added FSBL code, the JTAG port is locked, and cannot be accessed. With this code,
JTAG access is enabled at the end of FSBL execution. Secure systems require a more
sophisticated method of providing access to the JTAG port. After debug, the JTAG port must be
disabled. This can be done using a basic modification of the code previously provided in this
section to enable the JTAG port. Suppose a user or technician needs to debug an embedded
device which has booted securely. A GPIO interrupt tied to a pushbutton on the board is
generated, requesting JTAG access. The interrupt handler verifies a password before enabling
the JTAG port. The user or technician indicates that the debug session is done by pressing
another button tied to a second GPIO interrupt. The interrupt handler then disables the JTAG
port.

Conclusion
Secure boot is easy to implement in Zynq-7000 devices. Because Zynq-7000 devices provide the
functionality without using the resources of the PL, the incremental cost to boot securely is
minimal. Secure boot protects the embedded system against a number of malicious attacks.
Zynq devices provide security options to support different security requirements.

Appendix A
Glossary - Acronyms
The following terms are used in this application note. In most cases, the terms are defined in the
Boot Architecture section.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=74

Appendix A

XAPP1175 (v2.2) January 14, 2021 75
www.xilinx.com

• Advanced Encryption Standard/ Hashed Message Authentication Code (AES/HMAC)
• Authentication Certificate (AC)
• Bitgen
• Bootgen
• Boot Header (BH)
• Boot Image Format (BIF)
• Battery Backed RAM (BBRAM)
• Device Configuration Interface (DevC)
• eFUSE array
• Secure Key Driver
• First Stage Boot Loader (FSBL)
• Image
• iMPACT
• Partition
• Partition Header
• Programmable Logic (PL)
• Processor System (PS)
• Primary Secret Key (PSK)
• Primary Public Key (PPK)
• Rivest, Shamir, Adleman (RSA)
• Secondary Secret Key (SSK)
• Secondary Public Key (SPK)
• Software Development Kit (SDK)
• Secure Hash Algorithm (SHA)
• Secure Storage
• U-Boot
• Vivado Design Suite

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=75

Appendix B

XAPP1175 (v2.2) January 14, 2021 76
www.xilinx.com

Appendix B
Use Cases for User Selectable Security Functionality
Using BIF file attributes, users specify, on a partition basis, if a partition is to be RSA
authenticated and if it is to be AES/HMAC encrypted/authenticated. Table 5 provides sample
use cases of images in which AES/HMAC encryption and RSA authentication are specified on a
partition basis. Other use cases are possible. Most of the use cases in Table 5 contain the same
partitions used in the TRD. Use cases 11-14 show a single data partition in the BIF. Like software
and bitstream partitions, data partitions can be included in the initial boot image (i.e. with an
FSBL partition).

Table 5: Use Cases for Specifying Security

BootROM RSA RSA AES/HMAC

Use Case 1 - NonSecure Boot

fsbl.elf

system.bit

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

sobel_cmd.elf

Use Case 2 - Secure Boot, AES/HMAC Partitions

fsbl.elf x

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 3 - Secure Boot, RSA Authenticate FSBL, AES/HMAC Partitions

fsbl.elf x x

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 4 - Secure Boot, RSA Authenticate All Files

