
Vitis Model Composer User
Guide

UG1483 (v2021.1) June 16, 2021

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/16/2021 Version 2021.1

Document Title and Revision Summary Changed title to ''Vitis Model Composer User Guide''

General updates General updates for release 2021.1

Revision History

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..5
Navigating Content by Design Process.. 5
Introduction... 6
What's New and Limitations.. 7
Installation... 8
Supported MATLAB Versions and Operating Systems... 9

Chapter 2: HDL Library.. 11
Introduction... 11
Hardware Design Using HDL Library..19
Performing Analysis in Model Composer...118
Using Hardware Co-Simulation... 137
Importing HDL Modules...160
Compilation Types for HDL Library designs.. 182
Creating Custom Compilation Targets... 192
GUI Utilities for HDL Blocksets.. 203

Chapter 3: HLS Library... 220
Introduction... 220
Creating a Model Composer Design...221
Importing C/C++ Code as Custom Blocks.. 238
Generating Outputs.. 270
Simulating and Verifying Your Design..294
Select Target Device or Board..298

Chapter 4: AI Engine Library...300
Introduction... 300
Model Composer for AI Engine Development...302
Creating an AI Engine Design using Model Composer.. 305
Setting Signal Size to Avoid Buffer Overflow... 353
Simulation and Code Generation..357

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=3

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks.............378
AI Engine/Programmable Logic Integration... 378
Connecting Source and Sink Blocks..392

Chapter 6: Xilinx Toolbox..395
Xilinx Toolbox Block Description .. 395
HDL Blockset..407
HLS Blockset...735
AI Engine Blockset...840

Appendix A: Model Composer Utilities and Programmatic Access 872
Model Composer Utilities...872
Programmatic Access... 911

Appendix B: Additional Resources and Legal Notices........................... 936
Xilinx Resources...936
Documentation Navigator and Design Hubs.. 936
References..936
Please Read: Important Legal Notices... 937

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=4

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• AI Engine Development: Creating the AI Engine graph and kernels, library use, simulation
debugging and profiling, and algorithm development. Also includes the integration of the PL
and AI Engine kernels. Topics in this document that apply to this design process include:

• Creating an AI Engine Design using Model Composer

• Simulation and Code Generation

• Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Hardware Design Using HDL Library

• Creating a Model Composer Design

• Compilation Types for HDL Library designs

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• Performing Analysis in Model Composer

• Using Hardware Co-Simulation

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 5Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=5

Introduction
Vitis™ Model Composer is a model-based design tool that enables rapid design exploration
within the Simulink environment and accelerates the path to production on Xilinx devices
through automatic code generation. This provides a library of performance-optimized blocks for
design and implementation of algorithms on Xilinx devices using HDL, HLS, and AI Engine blocks.

Figure 1: Simulink Library Browser

You can focus on expressing algorithms using blocks from these libraries as well as custom user-
imported blocks, without worrying about implementation specifics, and leverage all the
capabilities of Simulink’s graphical environment for algorithm design, simulation, and verification.

The AI Engine library in Vitis Model Composer includes:

• Blocks that support connection between the AI Engine and the Xilinx HDL blockset.

• Block to import HLS kernels which can be targeted to the PL portion of Versal devices.

• Blocks to import kernels and graphs which can be targeted to the AI Engine portion of Versal™
ACAP devices.

• Configurable AI Engine functions such as FIR and FFT.

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=6

The HDL library in Vitis Model Composer contains DSP building blocks. These blocks include the
basic element blocks such as adders, multipliers, and registers. Also included are a set of complex
DSP building blocks such as FFTs, filters, and memories. These blocks leverage the Xilinx IP core
generators to deliver optimized results for the selected device.

The HLS library in Vitis Model Composer offers predefined blocks which includes functional
blocks for Math, Linear Algebra, Logic, and Bit-wise operations. The tool transforms your
algorithmic specifications to production-quality implementation through automatic optimizations
that extend the Xilinx High Level Synthesis technology.

The rest of this document describes information on features and specific blocks related to the:

• HDL Library: Refer to Chapter 2: HDL Library

• HLS Library: Refer to Chapter 3: HLS Library

• AI Engine Library: Refer to Chapter 4: AI Engine Library

What's New and Limitations
System Generator - the previous standalone design environment to develop DSP algorithms and
generate HDL as an output - is now part of Vitis™ Model Composer. As a result of this product
unification, HLS, AI Engine, and System Generator libraries in the Xilinx toolbox have been
merged to develop algorithms in a single MATLAB session.

The HDL Library in the Xilinx Toolbox contains all the library blocks previously contained in the
System Generator blockset. Any existing System Generator design can be opened in Vitis Model
Composer. Furthermore, you can develop new algorithms using the HDL library similarly to using
the System Generator tool.

For information related to what is new for a specific release of Model Composer, refer to What's
New at https://www.xilinx.com/products/design-tools/vivado/integration/model-
composer.html#new.

In addition, while Model Composer is a toolbox built onto the MathWorks Simulink environment,
there are certain features of Simulink that are not supported in Model Composer. The following is
a list of some of the unsupported features:

• Simulink Performance Advisor.

• Model referencing.

• Variant subsystems.

• Model Composer blocks do not support Simulink fixed-point types and only support Xilinx®

fixed-point types.

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 7Send Feedback

https://www.xilinx.com/products/design-tools/vivado/integration/model-composer.html#new
https://www.xilinx.com/products/design-tools/vivado/integration/model-composer.html#new
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=7

• Fixed-point designer does not integrate with Model Composer.

• Accelerator mode and Rapid Accelerator mode.

Installation
Downloading

Vitis™ Model Composer is part of Vivado® as well as the Vitis software platform, which can be
downloaded from the Xilinx website. The AI Engine library is available only in the Vitis software
platform, it is not part of the Vivado installation.

