
DPUCVDX8G for Versal
ACAPs

Product Guide

PG389 (v1.0) July 22, 2021

https://www.xilinx.com

Table of Contents
Chapter 1: Introduction.. 4

Features..4
IP Facts..5

Chapter 2: Overview..6
Navigating Content by Design Process.. 6
Core Overview..6
Development Tools... 7
Example System with DPUCVDX8G... 8

Chapter 3: Product Specification... 11
Resource Utilization.. 11
Performance (Theoretical)... 11
DPUCVDX8G Port Description..12
DPUCVDX8G Registers..14

Chapter 4: Designing with the Core... 23
Hardware Architecture... 23
DPUCVDX8G Feature Support..24
Configuration Options.. 26
Clocking.. 28
Resets..30

Chapter 5: Example Design... 31
Vitis DPUCVDX8G TRD Flow..31

Appendix A: Upgrading... 32

Appendix B: Additional Resources and Legal Notices............................. 33
Xilinx Resources...33
Documentation Navigator and Design Hubs...33
References..33

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=2

Revision History... 34
Please Read: Important Legal Notices... 34

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=3

Chapter 1

Introduction
The Xilinx® Versal™ Deep Learning Processing Unit (DPUCVDX8G) is a configurable computation
engine optimized for convolution neural networks in Versal ACAP devices with AI Engines.
DPUCVDX8G is suitable for embedded applications based on the VCK190 evaluation board. The
degree of parallelism used in the engine is a design parameter and can be selected according to
the target device and application. It includes a set of highly optimized instructions, and supports
most convolutional neural networks, such as VGG, ResNet, GoogLeNet, YOLO, SSD, MobileNet,
FPN, and others.

Features
The DPUCVDX8G has the following features:

• One AXI4-Lite slave interface for accessing configuration and status registers.

• One AXI4 master interface for accessing instructions.

• Supports batch sizes 1-6.

• Supports a configurable number of AXI4 interfaces for loading/saving the features.

• Supports optional interrupt request generation.

The following are some highlights of DPUCVDX8G functionality:

• Convolution and deconvolution

• Depthwise convolution

• Max pooling

• Average pooling

• ReLU, ReLU6, Leaky ReLU, Hard Sigmoid, and Hard Swish

• Concat

• Elementwise-Sum and Elementwise-Multiply

• Dilation

• Reorg

• Fully connected layer

Chapter 1: Introduction

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=4

• Batch Normalization

• Split

IP Facts
DPUCVDX8G IP Facts Table

Core Specifics

Supported Device Family Versal™ AI Core Series

Supported User Interfaces AXI4-Lite, AXI4-Stream

Resources See Resource Utilization

Provided with Core

Design Files Encrypted RTL

Example Design Verilog

Test Bench Not Provided

Constraints File Xilinx Constraints File

Simulation Model Not Provided

Supported S/W Driver Included in PetaLinux

Tested Design Flows1

Design Entry Vitis™ Unified Software Platform

Simulation N/A

Synthesis Vivado® Synthesis

Support

Xilinx Support web page

Notes:
1. For the supported versions of third-party tools, see the Vitis Unified Software Platform Documentation: Application

Acceleration Development (UG1393).

Chapter 1: Introduction

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 5Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=5

Chapter 2

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include

• Chapter 4: Designing with the Core

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Chapter 3: Product Specification

• Clocking

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• Chapter 5: Example Design

Core Overview
The DPUCVDX8G is a high-performance general CNN processing engine optimized for Versal
ACAP devices. This IP is user-configurable and exposes several parameters which can be
specified to configure a number of used AI Engine cores and PL resources or customize features.
The DPUCVDX8G is composed of both AI Engines and PL.

Chapter 2: Overview

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 6Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=6

The AI Engines in the DPUCVDX8G perform convolution. The AI Engine interface tiles transfer
data between the AI Engine and the PL. For high-performance calculation in some Versal devices,
the AI Engine groups are composed of multiple adjacent AI Engines. For a multi-batch
DPUCVDX8G architecture, each batch handler has a private AI Engine group.

The PL component includes a high-level scheduler module, a global memory for shared weights,
and batch handlers for Load, Save, Pool, Elt-wise. The scheduler and weights buffer are shared
logic between all DPUCVDX8G batch handlers. The Load and Save Module, Pooling and Elt-wise
Module, and local feature map storage are private for each batch handlers.

The top-level block diagram of DPUCVDX8G is shown in the following figure.

Figure 1: DPUCVDX8G Block Diagram

NoC

DPUCVDX8G

AIE

Batch 2
Batch 1

Batch 0

AIE Group0 AIE Group1 AIE Group2

AIE Interface

Local Memory

PoolLoad/Save Elt-wise
Shared Weights

Global
Memory

Scheduler

X25112-071921

Development Tools
Currently, the DPUCVDX8G only supports the Vitis™ flow to integrate the IP into hardware
platforms. The Vitis unified software platform 2020.2 or later is required for the Vitis flow.

Chapter 2: Overview

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=7

DPUCVDX8G Development Flow
The DPUCVDX8G requires a device driver which is included in the Vitis AI development kit. Free
developer resources can be obtained from the Vitis AI website. The Vitis AI User Guide (UG1414)
describes how to use the DPUCVDX8G with the Vitis AI tools. The basic development flow is
shown in the following figure. First, use the Vitis IDE to generate the bitstream. Then, download
the bitstream to the target board and install the related driver. For instructions on installing the
related driver and dependent libraries, see the Vitis AI User Guide (UG1414).