fsbl.elf x x

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=76

Appendix B

XAPP1175 (v2.2) January 14, 2021 77
www.xilinx.com

system.bit x

u-boot.elf x

uImage.bin x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x

Use Case 5 - Secure Boot, RSA Authenticate FSBL

fsbl.elf x x

system.bit

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

sobel_cmd.elf

Use Case 6 - Secure Boot RSA Authenticate and AES/HMAC All Partitions

fsbl.elf x x

system.bit x x

u-boot.elf x x

uImage.bin x x

devicetree.dtb x x

uramdisk.image.gz x x

sobel_cmd.elf x x

Use Case 7 - Secure Boot, RSA Authenticate Code, AES/HMAC PL Bitstream

fsbl.elf x x

system.bit x x

u-boot.elf x

uImage.gz x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x x

Use Case 8 - Secure Boot, AES/HMAC FSBL, PL Bitstream, Application

fsbl.elf x

system.bit x

u-boot.elf

uImage.bin

devicetree.dtb

uramdisk.image.gz

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=77

Appendix B

XAPP1175 (v2.2) January 14, 2021 78
www.xilinx.com

sobel_cmd.elf x

Use Case 9 - Non-secure Multiboot - 3 Images Shown

Image 1

fsbl.elf

Image 2

fsbl.elf - standard

system.bit - standard

u-boot.elf - standard

Image 3

fsbl.elf - golden

u-boot.elf - golden

PL Bitstream - golden

Use Case 10 - Secure Multiboot - 3 Images Shown

Image 1

fsbl.elf x x

Image 2

fsbl.elf - update

system.bit - standard x x

u-boot.elf - standard x

Image 3

fsbl.elf - golden x x

system.bit - golden x x

u-boot.elf - golden x

Use Case 11 - Non-secure Binary Data File - As Is, Not Bootgen Source

datafile.bin

Use Case 12 - Authenticated Binary Data File

datafile.bin x

Use Case 13 - AES/HMAC Encrypted Binary Data File

datafile.bin x

Use Case 14 - AES/HMAC Encrypted - RSA Authenticated Binary File

datafile.bin x x

Use Case 15 - User Defined Field in Authentication Certificate

Data File x x

Use Case 16 - Release Mode Bootgen - Authenticated U-Boot

fsbl.elf x x

u-boot.elf x

Use Case 17 - Release Mode Bootgen - Authenticated TRD

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=78

Appendix C

XAPP1175 (v2.2) January 14, 2021 79
www.xilinx.com

Appendix C
BIFs for Bootgen Debug Mode
BIFs for systems defined in Images, Partitions, and Authentication Certificates are as follows:

Use Case 1 - Non-secure boot BIF example

image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
ulinux.bin
devicetree.dtb
uramdisk.image.gz
sobel_cmd.elf
}

Note: If the RSA Enable eFUSE is programmed, the FSBL must be authenticated, and the BIF in Use Case
1 will not work. For this case, Use Case 5 should be used.

Use Case 2 - All partitions are encrypted

image: {
[aeskeyfile] system.nky
[bootloader, encryption=aes] zynq_fsbl_0.elf
[encryption=aes] system.bit
[encryption=aes] u-boot.elf
[encryption=aes] ulinux.bin
[encryption=aes] devicetree.dtb
[encryption=aes] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Use Case 3 - FSBL is RSA authenticated; All partitions are encrypted

image: {
[aeskeyfile] system.nky
[pskfile] uc3_psk.pem
[sskfile] uc3_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf

fsbl.elf x x

system.bit x x

u-boot.elf x

uImage.gz x

devicetree.dtb x

uramdisk.image.gz x

sobel_cmd.elf x x

Table 5: Use Cases for Specifying Security (Cont’d)

BootROM RSA RSA AES/HMAC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=79

Appendix C

XAPP1175 (v2.2) January 14, 2021 80
www.xilinx.com

[encryption=aes] system.bit
[encryption=aes] u-boot.elf
[encryption=aes] uImage.bin
[encryption=aes] devicetree.dtb
[encryption=aes] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=80

Appendix C

XAPP1175 (v2.2) January 14, 2021 81
www.xilinx.com

Use Case 4 - All partitions are RSA authenticated

Note: The FSBL and PL are authenticated using the first specified SPK file, and U-Boot, Linux, and hello
are authenticated with the linux_ssk.pem file.

image: {
[aeskeyfile] system.nky
[pskfile] uc4_1_psk.pem
[sskfile] uk4_1_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[authentication=rsa] system.bit
[sskfile] linux_ssk.pem
[authentication=rsa] u-boot.elf
[authentication=rsa] uImage.bin
[authentication=rsa] devicetree.dtb
[authentication=rsa] uramdisk.image.gz
[authentication=rsa] sobel_cmd.elf
}