The Vitis Model Composer tool is selected by default in the Xilinx Unified Installer Window
irrespective of whether you choose Vitis or Vivado as a product. The following figure shows the
Vitis installer window and the Vitis Model Composer install option.

Figure 2: Vitis Installer

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 8Send Feedback

https://www.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=8

Launching Vitis Model Composer

You can launch the Vitis Model Composer tool directly from the desktop or from the command
line. Double click the Vitis Model Composer icon to launch it from the Start Menu in Windows,
or use the following command from the command prompt.

model_composer

TIP: The command-line use of Vitis Model Composer requires that the command shell has been configured
as follows. You must change directory to <install_dir>/Model_Composer/<version>  and run
the settings64-Model_Composer.bat  (or .sh ) file. Where <install_dir>  is the installation
folder and <version>  is the specific version of the tool. MATLAB opens, and the HLS, HDL and AI
Engine libraries and features are overloaded onto this environment.

Vitis Model Composer supports the latest releases of MATLAB. For more information on
Supported MATLAB versions and operating systems, refer to Supported MATLAB Versions and
Operating Systems. If you have multiple versions of MATLAB installed on your system, the first
version found in your PATH will be used by the tool. You can edit the PATH to move the
preferred version of MATLAB to precede other versions. You can also direct the tool to open a
specific version of the tool using the -matlab option as follows:

model_composer -matlab C:\Progra~1\MATLAB\R2020a

TIP: When you specify the path to the MATLAB version, do not specify the full path to the executable
(bin/MATLAB ). The string C:\Progra~1\  is a shortcut to C:\Program Files\  which eliminates
spaces from the command path. The command-line use of the Vitis Model Composer tool requires that the
command shell has been properly configured as previously discussed.

After launching the tool, you will see the following in the MATLAB command window. Use these
links to access the documentation and product examples.

Figure 3: Documentation and Examples Links

Note: Model Composer simulation and code generation is not supported in Windows OS for designs that
include blocks from the AI Engine library.

Supported MATLAB Versions and Operating
Systems

Vitis Model Composer supports the following MATLAB versions:

• R2020a

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=9

• R2020b

• R2021a

The following operating systems are supported on x86 and x86-64 processor architectures:

• Windows 10 Pro and Enterprise: 10.0 1809 Update; 10.0 1903 Update; 10.0 1909
Update;10.0 2004 Update

• Red Hat Enterprise Workstation/Server 7: 7.6; 7.7; 7.8;7.9

• Ubuntu Linux: 16.04.5 LTS; 16.04.6 LTS; 18.04.1 LTS; 18.04.2 LTS; 18.04.3 LTS; 18.04.4 LTS;
18.04.5 LTS

• SUSE Enterprise Linux: 12; 12.4; 15.2

Note: SUSE Enterprise Linux OS is supported only for the HDL library.

Chapter 1: Overview

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=10

Chapter 2

HDL Library

Introduction
Vitis™ Model Composer provides the HDL blockset in Xilinx toolbox that enables the use of the
MathWorks model-based Simulink design environment for FPGA design. Previous experience
with Xilinx FPGAs or RTL design methodologies are not required when using the Model
Composer HDL blockset. Designs are captured in the DSP friendly Simulink modeling
enviornment using the HDL blockset. The Model Composer design can then be imported into a
Vivado IDE project using the IP catalog.

Figure 4: Model Composer HDL Design

Refer to the Vitis Model Composer Tutorial (UG1498) for hands-on lab exercises and step-by-step
instruction on how to create a model using HDL blockset and then import that model into a
Vivado IDE project.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=11

FIR Filter Generation
The HDL Blockset in Model Composer includes a FIR Compiler block that targets the dedicated
DSP48E1, DSP48E2, and DSP58 hardware resources in the 7 series, UltraScale™ and Versal™
devices respectively to create highly optimized implementations. Configuration options allow
generation of single rate, interpolation, decimation, Hilbert, and interpolated implementations.
Standard MATLAB® functions such as fir2 or the MathWorks FDA tool can be used to create
coefficients for the Xilinx® FIR Compiler.

Figure 5: FDA Tool Example

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=12

Support for MATLAB
The HDL Library in Model Composer consists of an MCode block that allows the use of non-
algorithmic MATLAB® for the modeling and implementation of simple control operations.

Figure 6: MCode Block Example

Hardware Co-Simulation
Model Composer provides accelerated simulation through hardware co-simulation. Model
Composer will automatically create a hardware simulation token for a design captured in the
Xilinx® HDL blockset that will run on supported hardware platforms. This hardware will co-
simulate with the rest of the Simulink® system to provide up to a 1000x simulation performance
increase.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=13

Figure 7: Hardware Co-Simulation

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=14

System Integration Platform
Model Composer provides a system integration platform for the design of DSP FPGAs that
allows the RTL, Simulink®, MATLAB® and C/C++ components of a DSP system to come together
in a single simulation and implementation environment. Model Composer supports a black box
block that allows RTL to be imported into Simulink and co-simulated with either Questa or
Xilinx® Vivado® simulator, and provides a Vitis™ HLS block that allows integration and simulation
of C/C++ sources.

Post-Installation Tasks

Compiling Xilinx HDL Libraries

The Xilinx tool that compiles libraries for use in Questa SE is named compile_simlib.

To compile the Xilinx HDL libraries, launch Vivado and then enter compile_simlib in the
Vivado Tcl console.

Note: You can enter compile_simlib -help in the Vivado Tcl Console for more details on executing
this Tcl command.

Managing the Model Composer HDL block Cache

System Generator incorporates a disk cache to speed up the iterative design process. The cache
does this by tagging and storing files related to simulation and generation, then recalling those
files during subsequent simulation and generation rather than rerunning the time consuming
tools used to create those files.

Specifying Board Support in Model Composer HDL Blockset

When Model Composer is installed on your system as part of a Vivado Design Suite installation,
Model Composer will have access to any Xilinx® development boards installed with Vivado.