Figure 2: Hardware/Software Stack

Hardware Platform

DPU Driver/XRT

Vitis AI Runtime

Vitis AI APIs

Vivado/Vitis

DPU IP

Example NN Inference
Application

Third Party NN Inference
Application

bitfile

X22328-031620

Example System with DPUCVDX8G
The following figure shows an example system block diagram with the Versal devices using a
camera input. The DPUCVDX8G is integrated into the system through NoC and SmartConnect to
perform deep learning inference tasks such as image classification, object detection, and
semantic segmentation.

Chapter 2: Overview

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 8Send Feedback

https://github.com/Xilinx/Vitis-AI
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_3/ug1414-vitis-ai.pdf
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_3/ug1414-vitis-ai.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=8

Figure 3: Example System Block Diagram

CIPS

PMC

PS

Application Processing
Unit Arm Cortex-A72

APU

Real-time Processing Unit
Arm Cortex-R5F

RPU

Platform Management
Controller

PCIe with DMA and Cache
Coherency Interconnect

CPM

NoC

AIE Array

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

…
…

DDR Memory
Controller

HDMI_TX

MIPI CSI2

NoC

AIE AIE AIE

… … …

DDR4/
LPDDR4

AX
I I

nt
er

co
nn

ec
tCamera

HDMI

PL

DPUCVDX8G

X25110-071921

For information on Versal ACAP architecture, see Versal ACAP Technical Reference Manual
(AM011).

Vitis AI Development Kit
The Vitis AI development environment is used for AI inference on Xilinx hardware platforms. It
consists of optimized IP cores, tools, libraries, models, and example designs.

As shown in the following figure, the Vitis AI development kit consists of AI Compiler, AI
Quantizer, AI Optimizer, AI Profiler, AI Library, and Xilinx Runtime Library (XRT).

Chapter 2: Overview

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=9

Figure 4: Vitis AI Stack

Model Zoo Custom Models

AI Compiler | AI Quantizer | AI Optimizer

AI Profiler | AI Library

Xilinx Runtime library (XRT)

Deep Learning Processing Unit (DPU)

Vitis AI Models

Frameworks

Vitis AI
Development Kit

Overlay

User Application

X24893-120920

For more information of the Vitis AI development kit, see the Vitis AI User Guide in the Vitis AI
User Documentation (UG1431).

You can download the Vitis AI development kit for free from here.

Chapter 2: Overview

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 10Send Feedback

https://www.xilinx.com/html_docs/vitis_ai/1_3/zmw1606771874842.html
https://github.com/Xilinx/Vitis-AI
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=10

Chapter 3

Product Specification

Resource Utilization
The resource utilization of several DPUCVDX8G architectures is shown in the following table.
The C32 means that the CPB_N (number of AI Engine cores per batch handler) equals to 32, B3
means that there are three batch handlers, and L2S2 means that the LOAD_PARALLEL_IMG=2
and the SAVE_PARALLEL_IMG=2.

Table 1: Referenced Resources Utilization of Different DPUCVDX8G Architecture

Architecture AIE Cores LUT FF Block
RAM UltraRAM DSP PL NMU

C32B1L2S2 32 87858 116386 0 204 263 8

C32B2L2S2 64 157369 200910 0 268 521 10

C32B3L2S2 96 227420 285434 0 332 779 12

C32B4L2S2 128 312561 372098 0 396 1037 14

C32B5L2S2 160 387691 459083 0 460 1295 16

C32B6L2S2 192 441004 540421 644 411 1169 18

Performance (Theoretical)
The following table shows the peak theoretical performance of the DPUCVDX8G with
C32B1L2S2 architecture.

Table 2: Peak Theoretical Performance of the DPUCVDX8G

Architecture PL Frequency
(MHz) AIE Frequency (GHz) Peak Theoretical Performance

(TOPS)
C32B1L2S2 333 1.333 10.9

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=11

DPUCVDX8G Port Description
Ports are available from the DPUCVDX8G to the NoC and the PS. The interface from the PS to
the DPUCVDX8G PL component is used for register configuration. The interfaces from the
DPUCVDX8G PL component to the NoC are for image and weight transfers. The interfaces from
the PL component to the AI Engine component are for intermediate data exchange. The
DPUCVDX8G top-level interfaces are shown in the following figure.