Use Case 5 - FSBL is RSA authenticated

image: {
[aeskeyfile] system.nky
[pskfile] uc5_psk.pem
[sskfile] uc5_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
system.bit
u-boot.elf
uImage.bin
devicetree.dtb
uramdisk.image.gz
sobel_cmd.elf
}

Use Case 6 - All partitions are RSA authenticated and AES encrypted

image: {
[aeskeyfile] system.nky
[pskfile] uc6_psk.pem
[sskfile] uc6_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[encryption=aes, authentication=rsa] u-boot.elf
[encryption=aes, authentication=rsa] uImage.bin
[encryption=aes, authentication=rsa] devicetree.dtb
[encryption=aes, authentication=rsa] uramdisk.image.gz
[encryption=aes, authentication=rsa] linux.image.gz
[encryption=aes, authentication=rsa] sobel_cmd.elf
}

Use Case 7 - All partitions are RSA authenticated. FSBL, bitstream, and sobel_cmd application are
AES encrypted

image: {
[aeskeyfile] system.nky
[pskfile] psk.pem
[sskfile] ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[encryption=aes, authentication=rsa] system.bit
[authentication=rsa] u-boot.elf
[authentication=rsa,load=0x3000000,offset=0x100000] uImage.bin

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=81

Appendix C

XAPP1175 (v2.2) January 14, 2021 82
www.xilinx.com

[authentication=rsa,load=0x2A00000,offset=0x600000] devicetree.dtb
[authentication=rsa,load=0x2000000,offset=0x620000] uramdisk.image.gz
[encryption=aes, authentication=rsa] sobel_cmd.elf
}

Use Case 8 - AES Encrypt FSBL, bitstream, and application

image: {
[aeskeyfile] system.nky
[bootloader, encryption=aes] zynq_fsbl_0.elf
[encryption=aes] system.bit
[encryption=none] u-boot.elf
[encryption=none] uImage.bin
[encryption=none] devicetree.dtb
[encryption=none] uramdisk.image.gz
[encryption=aes] sobel_cmd.elf
}

Use Case 9 - Non-secure Multiboot

image0: {
[bootloader] zynq_fsbl_0.elf
}

standard_image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
}

golden_image: {
[bootloader] zynq_fsbl_0.elf
system.bit
u-boot.elf
}

Note: The update and golden images must be located at addresses which are multiples of 32K.

Use Case 10 - Secure Multiboot

image0: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pem
[sskfile] uc10_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
}
standard_image: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pem
[sskfile] uc10_ssk.pem
[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[sskfile] bitstream_ssk.pem
[encryption=aes, authentication=rsa] system.bit
[sskfile] u-boot_ssk.pem
[authentication=rsa] u-boot.elf
}

golden_image: {
[aeskeyfile] uc10.nky
[pskfile] uc10_psk.pem
[sskfile] uc10_ssk.pem

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=82

Appendix C

XAPP1175 (v2.2) January 14, 2021 83
www.xilinx.com

[bootloader, encryption=aes, authentication=rsa] zynq_fsbl_0.elf
[sskfile] bitstream_ssk.pem
[encryption=aes, authentication=rsa] system.bit
[sskfile] u-boot_ssk.pem
[authentication=rsa] u-boot.elf
}

Note: The update and golden images must be located at addresses which are multiples of 32K.

Use Case 11 - Non-Secure Binary Data File

image:
{
[bootloader] fsbl.elf
hello.elf
datafile.bin
}

Use Case 12 - Authenticated Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[authentication=rsa] datafile.bin
}

Use Case 13 - AES Encrypted Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes] datafile.bin
}

Use Case 14 - AES Encrypted and RSA Authenticated Binary Data File

image: {
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa] hello.elf
[encryption=aes, authentication=rsa] data.bin
}

Note: The implicit attribute [encryption=none] is the default for all partitions.