Additional boards from Xilinx partners are available and a Board Interface file that defines a
board (board.xml) can be downloaded from a partner website and installed as part of the
Vivado Design Suite. You can also create custom Board Interface files, as detailed in Appendix A,
Board Interface File, in the Vivado Design Suite User Guide: System-Level Design Entry (UG895).
Both Vivado and Model Composer must be configured to add partner boards and custom boards
to the repository of boards available for use.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=15

The procedure for configuring the Vivado Design Suite for use with boards is detailed in Using
the Vivado Design Suite Platform Board Flow in the Vivado Design Suite User Guide: System-Level
Design Entry (UG895). The Vivado Design Suite lets you create projects using Xilinx target design
platform boards (TDP), or user-specified boards that have been added to a board repository.
When you select a specific board, Vivado tools show information about the board, and enable
additional designer assistance as part of IP customization, and for IP integrator designs.

To configure Model Compser to use a partner board or custom board, you must add commands
to MATLAB®'s startup.m file (a file you create for commands to be executed when MATLAB
starts up).

To make a board available to your Simulink® models in Model Compsoer:

1. At the MATLAB command line, enter the command which startup.m to determine if your
MATLAB installation already has a startup.m file.

The which startup.m command searches through the folders in the MATLAB search path
to find a startup.m file. If there is a startup.m file in the search path, which
startup.m displays the full path for the file.

2. Proceed as follows:

• If your MATLAB installation does have a startup.m file, enter the command edit
startup.m at the command line to open the startup.m file for editing.

OR

• If your MATLAB installation does not have a startup.m file, create a startup.m file in a
folder in the MATLAB search path and open the file for editing.

The command path prints a listing of the folders in the search path.

3. Enter the following commands in your startup.m file:

addpath([getenv('XILINX_VIVADO') '/scripts/sysgen/matlab']);
xilinx.environment.setBoardFileRepos({'<path1>', '<path2>', '...'}];

where the addpath command specifies the location of the setBoardFileRepos utility
and setBoardFileRepos points MATLAB to the location of Board Interface files. <path>
is the path to a folder containing a Board Interface file (board.xml) and files referenced by
the board.xml file, such as part0_pins.xml and preset.xml. The <path> can also
specify a folder with multiple subdirectories, each containing a separate Board Interface file.

For example:

addpath([[getenv('XILINX_VIVADO')] '/scripts/sysgen/matlab']);
xilinx.environment.setBoardFileRepos({'C:/Data/userBoards', 'C:/Data/
otherBoards'});

4. Close the startup.m file (which is in a directory in the MATLAB search path) and close
Model Composer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=16

When you open Model Composer, each of the partner or custom boards is available as a target
board (and target Xilinx device) for your Model Composer design.

To determine what partner or custom boards are available in Model Composer, enter this
command in the MATLAB command window:

xilinx.environment.getBoardFiles

A listing of Board Interface files will display in the command window.

>> xilinx.environment.getBoardFiles

ans =

 'C:\Data\usrBrds\arty\C.0\board.xml'
 'C:\Data\usrBrds\basys3\C.0\board.xml'
 'C:\Data\usrBrds\cmod_a7\B.0\board.xml'
 'C:\Data\usrBrds\genesys2\H\board.xml'

You can also determine what partner or custom boards are available in Model Composer by
opening a Simulink® model and double-clicking the model's System Generator token. The added
boards will appear in the System Generator token properties dialog box as a Board selection:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=17

Figure 8: Board Selection

To add an additional board to your board repository, you can modify the
xilinx.environment.setBoardFileRepos line in your startup.m file to point to the
location of the new Board Interface file (board.xml). If you place the Board Interface file in a
subdirectory under a folder already specified in the
xilinx.environment.setBoardFileRepos line, the new board will be available the next
time you open Model Composer, without having to make any changes to the startup.m file.

Hardware Co-Simulation Support

If you have an FPGA development board, you may be able to take advantage of Model
Composer’s ability to use FPGA hardware co-simulation with Simulink® simulations. The Model
Composer software includes support for all Xilinx® Development Boards. Model Composer board
support packages can be downloaded from the Boards and Kits page on the Xilinx website.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 18Send Feedback

https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=18

UNC Paths Not Supported

Model Composer does not support UNC (Universal Naming Convention) paths. For example
Model Composer cannot operate on a design that is located on a shared network drive without
mapping to the drive first.

Hardware Design Using HDL Library
Model Composer is a system-level modeling tool that facilitates FPGA hardware design. It
extends Simulink® in many ways to provide a modeling environment that is well suited to
hardware design. The tool provides high-level abstractions that are automatically compiled into
an FPGA at the push of a button. The tool also provides access to underlying FPGA resources
through low-level abstractions, allowing the construction of highly efficient FPGA designs.

Design Flows Using Model Composer Describes several settings in which constructing designs in
Model Composer is useful.

System-Level Modeling in Model Composer Discusses Model Composer's ability to implement device-
specific hardware designs directly from a flexible, high-level,
system modeling environment.

Automatic Code Generation Discusses automatic code generation for Model Composer
designs using the HDL Library.

Compiling MATLAB into an FPGA Describes how to use a subset of the MATLAB programming
language to write functions that describe state machines
and arithmetic operators. Functions written in this way can
be attached to blocks in Model Composer HDL Library and
can be automatically compiled into equivalent HDL.

Importing a Model Composer HDL Design into a Bigger
System

Discusses how to take the VHDL netlist from a Model
Composer design and synthesize it in order to embed it into
a larger design. Also shows how VHDL created by Model
Composer can be incorporated into a simulation model of
the overall system.

Configurable Subsystems and Model Composer Explains how to use configurable Subsystems in Model
Composer. Describes common tasks such as defining
configurable Subsystems, deleting and adding blocks, and
using configurable Subsystems to import compilation
results into Model Composer designs.