Figure 5: Connections from DPUCVDX8G to PS and NoC

DPUCVDX8G PL

Batch Handler n

DPUCVDX8G AIE

AIE
Group 0

AIE
Group 1

AIE
Group n

PS

NoC

Mxx_WGT_AXIS Mxx_WGT_AXI

M00_BIAS_AXI

M00_INSTR_AXI

Permuter

Scheduler

Batch Handler 0

Mxx_IFM_AXIS

Mxx_OFM_AXIS

Mxx_IMG_AXI

S_AXI_Ctrl

AXI4-Stream AXI4-Lite AXI4-Full

X25538-071921

There are parameters to configure the DPUCVDX8G architecture. The data width and number of
different DPUCVDX8G interfaces differs for different architecture. A screen capture of
DPUCVDX8G IP catalog with C32B1 (CPB_N=32, Batch_N=1) architecture is shown as follows:

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=12

Figure 6: DPUCVDX8G Ports with C32B1 Arch

Table 3: DPUCVDX8G Port Description

Port Name Interface Type Data
Width I/O Description

m_axi_aclk Clock 1 I Input clock used for DPUCVDX8G general
logic.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=13

Table 3: DPUCVDX8G Port Description (cont'd)

Port Name Interface Type Data
Width I/O Description

m_axi_aresetn Reset 1 I Active-Low reset for DPUCVDX8G general
logic.

s_axi_aclk Clock 1 I AXI clock input for S_AXI_CONTROL.

s_axi_aresetn Reset 1 I Active-Low reset for S_AXI_CONTROL.

interrupt Interrupt 1 O Active-High interrupt output from the
DPUCVDX8G.

S_AXI_CONTROL AXI4-Lite 32 I/O 32-bit AXI4-Lite interface for the
DPUCVDX8G registers.

Sxx_OFM_AXIS AXI4-Stream 64 I Output feature map from the AI Engine side
to the PL side. The port number depends on
the DPUCVDX8G architecture and the batch
number.

Mxx_IFM_AXIS AXI4-Stream 64 or 128 O Input feature map from the PL side to the AI
Engine side. The data width depends on the
DPUCVDX8G architecture. The port number
depends on the DPUCVDX8G architecture
and batch number.

Mxx_WGT_AXIS AXI4-Stream 128 O Weights data from the PL side to the AI
Engine side. The port number depends on
the DPUCVDX8G architecture and batch
number.

M00_INSTR_AXI AXI4 32 I/O 32-bit memory mapped AXI interface for
DPU instructions.

M00_BIAS_AXI AXI4 128 I/O 128-bit memory mapped AXI interface for
loading bias data.

Mxx_IMG_AXI AXI4 128 I/O 128-bit memory mapped AXI interface for
loading image and uploading output. The
port number depends on the DPUCVDX8G
architecture and batch number.

Mxx_WGT_AXI AXI4 512 I/O 512-bit memory mapped AXI interface for
loading shared weights. The port number is
fixed at 4.

DPUCVDX8G Registers
The DPUCVDX8G implements registers in programmable logic. These registers are accessible
from the APU through the S_AXI_CONTROL interface. The following tables show the
DPUCVDX8G registers.

AP Registers
The AP registers are general registers for the Vitis flow. The description of the AP registers are
shown in the following table.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=14

Table 4: AP Registers

Name Offset Address Bits Filed Name Type Description
Control 0x00 [31:7] Reserved Reserved

[6] AP_RESET_DONE r The completion
flag of soft reset.
Active-High.

[5] AP_RESET r/w The soft reset for
DPUCVDX8G.
Active-High.

[4] Reserved Reserved

[3] AP_READY r Indicates when
the DPUCVDX8G is
ready for new
input data.
Cleared on
AP_DONE
asserted.

[2] AP_IDLE r Asserted when the
DPUCVDX8G is
idle.

[1] AP_DONE r Asserted when the
DPUCVDX8G has
completed
operation. Cleared
on read.

[0] AP_START r/w Asserted when
kernel can start
processing data.
Cleared on
handshake with
ap_done being
asserted.

Global Interrupt
Enable

0x04 [31:1] Reserved Reserved

[0] Global Interrupt
Enable

r/w When asserted,
along with the
DPUCVDX8G
Interrupt Enable
bit, the interrupt is
enabled.

Interrupt Enable
Register

0x08 [31:1] Reserved Reserved

[1] IER_AP_REAYD r/w The ap_ready of
IER.

[0] IER_AO_DONE r/w The ap_done of
IER.

Interrupt Status
Register

0x0C [31:1] Reserved Reserved

[1] ISR_AP_READY r/w The ap_ready of
ISR.

[0] ISR_AP_DONE r/w The ap_done of
ISR.

• Control (0x0000) Register: This register controls the operation of the core.

• Bit [0] of the Control register, ap_start, kicks off the IP from software. Writing 1 to this
bit, starts the IP to working.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=15

• Bit [1] of the Control register, ap_done, indicates when the IP has completed all
operations in the current transaction. A logic 1 on this signal indicates that the IP has
completed all operations in this transaction.

• Bit [2] of the Control register, ap_idle, signal indicates if the IP is operating or idle (no
operation). The idle state is indicated by logic 1. This signal is asserted Low once the IP
starts operating. This signal is asserted High when the IP completes operation and no
further operations are performed.

• Bit [3] of the Control register, ap_ready, signal indicates when the IP is ready for new
inputs. It is set to logic 1 when the IP is ready to accept new inputs, indicating that all input
reads for this transaction are completed. If the IP has no operations in the pipeline, new
reads are not performed until the next transaction starts. This signal is used to make a
decision on when to apply new values to the input ports and whether to start a new
transaction.

• Bit [5] of the Control register is the soft reset for the IP. When this is set, the IP is reset by
the software.

• Bit [6] of the Control register is the finished status of soft reset. This is asserted when the
soft reset is done.

• Global Interrupt Enable (0x0004) Register: This register is the master control for all interrupts.
Bit [0] can be used to enable/disable interrupts.