Use Case 15 - User Defined Field in Authentication Certificate

image:
{
[bootloader, encryption=aes, authentication=rsa] fsbl.elf
[encryption=aes, authentication=rsa, udf_data=hello_v10.hex] hello.elf
}

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=83

Appendix D

XAPP1175 (v2.2) January 14, 2021 84
www.xilinx.com

Appendix D
Images, Partitions, and Authentication Certificates
This section describes images, partitions, and authentication certificates. Bootgen generates
one image which is loaded into NVM. An image consists of one or more partitions. If a partition
in an image is RSA authenticated, an authentication certificate follows the partition in the
image.

Table 6 shows a sample image format for Use Case 7 in Images, Partitions, and Authentication
Certificates. The fields for the FSBL Authentication Certificate are shown for the FSBL partition.
For the other partitions, only the location of the Authentication Certificate is shown.
Authentication Certificates for all partitions have the same format.

Bootgen generates an image which typically consists of the Boot Header, FSBL, PL bitstream and
multiple software partitions.

Table 6: Sample Image Format for Use Case 7
Boot Header

Partition Header Table

FSBL Data Segment

512-Bit Alignment - Padding 0x

Authentication Certificate Header

User Defined Field - 56 bytes

RSA PPK - 2 x 2048 + 512 Bits

RSA SPK - 2 x 2048 + 512 Bits

RSA SPK Signature - 2048 Bits

FSBL Signature - 2048 Bits

PL Bitstream - system.bit

Bitstream Authentication Certificate

U-Boot

U-Boot Authentication Certificate

Linux - uImage.bin

uImage.bin Authentication Certificate

devicetree.dtb

devicetree.dtb Authentication Certificate

uramdisk.image.gz

uramdisk.image.gz Authentication Certificate

Sobel Cmd partition

Sobel Cmd Authentication Certificate

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=84

Appendix D

XAPP1175 (v2.2) January 14, 2021 85
www.xilinx.com

For the use cases in Table 5, Bootgen generates images in the format shown in the next three
tables.

The image format for use cases 1 and 2 is shown in Table 7. In these use cases, RSA
authentication is not used.

The image for use cases 3 and 5 is shown in Table 8. In these use cases, only the FSBL is RSA
authenticated. In use case 3, all partitions are routed to the AES/HMAC engine. In use case 5, no
partition is routed to the AES/HMAC engine.

The image format for use cases 4, 6, and 7 is shown in Table 9.

Table 7: Image Format for Use Cases 1 and 2
Boot Header

Image Header Table

Partition Header Table

FSBL

PL Bitstream

U-Boot

Linux

Sobel Cmd Application

Table 8: Image Format for Use Cases 3 and 5
Boot Header

Image Header Table

Partition Header Table

FSBL

Authentication Certificate

PL Bitstream

U-Boot

Linux

Sobel Cmd Application

Table 9: Image Format for Use Cases 4, 6, and 7
Boot Header

Image Header Table

Partition Header Table

FSBL

FSBL Authentication Certificate

PL Bitstream

PL Bitstream Authentication Certificate

U-Boot

U-Boot Authentication Certificate

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=85

Appendix D

XAPP1175 (v2.2) January 14, 2021 86
www.xilinx.com

Partitions

Partitions are composed of two or three sections:

• Partition header, which stores information about the partition layout.
• Physical partition which contains the data and padding, optional expansion space
• Authentication certificate if the partition is authenticated

Table 10 shows the format of the Partition Header.

Authentication Certificates

An authentication certificate is used with each partition (FSBL, software, and bitstream)
specified to be authenticated. The format of the AC is the same for all partitions, and is shown
in Table 11.