Notes for Higher Performance FPGA Design Suggests design practices in Model Composer that lead to
an efficient and high-performance implementation in an
FPGA.

Using FDATool in Digital Filter Applications Demonstrates one way to specify, implement and simulate a
FIR filter using the FDATool block.

Multiple Independent Clocks Hardware Design The design can be partitioned into groups of Subsystem
blocks, where each Subsystem has a common cycle period,
independent of the cycle period of other Subsystems.

AXI Interface Provides an introduction to AMBA AXI4 and draws attention
to AMBA AXI4 details with respect to Model Composer

AXI4-Lite Slave Interface Generation Describes features in Model Composer that allow you to
create a standard AXI4-Lite interface for a Model Composer
module and then export the module to the Vivado® IP
catalog for later inclusion in a larger design using IP
integrator.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=19

Tailor Fitting a Platform Based Accelerator Design in Model
Composer

Describes how to develop an accelerator in Model
Composer which is part of a platform framework developed
in the Vivado IP Integrator.

Design Flows Using Model Composer
Model Composer can be useful in many settings. Sometimes you may want to explore an
algorithm without translating the design into hardware. Other times you might plan to use a
Model Composer design as part of something bigger. A third possibility is that a Model Composer
design is complete in its own right, and is to be used in FPGA hardware. This topic describes all
three possibilities.

Algorithm Exploration

Model Composer is particularly useful for algorithm exploration, design prototyping, and model
analysis. When these are the goals, you can use the tool to flesh out an algorithm in order to get
a feel for the design problems that are likely to be faced, and perhaps to estimate the cost and
performance of an implementation in hardware. The work is preparatory, and there is little need
to translate the design into hardware.

In this setting, you assemble key portions of the design without worrying about fine points or
detailed implementation. Simulink blocks and MATLAB M-code provide stimuli for simulations,
and for analyzing results. Resource estimation gives a rough idea of the cost of the design in
hardware. Experiments using hardware generation can suggest the hardware speeds that are
possible.

Once a promising approach has been identified, the design can be fleshed out. Model Composer
allows refinements to be done in steps, so some portions of the design can be made ready for
implementation in hardware, while others remain high-level and abstract. Model Composer's
facilities for hardware co-simulation are particularly useful when portions of a design are being
refined.

Implementing Part of a Larger Design

Often Model Composer is used to implement a portion of a larger design. For example, Model
Composer is a good setting in which to implement data paths and control, but is less well suited
for sophisticated external interfaces that have strict timing requirements. In this case, it may be
useful to implement parts of the design using Model Composer, implement other parts outside,
and then combine the parts into a working whole.

A typical approach to this flow is to create an HDL wrapper that represents the entire design,
and to use the Model Composer portion as a component. The non-Model Composer portions of
the design can also be components in the wrapper, or can be instantiated directly in the wrapper.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=20

Implementing a Complete Design

Many times, everything needed for a design is available inside Model Composer. For such a
design, pressing the Generate button instructs Model Composer to translate the design into
HDL, and to write the files needed to process the HDL using downstream tools. The files written
include the following:

• HDL that implements the design itself.

• An HDL test bench. The test bench allows results from Simulink simulations to be compared
against ones produced by a logic simulator.

• Files that allow the Model Composer HDL to be used as a Vivado IDE project.

For details concerning the files that Model Composer writes, see the topic Compilation Results.

Note to DSP Engineers

Model Composer extends Simulink to enable hardware design, providing high-level abstractions
that can be automatically compiled into an FPGA. Although the arithmetic abstractions are
suitable to Simulink (discrete time and space dynamical system simulation), Model Composer also
provides access to features in the underlying FPGA.

The more you know about a hardware realization (e.g., how to exploit parallelism and pipelining),
the better the implementation you’ll obtain. Using IP cores makes it possible to have efficient
FPGA designs that include complex functions like FFTs. Model Composer also makes it possible
to refine a model to more accurately fit the application.

Scattered throughout the Model Composer documentation are notes that explain ways in which
system parameters can be used to exploit hardware capabilities.

Note to Hardware Engineers

Model Composer does not replace hardware description language (HDL)-based design, but does
makes it possible to focus your attention only on the critical parts. By analogy, most DSP
programmers do not program exclusively in assembler; they start in a higher-level language like C,
and write assembly code only where it is required to meet performance requirements.

A good rule of thumb is this: in the parts of the design where you must manage internal hardware
clocks (e.g., using DDR or phased clocking), you should implement using HDL. The less critical
portions of the design can be implemented in Model Composer, and then the HDL and Model
Composer portions can be connected. Usually, most portions of a signal processing system do
not need this level of control, except at external interfaces. Model Composer provides
mechanisms to import HDL code into a design (see Importing HDL Modules) that are of
particular interest to the HDL designer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=21

Another aspect of Model Composer that is of interest to engineers who design using HDL is its
ability to automatically generate an HDL test bench, including test vectors. This aspect is
described in the topic HDL Testbench.

Finally, the hardware co-simulation interfaces described in the topic Using Hardware Co-
Simulation allow you to run a design in hardware under the control of Simulink, bringing the full
power of MATLAB and Simulink to bear for data analysis and visualization.

System-Level Modeling in Model Composer
Model Composer allows device-specific hardware designs to be constructed directly in a flexible
high-level system modeling environment. In a Model Composer design, signals are not just bits.
They can be signed and unsigned fixed-point numbers, and changes to the design automatically
translate into appropriate changes in signal types. Blocks are not just stand-ins for hardware.
They respond to their surroundings, automatically adjusting the results they produce and the
hardware they become.

Model Composer allows designs to be composed from a variety of ingredients. Data flow models,
traditional hardware description languages (VHDL and Verilog), and functions derived from the
MATLAB programming language, can be used side-by-side, simulated together, and synthesized
into working hardware. Model Composer HDL block simulation results are bit and cycle-accurate.
This means results seen in simulation exactly match the results that are seen in hardware. Model
Composer simulations are considerably faster than those from traditional HDL simulators, and
results are easier to analyze.