• Interrupt Enable (0x0008) Register: This register allows interrupts to be enabled selectively.
Currently, two interrupt sources are available, ap_done and ap_ready. ap_done is triggered
after the IP processing is complete, while ap_ready is triggered after the IP is ready to start
processing the next task.

• Interrupt Status (0x000C) Register: This is a dual purpose register. When an interrupt occurs,
the corresponding interrupt source bit is set in this register. In readback mode (Get status), the
interrupting source can be determined. In writeback mode (Clear interrupt), the requested
interrupt source bit is cleared.

DPUCVDX8G Configurable Registers
The DPUCVDX8G configurable registers are used for configuring Xilinx IPs.

The reg_dpu_instr_addr register is used to indicate the instruction address of the
DPUCVDX8G. The instruction address is a 44-bit signal consist of the 32-bit of INSTR_ADDR_L
and lower 12-bit of INSTR_ADDR_H. Actually the lower 12-bit of reg_dpu_instr_addr are
set to be zero in the DPUCVDX8G logic. Hence, the available instruction address for the
DPUCVDX8G ranges from 0x1000 to 0xFFF_FFFF_F000.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=16

The reg_dpu_base_addr register is used to indicate the address of input image and
parameters in external memory. The width of the DPUCVDX8G base address is 44 bits, so it can
support address ranges from 0 to 16 TB. All registers are 32 bits wide, so two registers are
required to compose the 44-bit wide base address. Reg BATCH0_ADDR0_L represents the lower
32 bits of base address0 of the DPUCVDX8G batch handler0 and BATCH0_ADDR0_H represents
the upper 12 bits of base address0. For each DPUCVDX8G batch handler, there are eight base
addresses. The DPUCVDX8G supports up to six batch handlers, so there are six groups of batch
base addresses.

The description of those registers are shown in the following table.

Table 5: DPUCVDX8G Configurable Registers

Name Offset
Address Bits Type Description

IRQ_CLR 0x40 [31:1] Reserved

[0] r/w When asserted, the DPUCVDX8G interrupt is
cleared. The IRQ_CLR will be cleared after the
interrupt is cleared.

INSTR_ADDR_L 0x50 [31:0] r/w The lower 32-bit of start address for fetching
instructions from an external memory.

INSTR_ADDR_L 0x54 [31:12] Reserved

[11:0] r/w The higher 12-bit of start address for fetching
instructions from an external memory.

BATCH0_ADDR0_L 0x200 [31:0] r/w The lower 32-bit base address0 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR0_H 0x204 [11:0] r/w The higher 12-bit base address0 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR1_L 0x208 [31:0] r/w The lower 32-bit base address1 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR1_H 0x20c [11:0] r/w The higher 12-bit base address1 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR2_L 0x210 [31:0] r/w The lower 32-bit base address2 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR2_H 0x214 [11:0] r/w The higher 12-bit base address2 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR3_L 0x218 [31:0] r/w The lower 32-bit base address3 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR3_H 0x21c [11:0] r/w The higher 12-bit base address3 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR4_L 0x220 [31:0] r/w The lower 32-bit base address4 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR4_H 0x224 [11:0] r/w The higher 12-bit base address4 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR5_L 0x228 [31:0] r/w The lower 32-bit base address5 of batch handler0
for loading and saving image and weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=17

Table 5: DPUCVDX8G Configurable Registers (cont'd)

Name Offset
Address Bits Type Description

BATCH0_ADDR5_H 0x22c [11:0] r/w The higher 12-bit base address5 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR6_L 0x230 [31:0] r/w The lower 32-bit base address6 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR6_H 0x234 [11:0] r/w The higher 12-bit base address6 of batch
handler0 for loading and saving image and
weights.

BATCH0_ADDR7_L 0x238 [31:0] r/w The lower 32-bit base address7 of batch handler0
for loading and saving image and weights.

BATCH0_ADDR7_H 0x23c [11:0] r/w The higher 12-bit base address7 of batch
handler0 for loading and saving image and
weights.

BATCH1_ADDR0_L 0x240 [31:0] r/w The lower 32-bit base address0 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR0_H 0x244 [11:0] r/w The higher 12-bit base address0 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR1_L 0x248 [31:0] r/w The lower 32-bit base address1 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR1_H 0x24c [11:0] r/w The higher 12-bit base address1 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR2_L 0x240 [31:0] r/w The lower 32-bit base address2 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR2_H 0x244 [11:0] r/w The higher 12-bit base address2 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR3_L 0x248 [31:0] r/w The lower 32-bit base address3 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR3_H 0x24c [11:0] r/w The higher 12-bit base address3 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR4_L 0x250 [31:0] r/w The lower 32-bit base address4 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR4_H 0x254 [11:0] r/w The higher 12-bit base address4 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR5_L 0x268 [31:0] r/w The lower 32-bit base address5 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR5_H 0x26c [11:0] r/w The higher 12-bit base address5 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR6_L 0x270 [31:0] r/w The lower 32-bit base address6 of batch handler1
for loading and saving image and weights.

BATCH1_ADDR6_H 0x274 [11:0] r/w The higher 12-bit base address6 of batch
handler1 for loading and saving image and
weights.