Linux

Linux Authentication Certificate

Sobel Cmd Application

Sobel Cmd Authentication Certificate

Table 10: Partition Header
Offset Description

0x0 Partition Data Word Length

0x4 Decrypted Data Word Length

0x8 Total Partition Word Length (includes AC)

0xC Destination Load Address (PS)

0x10 Destination Execution Address (PS)

0x14 Data Word Offset in the Image

0x18 Attribute Bits - PS - Bit 4; PL - Bit 5

0x1C Section Count

0x20 Checksum Word Offset

0x24 Image Header Word Offset

0x24 - x38 Unused

0x3C Header Checksum

Table 11: Authentication Certificate
Offset Length Field Notes

0x0 0x4 Authentication Certificate Header

0x4 0x4 Authentication Certificate Length

0x08 0x38 User Defined Field 56 bytes

0x40 0x100 PPK Modulus 256 bytes, little endian

Table 9: Image Format for Use Cases 4, 6, and 7 (Cont’d)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=86

Appendix D

XAPP1175 (v2.2) January 14, 2021 87
www.xilinx.com

The PPK Modulus + PPK Modulus Extension + PPK Exponent equals 516 bytes. All-zero padding
is 60 bytes.

For the Authentication Certificate offsets 0x140, 0x380, Bootgen pre-computes a modulus
extension which is used in Montgomery reduction to decrease signature verification time. Refer
to the Zynq-7000 SoC Software Developers Guide (UG821) for details [Ref 2].

RSA authentication proceeds by calculating a SHA256 over the necessary data, which results in
a 256 bit (32 byte) integer. This hash integer is padded according to PKCS #1v1.5 to 2048 bits
(256 bytes). The signature blocks are calculated as the modular exponentiation of the padded
2048 bit hash, using the secret exponent (D) of the key as the exponent in the calculation. The
OpenSSL equivalent function is BN_mod_exp_mont(). The SPK signature uses the primary key
(denoted with a P subscript) while the Partition Signature uses the secondary key (denoted with
an S subscript). All calculations are done in 2048 bit base, so that the padded hash value and the
signature are 2048 bits or 256 bytes. The data is stored in little endian order, with the LSB first
and the MSB last.

The padded hash integer defined in Table 12 is used in the native storage of Bootgen as well as
the *.sha256 files that are created with the -generate_hashes command line option.

0x140 0x100 PPK Modulus Extension 256 bytes, little endian

0x240 0x04 PPK Exponent 4 bytes, little endian

0x244 0x3C Padding 60 bytes (all zero)

0x280 0x100 SPK Modulus 256 bytes, little endian

0x380 0x100 SPK Modulus Extension 256 bytes, little endian

0x480 0x04 SPK Exponent 4 bytes, little endian

0x484 0x3C Padding 60 bytes (all zero)

0x4C0 0x100 SPK Signature (sha256^Dp) mod Np LE-256 bytes

0x5C0 0x100 Partition Signature (sha256^Ds) mod Ns LE-256 bytes

Table 12: PKCS #1v1.5 Padded SHA256 Hash Field and Format of *.sha256 Hash Files
Bytes Field Value

0:31 Raw SHA256 hash value (little endian) Calculated

32:50
PKCS special values 0x20,0x04,0x00,0x05,0x01,0x02, 0x04, 0x03,

0x65, 0x01, 0x48, 0x86, 0x60, 0x09, 0x06,
0x0D, 0x30, 0x31, 0x30

51 zero 0x00

52:253 padding 0xFFs

254 one 0x01

255 zero 0x00

Table 11: Authentication Certificate (Cont’d)

Offset Length Field Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=87

Reference Designs

XAPP1175 (v2.2) January 14, 2021 88
www.xilinx.com

When using the [spksignature] or [presign=] attributes to load in an externally calculated
signature block, the format must be identical to the final signature block defined in Table 13.
There is no processing or reversing of byte order when reading in the signature block from an
external file; the data is copied exactly into the AC.

The Authentication Header is defined in the Table 14.

Reference Designs
The reference systems discussed in this application note include:

• zc702_u-boot
• zc702_linux_trd
• zc702_secure_key_driver
• zc702_secure_key (includes xil_rsa_sign)
• zc702_multiboot
• zc702_jtag_en
• zc702_data
• zc702_udf

Download the reference design files for this application note from the Xilinx website.