Model Composer HDL Blocksets Describes how Model Composer's HDL blocks are organized
in libraries, and how the blocks can be parameterized and
used.

Xilinx Commands that Facilitate Rapid Model Creation and
Analysis

Introduces Xilinx commands that have been added to the
Simulink pop-up menu that facilitate rapid Model Composer
model creation and analysis.

Signal Types Describes the data types used by Model Composer and
ways in which data types can be automatically assigned by
the tool.

Bit-True and Cycle-True Modeling Specifies the relationship between the Simulink-based
simulation of a Model Composer model and the behavior of
the hardware that can be generated from it.

Timing and Clocking Describes how clocks are implemented in hardware, and
how their implementation is controlled inside Model
Composer. Explains how Model Composer translates a
multirate Simulink model into working clock-synchronous
hardware.

Synchronization Mechanisms Describes mechanisms that can be used to synchronize data
flow across the data path elements in a high-level Model
Composer design, and describes how control path functions
can be implemented.

Block Masks and Parameter Passing Explains how parameterized systems and Subsystems are
created in Simulink.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=22

Model Composer HDL Blocksets

A Simulink® blockset is a library of blocks that can be connected in the Simulink block editor to
create functional models of a dynamical system. For system modeling, Model Composer HDL
library blocksets are used like other Simulink blocksets. The blocks provide abstractions of
mathematical, logical, memory, and DSP functions that can be used to build sophisticated signal
processing (and other) systems. There are also blocks that provide interfaces to other software
tools (e.g. FDATool, Questa) as well as the Model Composer code generation software.

Model Composer HDL blocks are bit-accurate and cycle-accurate. Bit-accurate blocks produce
values in Simulink that match corresponding values produced in hardware; cycle-accurate blocks
produce corresponding values at corresponding times.

Xilinx HDL Blockset

The Xilinx® HDL Blockset is a family of libraries that contain basic Model Composer HDL blocks.
Some blocks are low-level, providing access to device-specific hardware. Others are high- level,
implementing (for example) signal processing and advanced communications algorithms. The
libraries are described in the following table.

Library Description
Basic Elements Standard building blocks for digital logic.

DSP Digital signal processing (DSP) blocks.

Interfaces Blocks that support connection with Simulink blocks.

Logic and Bit Operations Blocks for performing logic and bit operations.

Memory Blocks that implement and access memories.

Signal Routing Blocks that support Routing signals.

Sources Blocks that generate signal data

Tools “Utility” blocks. For example, code generation (System
Generator token), resource estimation, HDL co-simulation,
etc.

User-Defined functions Blocks that support importing custom functions.

Xilinx Commands that Facilitate Rapid Model Creation and Analysis

Xilinx has added graphics commands to the Simulink® popup menu that will help you rapidly
create and analyze your Model Composer design. As shown below, you can access these
commands by right-clicking the Simulink model canvas and selecting the appropriate Xilinx
command:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=23

Figure 9: Xilinx Commands

Details on how to use these additional Xilinx commands are provided in the topics for each
individual command.

Signal Types

In order to provide bit-accurate simulation of hardware, HDL blocks operate on Boolean,
floating-point, and arbitrary precision fixed-point values. By contrast, the fundamental scalar
signal type in Simulink® is double precision floating point. The gateway blocks in the Model
Composer HDL library allow connection between HDL blocks in the Xilinx toolbox and blocks in
the Simulink library . The Gateway In converts a double precision signal into a Xilinx signal, and
the Gateway Out converts a Xilinx signal into double precision. Simulink® continuous time signals
must be sampled by the Gateway In block.

Most HDL blocks are polymorphic, i.e., they can deduce appropriate output types based on their
input types. When full precision is specified for a block in its parameters dialog box, Model
Composer chooses the output type to ensure no precision is lost. Sign extension and zero
padding occur automatically as necessary. User-specified precision is usually also available. This
allows you to set the output type for a block and to specify how quantization and overflow
should be handled. Quantization possibilities include unbiased rounding towards plus or minus
infinity, depending on sign, or truncation. Overflow options include saturation, truncation, and
reporting overflow as an error.

Note: Model Composer data types can be displayed by selecting Display → Signals & Ports → Port Data
Types in Simulink. Displaying data types makes it easy to determine precision throughout a model. If, for
example, the type for a port is Fix_11_9, then the signal is a two's complement signed 11-bit number
having nine fractional bits. Similarly, if the type is Ufix_5_3, then the signal is an unsigned 5-bit number
having three fractional bits.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=24

In the Model Composer portion of a Simulink model, every signal must be sampled. Sample times
may be inherited using Simulink's propagation rules, or set explicitly in a block customization
dialog box. When there are feedback loops, Model Composer is sometimes unable to deduce
sample periods and/or signal types, in which case the tool issues an error message. Assert blocks
must be inserted into loops to address this problem. It is not necessary to add assert blocks at
every point in a loop; usually it suffices to add an assert block at one point to “break” the loop.

Note: Simulink can display a model by shading blocks and signals that run at different rates with different
colors (Display → Sample Time → Colors in the Simulink pulldown menus). This is often useful in
understanding multirate designs.

Floating-Point Data Type

Many Model Composer HDL blocks across various libraries support the floating-point data type.

Model Composer uses the Floating-Point Operator v7.1 IP core to leverage the implementation
of operations such as addition/subtraction, multiplication, comparisons and data type conversion.

The floating-point data type support is in compliance with IEEE-754 Standard for Floating-Point
Arithmetic. Single precision, Double precision and Custom precision floating-point data types are
supported for design input, data type display and for data rate and type propagation (RTP) across
the supported HDL blocks.

IEEE-754 Standard for Floating-Point Data Type

As shown below, floating-point data is represented using one Sign bit (S), X exponent bits and Y
fraction bits. The Sign bit is always the most-significant bit (MSB).