BATCH1_ADDR7_L 0x278 [31:0] r/w The lower 32-bit base address7 of batch handler1
for loading and saving image and weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=18

Table 5: DPUCVDX8G Configurable Registers (cont'd)

Name Offset
Address Bits Type Description

BATCH1_ADDR7_H 0x27c [11:0] r/w The higher 12-bit base address7 of batch
handler1 for loading and saving image and
weights.

BATCH2_ADDR0_L 0x280 [31:0] r/w The lower 32-bit base address0 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR0_H 0x284 [11:0] r/w The higher 12-bit base address0 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR1_L 0x288 [31:0] r/w The lower 32-bit base address1 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR1_H 0x28c [11:0] r/w The higher 12-bit base address1 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR2_L 0x290 [31:0] r/w The lower 32-bit base address2 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR2_H 0x294 [11:0] r/w The higher 12-bit base address2 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR3_L 0x298 [31:0] r/w The lower 32-bit base address3 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR3_H 0x29c [11:0] r/w The higher 12-bit base address3 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR4_L 0x2a0 [31:0] r/w The lower 32-bit base address4 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR4_H 0x2a4 [11:0] r/w The higher 12-bit base address4 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR5_L 0x2a8 [31:0] r/w The lower 32-bit base address5 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR5_H 0x2ac [11:0] r/w The higher 12-bit base address5 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR6_L 0x2b0 [31:0] r/w The lower 32-bit base address6 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR6_H 0x2b4 [11:0] r/w The higher 12-bit base address6 of batch
handler2 for loading and saving image and
weights.

BATCH2_ADDR7_L 0x2b8 [31:0] r/w The lower 32-bit base address7 of batch handler2
for loading and saving image and weights.

BATCH2_ADDR7_H 0x2bc [11:0] r/w The higher 12-bit base address7 of batch
handler2 for loading and saving image and
weights.

BATCH3_ADDR0_L 0x2c0 [31:0] r/w The lower 32-bit base address0 of batch handler0
for loading and saving image and weights.

BATCH3_ADDR0_H 0x2c4 [11:0] r/w The higher 12-bit base address0 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR1_L 0x2c8 [31:0] r/w The lower 32-bit base address1 of batch handler3
for loading and saving image and weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=19

Table 5: DPUCVDX8G Configurable Registers (cont'd)

Name Offset
Address Bits Type Description

BATCH3_ADDR1_H 0x2cc [11:0] r/w The higher 12-bit base address1 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR2_L 0x2d0 [31:0] r/w The lower 32-bit base address2 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR2_H 0x2d4 [11:0] r/w The higher 12-bit base address2 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR3_L 0x2d8 [31:0] r/w The lower 32-bit base address3 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR3_H 0x2dc [11:0] r/w The higher 12-bit base address3 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR4_L 0x2e0 [31:0] r/w The lower 32-bit base address4 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR4_H 0x2e4 [11:0] r/w The higher 12-bit base address4 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR5_L 0x2e8 [31:0] r/w The lower 32-bit base address5 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR5_H 0x2ec [11:0] r/w The higher 12-bit base address5 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR6_L 0x2f0 [31:0] r/w The lower 32-bit base address6 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR6_H 0x2f4 [11:0] r/w The higher 12-bit base address6 of batch
handler3 for loading and saving image and
weights.

BATCH3_ADDR7_L 0x2f8 [31:0] r/w The lower 32-bit base address7 of batch handler3
for loading and saving image and weights.

BATCH3_ADDR7_H 0x2fc [11:0] r/w The higher 12-bit base address7 of batch
handler3 for loading and saving image and
weights.

BATCH4_ADDR0_L 0x300 [31:0] r/w The lower 32-bit base address0 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR0_H 0x304 [11:0] r/w The higher 12-bit base address0 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR1_L 0x308 [31:0] r/w The lower 32-bit base address1 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR1_H 0x30c [11:0] r/w The higher 12-bit base address1 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR2_L 0x310 [31:0] r/w The lower 32-bit base address2 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR2_H 0x314 [11:0] r/w The higher 12-bit base address2 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR3_L 0x318 [31:0] r/w The lower 32-bit base address3 of batch handler4
for loading and saving image and weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=20

Table 5: DPUCVDX8G Configurable Registers (cont'd)

Name Offset
Address Bits Type Description

BATCH4_ADDR3_H 0x31c [11:0] r/w The higher 12-bit base address3 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR4_L 0x320 [31:0] r/w The lower 32-bit base address4 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR4_H 0x324 [11:0] r/w The higher 12-bit base address4 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR5_L 0x328 [31:0] r/w The lower 32-bit base address5 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR5_H 0x32c [11:0] r/w The higher 12-bit base address5 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR6_L 0x330 [31:0] r/w The lower 32-bit base address6 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR6_H 0x334 [11:0] r/w The higher 12-bit base address6 of batch
handler4 for loading and saving image and
weights.

BATCH4_ADDR7_L 0x338 [31:0] r/w The lower 32-bit base address7 of batch handler4
for loading and saving image and weights.

BATCH4_ADDR7_H 0x33c [11:0] r/w The higher 12-bit base address7 of batch
handler4 for loading and saving image and
weights.