Table 13: RSA2048 Signature Block, and Format of *.sig Files
Bytes Field Value

0:255 signature value (little endian) (sha256 ^Dp) mod Np LE

Table 14: Authentication Certificate Header
Bits Field Value

31:16 Reserved 0s

15:14 Authentication Certificate Format 00: PKCS #1 v1.5

13:12 Authentication Certificate Version 00: Version 1.0

11 PPK Key Type 0: Hash Key

10:9 PPK Key Source 0: eFUSE

8 SPK Enable 1: SPK Enable

7:4 Public Strength 0: 2048

3:2 Hash Algorithm 0: SHA256

1:0 Public Algorithm 1: RSA

Send Feedback

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=339774
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=88

Documentation Navigator and Design Hubs

XAPP1175 (v2.2) January 14, 2021 89
www.xilinx.com

Table 15 shows the reference design matrix.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

Table 15: Reference Design Matrix
Parameter Description

General
Developer name Ed Peterson
Target devices Zynq-7000 SoCs
Source code provided Yes
Source code format C
Design uses code and IP from existing Xilinx application note and reference
designs or third party

No

Simulation
Functional simulation performed N/A
Timing simulation performed N/A
Test bench used for functional and timing simulations N/A
Test bench format N/A
Simulator software/version used N/A
SPICE/IBIS simulations N/A
Implementation
Synthesis software tools/versions used Vivado synthesis
Implementation software tools/versions used Vivado implementation
Static timing analysis performed Yes
Hardware Verification
Hardware verified Yes
Hardware platform used for verification ZC702 evaluation board

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=89

References

XAPP1175 (v2.2) January 14, 2021 90
www.xilinx.com

• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page on
the Xilinx website.

References
1. Zynq-7000 SoC Technical Reference Manual (UG585)
2. Zynq-7000 SoC Software Developers Guide (UG821)
3. Changing the Cryptographic Key in Zynq-7000 AP SoC (XAPP1223)
4. Bootgen User Guide (UG1283)
5. Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC)

Dedicated Interface to Implement System Monitoring and External Channel Measurements
(XAPP1172)

6. Solving Today’s Design Security Concerns (WP365)
7. Xilinx Standalone Library Documentation: OS and Libraries Document Collection (UG643)
8. Zynq-7000 SoC: Concepts, Tools, and Techniques (CTT): A Hands-On Guide to Effective

Embedded System Design (UG873)
9. Vivado Programming and Debugging User Guide (UG908)
10. Zynq-7000 SoC ZC702 Base Targeted Reference Design User Guide (UG925)
11. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)
12. Zynq-7000 SoC: Embedded Design Tutorial (UG1165)
13. 7 Series FPGAs Configuration User Guide (UG470)
14. Developing Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series FPGAs (XAPP1084)
15. DENX U-Boot and Linux Guide (DULG)
16. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography, Specifications Version 2.1
17. Montgomery Reduction (Modular Multiplication Without Trial Division by Peter L.

Montgomery, Mathematics of Computation, Volume 44, Number 170, April 1985)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xilinx2019_1/ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xilinx2019_1/ug1165-zynq-embedded-design-tutorial.pdf
http://www.denx.de/wiki/DULG/Manual
https://tools.ietf.org/html/rfc3447
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1172_zynq_ps_xadc.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp365_Solving_Security_Concerns.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=ug873-zynq-ctt.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;v=latest;d=ug925-zynq-zc702-base-trd.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1084_tamp_resist_dsgns.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1223-crypto-key-change.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xilinx2019_1/ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=90

Revision History

XAPP1175 (v2.2) January 14, 2021 91
www.xilinx.com

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. Arm is a registered trademark of Arm Limited in the
EU and other countries. All other trademarks are the property of their respective owners.

Date Version Revision
01/14/2021 2.2 • Updated with clarifications to the previous version.