Figure 10: Floating-Point Data

According to the IEEE-754 standard, a floating-point value is represented and stored in the
normalized form. In the normalized form the exponent value E is a biased/normalized value. The
normalized exponent, E, equals the sum of the actual exponent value and the exponent bias. In
the normalized form, Y-1 bits are used to store the fraction value. The F0 fraction bit is always a
hidden bit and its value is assumed to be 1.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=25

S represents the value of the sign of the number. If S is 0 then the value is a positive floating-
point number; otherwise it is negative. The X bits that follow are used to store the normalized
exponent value E and the last Y-1 bits are used to store the fraction/mantissa value in the
normalized form.

For the given exponent width, the exponent bias is calculated using the following equation:

Exponent_bias = 2(X - 1) - 1

Where X is the exponent bit width.

According to the IEEE standard, a single precision floating-point data is represented using 32 bits.
The normalized exponent and fraction/mantissa are allocated 8 and 24 bits, respectively. The
exponent bias for single precision is 127. Similarly, a double precision floating-point data is
represented using a total of 64 bits where the exponent bit width is 11 and the fraction bit width
is 53. The exponent bias value for double precision is 1023.

The normalized floating-point number in the equation form is represented as follows:

Normalized Floating-Point Value = (-1)S x F0.F1F2 . FY-2FY-1 x (2)E

The actual value of exponent (E_actual) = E - Exponent_bias. Considering 1 as the value for the
hidden bit F0 and the E_actual value, a floating-point number can be calculated as follows:

FP_Value = (-1)S x 1.F1F2 . FY-2FY-1 x (2)(E_actual)

Floating-Point Data Representation in Model Composer

The HDL Gateway In block supports Boolean, Fixed-point, and Floating-point data types as
shown in the following figure. You can select either a Single, Double or Custom precision type
after specifying the floating-point data type.

For example, if Exponent width of 9 and Fraction width of 31 is specified then the floating-point
data value will be stored in total 40 bits where the MSB bit will be used for sign representation,
the following 9 bits will be used to store biased exponent value and the 30 LSB bits will be used
to store the fractional value.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=26

Figure 11: Floating-point Precision

In compliance with the IEEE-754 standard, if Single precision is selected then the total bit width
is assumed to be 32; 8 bits for the exponent and 24 bits for the fraction. Similarly when Double
precision is selected, the total bit width is assumed to be 64 bits; 11 bits for the exponent and 53
bits for the fraction part. When Custom precision is selected, the Exponent width and Fraction
width fields are activated and you are free to specify values for these fields (8 and 24 are the
default values). The total bit width for Custom precision data is the summation of the number of
exponent bits and the number of fraction bits. Similar to fraction bit width for Single precision
and Double precision data types the fraction bit width for Custom precision data type must
include the hidden bit F0.

Displaying the Data Type on Output Signals

As shown below, after a successful rate and type propagation, the floating-point data type is
displayed on the output of each HDL block. To display the signal data type as shown in the
diagram below, you select the pulldown menu item Display → Signals & Ports → Port Data Types.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=27

Figure 12: Floating-point Data Type

A floating-point data type is displayed using the format:
XFloat_<exponent_bit_width>_<fraction_bit_width>. Single and Double precision
data types are displayed using the string "XFloat_8_24" and "XFloat_11_53", respectively.

If for a Custom precision data type the exponent bit width 9 and the fraction bit width 31 are
specified, then it will be displayed as "XFloat_9_31". A total of 40 bits will be used to store the
floating-point data value. Because floating-point data is stored in a normalized form, the
fractional value will be stored in 30 bits.

In Model Composer the fixed-point data type is displayed using format
XFix_<total_data_width>_<binary_point_width>. For example, a fixed-point data
type with the data width of 40 and binary point width of 31 is displayed as XFix_40_31.

It is necessary to point out that in the fixed-point data type the actual number of bits used to
store the fractional value is different from that used for floating-point data type. In the example
above, all 31 bits are used to store the fractional bits of the fixed-point data type.

Model Composer uses the exponent bit width and the fraction bit width to configure and
generate an instance of the Floating-Point Operator core.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=28

Rate and Type Propagation

During data rate and type propagation across a Model Composer HDL block that supports
floating-point data, the following design rules are verified. The appropriate error is issued if one
of the following violations is detected.

1. If a signal carrying floating-point data is connected to the port of an HDL block that doesn't
support the floating-point data type.

2. If the data input (both A and B data inputs, where applicable) and the data output of an HDL
block are not of the same floating-point data type. The DRC check will be made between the
two inputs of a block as well as between an input and an output of the block.

If a Custom precision floating-point data type is specified, the exponent bit width and the
fraction bit width of the two ports are compared to determine that they are of the same data
type.

Note: The Convert and Relational blocks are excluded from this check. The Convert block supports
Float-to-float data type conversion between two different floating-point data types. The Relational
block output is always the Boolean data type because it gives a true or false result for a comparison
operation.

3. If the data inputs are of the fixed-point data type and the data output is expected to be
floating-point and vice versa.

Note: The Convert and Relational blocks are excluded from this check. The Convert block supports
Fixed-to-float as well as Float-to-fixed data type conversion. The Relational block output is always the
Boolean data type because it gives a true or false result for a comparison operation.

4. If Custom precision is selected for the Output Type of blocks that support the floating-point
data type. For example, for blocks such as AddSub, Mult, CMult, and MUX, only Full output
precision is supported if the data inputs are of the floating-point data type.

5. If the Carry In port or Carry Out port is used for the AddSub block when the operation on a
floating-point data type is specified.