BATCH5_ADDR0_L 0x340 [31:0] r/w The lower 32-bit base address0 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR0_H 0x344 [11:0] r/w The higher 12-bit base address0 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR1_L 0x348 [31:0] r/w The lower 32-bit base address1 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR1_H 0x34c [11:0] r/w The higher 12-bit base address1 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR2_L 0x350 [31:0] r/w The lower 32-bit base address2 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR2_H 0x354 [11:0] r/w The higher 12-bit base address2 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR3_L 0x358 [31:0] r/w The lower 32-bit base address3 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR3_H 0x35c [11:0] r/w The higher 12-bit base address3 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR4_L 0x360 [31:0] r/w The lower 32-bit base address4 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR4_H 0x364 [11:0] r/w The higher 12-bit base address4 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR5_L 0x368 [31:0] r/w The lower 32-bit base address5 of batch handler5
for loading and saving image and weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=21

Table 5: DPUCVDX8G Configurable Registers (cont'd)

Name Offset
Address Bits Type Description

BATCH5_ADDR5_H 0x36c [11:0] r/w The higher 12-bit base address5 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR6_L 0x370 [31:0] r/w The lower 32-bit base address6 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR6_H 0x374 [11:0] r/w The higher 12-bit base address6 of batch
handler5 for loading and saving image and
weights.

BATCH5_ADDR7_L 0x378 [31:0] r/w The lower 32-bit base address7 of batch handler5
for loading and saving image and weights.

BATCH5_ADDR7_H 0x37c [11:0] r/w The higher 12-bit base address7 of batch
handler5 for loading and saving image and
weights.

Chapter 3: Product Specification

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=22

Chapter 4

Designing with the Core
This section includes guidelines and additional information to facilitate designing with the core.

Hardware Architecture
The DPUCVDX8G is composed of the PL and the AI Engine. The AI Engine is used for the
convolution operation in neural networks. Data moving, instruction scheduler, pooling, element-
wise sum, and depth-wise convolution are executed in the PL.

The DPUCVDX8G can be set up with multiple batch handlers. For each batch handler, there is a
corresponding AI Engine array and related AI Engine interface tile resources. On the PL side, the
DPUCVDX8G is split into two parts: batch handler and shared logic. The batch handler is mainly
for the processing of the feature map, such as loading, saving, pooling, etc. The ALU module in
the batch handler can process the pooling, element-wise, and depth-wise convolution operations
for the feature maps. Feature maps are stored in the IMG BANK which is composed of the on-
chip ram. The image sender and weights sender modules are used for preparing the data for the
AI Engine array. The shared logic in the PL component includes the Permuter module and the
Scheduler module. The scheduler fetches and dispatches instructions from the DPUCVDX8G and
transfers them to the batch handler and the Permuter module. The Permuter module loads the
weights and bias from the NoC and sends the specific weights data to the AI Engine array for
each calculation iteration.

After starting up, the DPUCVDX8G fetches instructions from the NoC to control the operation
of the computing engine. The instructions are generated by the Vitis™ AI compiler, where
substantial optimizations are performed.

On-chip memory is used to buffer input, intermediate, and output data to achieve high-
throughput and efficiency. The data is reused to reduce the external memory bandwidth. A
deeply pipe-lined design is used for the computing engine.

The detailed hardware architecture of the DPUCVDX8G is shown in the following figure.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=23

Figure 7: Hardware Architecture of the DPUCVDX8G

DPUCVDX8G

Permuter

AIE

AIE Group 0

Handler1

Data Mover

Weights/Bias
Sender

IMG_BANK

NoC

Data Mover

Scheduler

Shared Weights

AIE Group 1

ALU Image
Sender/Receiver

AIE Interface

Handler0

X25111-071421

DPUCVDX8G Feature Support
The DPUCVDX8G provides user-configurable parameters to optimize resource usage and
customize features. Different configurations can be selected for DSP slices, LUT, block RAM, and
Ultra RAM usage based on the amount of available programmable logic resources. There are also
options for additional functions, such as channel augmentation, average pooling, and depthwise
convolution. Furthermore, there is an option to configure the number of batch handlers of the
DPUCVDX8G that is instantiated in a single DPUCVDX8G IP. The deep neural network features
and the associated parameters supported by the DPUCVDX8G are shown in the following table.

A configuration file named arch.json is generated while integrating the DPUCVDX8G in using
the Vitis™ accelerated flow. The arch.json file is used by the Vitis AI Compiler for model
compilation. For more information on the Vitis AI Compiler, refer to the Vitis AI User Guide
(UG1414). In the Vitis accelerated flow, the arch.json file is located at $TRD_HOME/
vitis_prj/package_out/sd_card/arch.json.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 24Send Feedback

https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_3/ug1414-vitis-ai.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=24

Table 6: Deep Neural Network Features and Parameters Supported by the
DPUCVDX8G

Features Description Range
Convolution Kernel Sizes kernel_w: 1~16

kernel_h: 1~16
kernel_h * kernel_w <= 64

Strides stride_w: 1~8
stride_h : 1~8

Padding_w 0~(kernel_w-1)

Padding_h 0~(kernel_h-1)

Input Size Arbitrary

Input Channel 1~256 * channel_parallel

Output Channel 1~256 * channel_parallel

Activation ReLU, ReLU6, LeakyReLU, PReLU, Hard Sigmoid and Hard
Swish

Dilation dilation * input_channel ≤ 256 * channel_parallel &&
stride_w == 1 && stride_h == 1

Constraint* kernel_w *kernel_h * (ceil(input_channel /
channel_parallel)) <= bank_depth/2