• Added Figure 14.
• Added a cautionary note after Figure 49.

07/31/2019 2.1 • Updated with clarifications to the previous version.
• Added Table 15.

04/03/2015 2.0 Updated for Vivado Design Suite 2014.4.
09/12/2013 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1175&Title=Secure%20Boot%20of%20Zynq-7000%20SoC&releaseVersion=2.2&docPage=91

	Secure Boot of Zynq-7000 SoC
	Summary
	Introduction
	How to Read this Document

	Hardware and Software Requirements
	Boot Architecture
	Hardware Components Used in Boot
	Central Processing Unit
	System Level Control Register
	Device Configuration Interface
	Secure Storage
	Nonvolatile Memory
	BootROM
	On-chip Memory
	AXI Block RAM
	eFUSE Array
	Battery Backed Up RAM
	AES/HMAC
	JTAG Debug Access

	Software Components Used in Boot
	Boot Header
	Bitgen/Write Bitstream
	Bootgen
	Secure Key Driver
	First Stage Boot Loader (FSBL)
	iMPACT/Hardware Manager
	Xilinx Microprocessor Debugger (XMD) / Xilinx Software Command-Line Tool (XSCT)
	U-Boot
	BootROM Code
	Chain of Trust
	Device Configuration (devcfg)
	Image
	Partition
	Boot Image Format (BIF)
	ps7_init
	RSA
	Software Development Kit

	Boot Process
	Boot Modes
	Secure Boot Steps
	Boot Flows
	BootROM code
	First Stage Boot Loader
	U-Boot

	AES Encryption and RSA Authentication
	Security in Embedded Devices
	Secure System Development
	Key Swapping eFUSE and BBRAM keys

	Booting the TRD Securely
	Building and Booting a Secure System
	Creating a Project Using the Vivado Design Suite
	Setup the ZC702 Evaluation Board
	Debugging QSPI Boot Failure

	Secure Boot Image Considerations
	Bootgen

	Generating and Programming Keys
	Generating Keys
	eFUSE / BBRAM in Zynq Security

	Secure Key Driver
	Generate Hash of PPK
	Generate the ELF for the Secure Key Driver
	Run the Secure Key Driver

	Advanced Key Management Options
	Bootgen Debug Mode Step
	Bootgen Release Mode Steps

	Secure Embedded Systems Applications
	Multiboot
	FSBL Debugging
	Measuring Boot Time
	User Defined Field in Authentication Certificate
	Loading Data Partitions
	Using the DEVCFG and SLCR Registers for Boot Options
	JTAG Debug
	Disabling JTAG Using the DEVCFG CTRL Register

	Conclusion
	Appendix A
	Glossary - Acronyms

	Appendix B
	Use Cases for User Selectable Security Functionality

	Appendix C
	BIFs for Bootgen Debug Mode
	Use Case 1 - Non-secure boot BIF example
	Use Case 2 - All partitions are encrypted
	Use Case 3 - FSBL is RSA authenticated; All partitions are encrypted
	Use Case 4 - All partitions are RSA authenticated
	Use Case 5 - FSBL is RSA authenticated
	Use Case 6 - All partitions are RSA authenticated and AES encrypted
	Use Case 7 - All partitions are RSA authenticated. FSBL, bitstream, and sobel_cmd application are AES encrypted
	Use Case 8 - AES Encrypt FSBL, bitstream, and application
	Use Case 9 - Non-secure Multiboot
	Use Case 10 - Secure Multiboot
	Use Case 11 - Non-Secure Binary Data File
	Use Case 12 - Authenticated Binary Data File
	Use Case 13 - AES Encrypted Binary Data File
	Use Case 14 - AES Encrypted and RSA Authenticated Binary Data File
	Use Case 15 - User Defined Field in Authentication Certificate

	Appendix D
	Images, Partitions, and Authentication Certificates
	Partitions
	Authentication Certificates

	Reference Designs
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