6. If the Floating-Point Operator IP core gives an error for DRC rules defined for the IP.

AXI Signal Groups

Model Composer HDL blocks found in the DSP library contain interfaces that conform to the
AXI4 specification. Blocks with AXI4 interfaces are drawn such that ports relating to a particular
AXI4 interface are grouped and colored in similarly. This makes it easier to identify data and
control signals pertaining to the same interface. Grouping similar AXI4 ports together also make
it possible to use the Simulink Bus Creator and Simulink Bus Selector blocks to connect groups of
signals together. More information on AXI4 can be found in the section titled AXI Interface. For
more detailed information on the AMBA AXI4 specification, please refer to the Xilinx AMBA
AXI4 documents found at the AMBA AXI4 Interface Protocol page on the Xilinx website.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 29Send Feedback

https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=29

Bit-True and Cycle-True Modeling

Simulations in Model Composer are bit-true and cycle-true. To say a simulation is bit-true means
that at the boundaries (i.e., interfaces between System Generator HDL blocks and non-System
Generator HDL blocks), a value produced in simulation is bit-for-bit identical to the
corresponding value produced in hardware. To say a simulation is cycle-true means that at the
boundaries, corresponding values are produced at corresponding times. The boundaries of the
design are the points at which System Generator HDL gateway blocks exist. When a design is
translated into hardware, Gateway In (respectively, Gateway Out) blocks become top-level input
(resp., output) ports.

Timing and Clocking

Discrete Time Systems

Designs in Model Composer are discrete time systems. In other words, the signals and the blocks
that produce them have associated sample rates. A block’s sample rate determines how often the
block is awoken (allowing its state to be updated). Model Composer sets most sample rates
automatically. A few blocks, however, set sample rates explicitly or implicitly.

Note: For an in-depth explanation of Simulink discrete time systems and sample times, consult the Using
Simulink reference manual from the MathWorks, Inc.

A simple Model Composer model illustrates the behavior of discrete time systems. Consider the
model shown below. It contains a gateway that is driven by a Simulink source (Sine Wave), and a
second gateway that drives a Simulink sink (Scope).

Figure 13: Discrete Time System

The Gateway In block is configured with a sample period of one second. The Gateway Out block
converts the Xilinx fixed-point signal back to a double (so it can analyzed in the Simulink scope),
but does not alter sample rates. The scope output below shows the unaltered and sampled
versions of the sine wave.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=30

Figure 14: Scope Output

Multirate Models

Model Composer supports multirate designs, i.e., designs having signals running at several sample
rates. Model Composer automatically compiles multirate models into hardware. This allows
multirate designs to be implemented in a way that is both natural and straightforward in
Simulink.

Rate-Changing Blocks

The Model Composer HSL library includes blocks that change sample rates. The most basic rate
changers are the Up Sample and Down Sample blocks. As shown in the following figure, these
blocks explicitly change the rate of a signal by a fixed multiple that is specified in the block’s
dialog box.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=31

Figure 15: Rate Change Dialog

Other blocks (e.g., the Parallel To Serial and Serial To Parallel converters) change rates implicitly in
a way determined by block parameterization.

Consider the simple multirate example below. This model has two sample periods, SP1 and SP2.
The Gateway In dialog box defines the sample period SP1. The Down Sample block causes a rate
change in the model, creating a new rate SP2 which is half as fast as SP1.

Figure 16: Multirate Example

Hardware Oversampling

Some HDL blocks are oversampled, i.e., their internal processing is done at a rate that is faster
than their data rates. In hardware, this means that the block requires more than one clock cycle
to process a data sample. In Simulink such blocks do not have an observable effect on sample
rates.

Although blocks that are oversampled do not cause an explicit sample rate change in Simulink,
Model Composer considers the internal block rate along with all other sample rates when
generating clocking logic for the hardware implementation. This means that you must consider
the internal processing rates of oversampled blocks when you specify the Simulink system
period value in the System Generator token dialog box.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=32

Asynchronous Clocking

Model Composer focuses on the design of hardware that is synchronous to a single clock. It can,
under some circumstances, be used to design systems that contain more than one clock. This is
possible provided the design can be partitioned into individual clock domains with the exchange
of information between domains being regulated by dual port memories and FIFOs. The
remainder of this topic focuses exclusively on the clock-synchronous aspects of Model
Composer. This discussion is relevant to both single-clock and multiple-clock designs.

Synchronous Clocking

By default, Model Composer creates designs with synchronous clocking, where multiple rates are
realized using clock enables. When Model Composer compiles a model into hardware, it
preserves the sample rate information of the design in such a way that corresponding portions in
hardware run at appropriate rates. In hardware, Model Composer generates related rates by
using a single clock in conjunction with clock enables, one enable per rate. The period of each
clock enable is an integer multiple of the period of the system clock.

Inside Simulink, neither clocks nor clock enables are required as explicit signals in a Model
Composer design. When Model Composer compiles a design into hardware, it uses the sample
rates in the design to deduce what clock enables are needed. To do this, it employs two user-
specified values from the System Generator token: the Simulink system period and FPGA clock
period. These numbers define the scaling factor between time in a Simulink simulation, and time
in the actual hardware implementation. The Simulink system period must be the greatest
common divisor (gcd) of the sample periods that appear in the model, and the FPGA clock period
is the period, in nanoseconds, of the system clock. If p represents the Simulink system period,
and c represents the FPGA system clock period, then something that takes kp units of time in
Simulink takes k ticks of the system clock (hence kc nanoseconds) in hardware.

To illustrate this point, consider a model that has three Simulink sample periods 2, 3, and 4. The
gcd of these sample periods is 1, and should be specified as such in the Simulink system period
field for the model. Assume the FPGA clock period is specified to be 10ns. With this information,
the corresponding clock enable periods can be determined in hardware.