Depthwise Convolution Kernel Sizes kernel_w: 1~256
kernel_h: 1~256

Strides stride_w: 1~8
stride_h: 1~8

Padding pad_w: 0~255
pad_h: 0~255

Input Size Arbitrary

Input Channel 1~256 * channel_parallel

Output Channel 1~256 * channel_parallel

Activation ReLU, ReLU6, LeakyReLU, PReLU, Hard Sigmoid, and Hard
Swish

Dilation dilation * input_channel ≤ 256 * channel_parallel &&
stride_w == 1 && stride_h == 1

Constraint* kernel_w *kernel_h * (ceil(input_channel /
channel_parallel)) <= bank_depth/2

Deconvolution Kernel Sizes kernel_w: 1~256
kernel_h: 1~256

Stride_w (stride_w * output_channel) ≤ (256 * channel_parallel)

Stride_h Arbitrary

Padding_w 0~(kernel_w-1)

Padding_h 0~(kernel_h-1)

Input Size Arbitrary

Input Channel 1~256 * channel_parallel

Output Channel 1~256 * channel_parallel

Activation ReLU, ReLU6, LeakyReLU, PReLU, Hard Sigmoid, and Hard
Swish

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=25

Table 6: Deep Neural Network Features and Parameters Supported by the
DPUCVDX8G (cont'd)

Features Description Range
Max Pooling Kernel Sizes kernel_w: 1~256

kernel_h: 1~256

Strides stride_w: 1~8
stride_h: 1~8

Padding pad_w: 0~255
pad_h: 0~255

Average Pooling Kernel Sizes kernel_w: 1~256
kernel_h: 1~256

Strides stride_w: 1~8
stride_h: 1~8

Padding pad_w: 0~255
pad_h: 0~255

Elementwise-Sum Input channel 1~256 * channel_parallel

Input size Arbitrary

Feature Map Number 1~4

Elementwise-Multiply Input channel 1~256 * channel_parallel

Input size Arbitrary

Feature Map Number 2

Concat Output channel 1~256 * channel_parallel

Reorg Strides stride * stride * input_channel ≤ 256 * channel_parallel

Batch Normalization - -

Fully Connected (FC) Input_channel Input_channel ≤ 2048 * channel_parallel

Output_channel Arbitrary

Notes:
1. The parameter, channel_parallel, is determined by the DPUCVDX8G configuration.
2. In some neural networks, the FC layer is connected with a Flatten layer. The Vitis AI compiler automatically combines

the Flatten+FC to a global CONV2D layer, and the CONV2D kernel size is directly equal to the input feature map size of
Flatten layer. For this case, the input feature map size cannot exceed the limitation of the kernel size of CONV,
otherwise an error is generated during compilation.
This limitation occurs only in the Flatten+FC situation.

3. The bank_depth is the on-chip weight buffer depth. In the DPUCVDX8G, the bank_depth is 16384.

Configuration Options
The DPU can be configured with some predefined options, which includes the DPUCVDX8G
architecture, the batch number, and UltraRAM usage. These options allow you to set the DSP
slice, LUT, block RAM, and UltraRAM usage.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=26

BATCH_N

The BATCH_N parameter determines the number of batch handlers integrated in the
DPUCVDX8G IP. This parameter supports a range of values from 1 to 6. A higher batch handler
number denotes a better performance as well as more AI Engine cores and PL resources. You can
balance the performance and resources according to your applications.

UBANK_IMG_N

There are two kinds of on-chip memory resources in Versal devices: block RAM and UltraRAM.
Each block RAM has a capacity of 36 Kb and each UltraRAM has a capacity of 288 Kb. The
number of available RAMs is device-dependent.

There are 16 IMG BANKs (128 KB per bank) in each DPUCVDX8G batch handler. Each IMG
BANK can be composed of block RAM or UltraRAM. The parameter UBANK_IMG_N determines
how many IMG BANKs are composed of UltraRAM. The remaining banks will be composed of
block RAM. This parameter is designed to flexibly use the on-chip memory resources.

UBANK_WGT_N

There are 17 WGT BANKs (256 KB per bank) in the DPUCVDX8G irrespective of the number of
batch handler. Each WGT BANK can be composed of block RAM or UltraRAM. The parameter
UBANK_WGT_N determines how many WGT BANKs are composed of Ultra RAM. The
remaining banks will be composed of block RAM. This parameter is designed to flexibly use the
on-chip memory resources.

LOAD_PARALLEL_IMG

The LOAD_PARALLEL_IMG indicates the level of parallelism of loading images for each
DPUCVDX8G batch handler. Each parallelism uses one AXI4 interface for data transmission.
Hence, the number of M_IMG_AXI ports of the DPUCVDX8G depends on the
LOAD_PARALLEL_IMG. In this release, the supported value for this parameter is limited to two.
A higher parallelism means a larger throughput for loading an image and a larger bandwidth
requirement, and therefore a higher PL resource usage.

SAVE_PARALLEL_IMG

The SAVE_PARALLEL_IMG indicates level of parallelism of saving images for each DPUCVDX8G
batch handler. Each instance uses one AXI4 interface for data transmission. The save module
uses the write channel of the AXI4 interface and the load module uses the read channel of the
AXI4 interface.

In this release, the supported value for this parameter is limited to two. A higher parallelism
means a larger throughput for loading an image and a larger bandwidth requirement, and
therefore a higher PL resource usage.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=27

Note: The SAVE_PARALLEL_IMG cannot be set larger than the LOAD_PARALLEL_IMG. Currently, the
SAVE_PARALLEL_IMG value is limited to two.

Clocking
There are three clock domains in the DPUCVDX8G IP:

• s_axi_aclk for register configuration.

• m_axi_aclk for general logic control in the DPUCVDX8G PL component.

• s00_aie_aclk for the AI Engine component.

The two input clocks on the PL component can each be configured at different frequencies
independently. Generally, the s_axi_aclk is set at a lower frequency to obtain a better timing
closure. Therefore, the corresponding reset for the two input clocks must be configured correctly.

The s00_aie_aclk is the output clock of the AI Engine module. This clock is output to the NoC
for data transmission between the AI Engine and the NoC. The frequency of s00_aie_aclk can
be set in the Vitis flow.

Clock Domains

The following figure shows the three clock domains.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=28

Figure 8: Clock Domains in the DPUCVDX8G

DPUCVDX8G PL

Register
Configuration

DPUCVDX8G AIE

AXI Data
Transmission

AIE Data
Transformation

ALU

AIE Interface

AIE
Group

AIE
Group

PS

NoC

s_axi_aclk

m_axi_aclk

m_axi_aclk s00_aie_aclk

s_axi_aclk

m_axi_aclk

X25137-071921

• s_axi_aclk: The s_axi_aclk is used for the register configuration module. This module
receives the DPUCVDX8G configuration though the S_AXI_CONTROL interface. The DPU
configuration registers are updated at a very low frequency and most of those registers are set
at the start of a task. It is recommended to use a frequency of 100 MHz for the S-AXI clock.

• m_axi_aclk: The m_axi_aclk is used for most of the logic in the PL component except for
the register configuration module. The m_axi_aclk is also used for the data transmission
between the DPUCVDX8G PL and the NoC. The m_axi_aclk is the associated clock for all
the AXI4 master interface and AXI4-Stream interface from the PL component. The
recommended frequency for this clock is 333 MHz.

• s00_aie_aclk: The s00_aie_aclk is the working clock for the AI Engine interface and
the AI Engine array. Generally, the frequency of s00_aie_aclk should set as four times of
the frequency of m_axi_aclk. The frequency of s00_aie_aclk can be set in the
postlink.tcl file in the Vitis flow.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=29

Resets
There are two input clocks for the DPUCVDX8G PL, and each clock has a corresponding reset.
Each reset must be synchronous to its corresponding clock. If the related clocks and resets are
not synchronized, the DPUCVDX8G might not work properly.

The output clock on the AI Engine component does not have a corresponding reset signal.

Chapter 4: Designing with the Core

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=30

Chapter 5

Example Design

Vitis DPUCVDX8G TRD Flow
The DPUCVDX8G targeted reference design (TRD) provides instructions on how to integrate the
DPUCVDX8G on the Versal™ ACAP platform to build and run deep neural network applications.
The TRD uses the Vitis™ flow for building the hardware design and the Yocto PetaLinux flow for
software design.

For the Vitis DPU TRD flow, refer to https://github.com/Xilinx/Vitis-AI/tree/master/dsa/XVDPU-
TRD.

This tutorial contains the following information:

1. Setting up the VCK190 evaluation board.

2. Building and running the TRD with VCK190 platform on the Vitis unified software platform
2020.2.

Chapter 5: Example Design

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 31Send Feedback

https://github.com/Xilinx/Vitis-AI/tree/master/dsa/XVDPU-TRD
https://github.com/Xilinx/Vitis-AI/tree/master/dsa/XVDPU-TRD
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=31

Appendix A

Upgrading
This appendix is not applicable for the first release of the core.

Appendix A: Upgrading

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=32

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix B: Additional Resources and Legal Notices

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 33Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=33

1. Versal ACAP Technical Reference Manual (AM011)

2. Versal ACAP AI Engine Architecture Manual (AM009)

3. VCK190 Evaluation Board User Guide (UG1366)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
07/22/2021 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Appendix B: Additional Resources and Legal Notices

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=vck190;d=ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=34

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix B: Additional Resources and Legal Notices

PG389 (v1.0) July 22, 2021 www.xilinx.com
DPUCVDX8G Product Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG389&Title=DPUCVDX8G%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=35

	DPUCVDX8G for Versal ACAPs
	Table of Contents
	Ch. 1: Introduction
	Features
	IP Facts

	Ch. 2: Overview
	Navigating Content by Design Process
	Core Overview
	Development Tools
	DPUCVDX8G Development Flow

	Example System with DPUCVDX8G
	Vitis AI Development Kit

	Ch. 3: Product Specification
	Resource Utilization
	Performance (Theoretical)
	DPUCVDX8G Port Description
	DPUCVDX8G Registers
	AP Registers
	DPUCVDX8G Configurable Registers

	Ch. 4: Designing with the Core
	Hardware Architecture
	DPUCVDX8G Feature Support
	Configuration Options
	Clocking
	Resets

	Ch. 5: Example Design
	Vitis DPUCVDX8G TRD Flow

	Appx. A: Upgrading
	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