In hardware, we refer to the clock enables corresponding to the Simulink sample periods 2, 3, and
4 as CE2, CE3, and CE4, respectively. The relationship of each clock enable period to the system
clock period can be determined by dividing the corresponding Simulink sample period by the
Simulink System Period value. Thus, the periods for CE2, CE3, and CE4 equal 2, 3, and 4 system
clock periods, respectively. A timing diagram for the example clock enable signals is shown
below:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=33

Figure 17: Timing Diagram

Synchronization Mechanisms

Model Composer does not make implicit synchronization mechanisms available. Instead,
synchronization is the responsibility of the designer, and must be done explicitly.

Valid Ports

Model Composer provides several blocks (in particular, the AXI FIFO) that can be used for
synchronization. Several blocks provide optional AXI signaling interfaces to denote when a
sample is valid (TValid) and when the interface is ready for data (TReady). Note that the tvalid /
tready ports may not be visible based on the configuration of the IP. Color association denotes a
collection of ports for each interface on the block as shown below. Blocks with interfaces can be
chained, affording a primitive form of flow control. Examples of such blocks with AXI interfaces
include the FFT, FIR, and DDS.

Figure 18: Block with AXI Interface

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=34

Indeterminate Data

Indeterminate values are common in many hardware simulation environments. Often they are
called "don't cares" or "Xs". In particular, values in Model Composer simulations can be
indeterminate. A dual port memory block, for example, can produce indeterminate results if both
ports of the memory attempt to write the same address simultaneously. What actually happens
in hardware depends upon effectively random implementation details that determine which port
sees the clock edge first. Allowing values to become indeterminate gives the system designer
greater flexibility. Continuing the example, there is nothing wrong with writing to memory in an
indeterminate fashion if subsequent processing does not rely on the indeterminate result.

HDL modules that are brought into the simulation through HDL co-simulation are a common
source for indeterminate data samples. Model Composer presents indeterminate values to the
inputs of an HDL co-simulating module as the standard logic vector 'XXX . . . XX'.

Indeterminate values that drive a Gateway Out become what are called NaNs. (NaN abbreviates
"not a number".) In a Simulink scope, NaN values are not plotted. Conversely, NaNs that drive a
Gateway In become indeterminate values. Model Composer provides an Indeterminate Probe
block that allows for the detection of indeterminate values. This probe cannot be translated into
hardware.

In Model Composer, any arithmetic signal can be indeterminate, but Boolean signals cannot be. If
a simulation reaches a condition that would force a Boolean to become indeterminate, the
simulation is halted and an error is reported. Many Xilinx blocks have control ports that only
allow Boolean signals as inputs. The rule concerning indeterminate Booleans means that such
blocks never see an indeterminate on a control port

A UFix_1_0 is a type that is equivalent to Boolean except for the above restriction concerning
indeterminate data.

Block Masks and Parameter Passing

The same scoping and parameter passing rules that apply to ordinary Simulink blocks apply to
HDL blocks. Consequently, blocks in the Xilinx HDL Blockset can be parameterized using
MATLAB variables and expressions. This capability makes possible highly parametric designs that
take advantage of the expressive and computational power of the MATLAB language.

Block Masks

In Simulink, blocks are parameterized through a mechanism called masking. In essence, a block
can be assigned mask variables whose values can be specified by a user through dialog box
prompts or can be calculated in mask initialization commands. Variables are stored in a mask
workspace. A mask workspace is local to the blocks under the mask and cannot be accessed by
external blocks.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=35

Note: It is possible for a mask to access global variables and variables in the base workspace. To access a
base workspace variable, use the MATLAB evalin function. For more information on the MATLAB and
Simulink scoping rules, refer to the manuals titled Using MATLAB and Using Simulink from The MathWorks,
Inc.

Parameter Passing

It is often desirable to pass variables to blocks inside a masked Subsystem. Doing so allows the
block’s configuration to be determined by parameters on the enclosing Subsystem. This
technique can be applied to parameters on blocks in the Xilinx HDL blockset whose values are
set using a listbox, radio button, or checkbox. For example, when building a Subsystem that
consists of a multiply and accumulate block, you can create a parameter on the Subsystem that
allows you to specify whether to truncate or round the result. This parameter will be called
trunc_round as shown in the figure below.

Figure 19: Creating a Parameter

As shown below, in the parameter editing dialog for the accumulator and multiplier blocks, there
are radio buttons that allow either the truncate or round option to be selected.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=36

Figure 20: Editing a Parameter

In order to use a parameter rather than the radio button selection, right-click the radio button
and select Define With Expression. A MATLAB expression can then be used as the parameter
setting. In the example below, the trunc_round parameter from the Subsystem mask can be used
in both the accumulator and multiply blocks so that each block will use the same setting from the
mask variable on the Subsystem.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=37

Figure 21: Using a Parameter

Automatic Code Generation
Model Composer automatically compiles designs into low-level representations. The ways in
which Model Composer compiles a model can vary, and depend on settings in the System
Generator token. In addition to producing HDL descriptions of hardware, the tool generates
auxiliary files. Some files (e.g., project files, constraints files) assist downstream tools, while others
(e.g., VHDL test bench) are used for design verification.

Compiling and Simulating Using the System Generator
Token

Describes how to use the System Generator token to
compile designs into equivalent low-level HDL.

Compilation Results Describes the low-level files Model Composer produces
when HDL Netlist is selected on the System Generator
token and Generate is pushed.

Vivado Project Describes the example projectModel Composer produces
when HDL Netlist or IP Catalog is selected on the System
Generator token and Generate is pushed.

HDL Testbench Describes the VHDL test bench that Model Composer can
produce.

Compiling and Simulating Using the System Generator Token

Model Composer automatically compiles designs into low-level representations. Designs are
compiled and simulated using the System Generator token. This topic describes how to use the
block.

The System Generator token is a member of the Xilinx HDL Blockset's Tools library.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=38

A design must contain at least one System Generator token, but can contain several System
Generator tokens on different levels (one per level). A System Generator token that is underneath
another in the hierarchy is a slave; one that is not a slave is a master. The scope of a System
Generator token consists of the level of hierarchy into which it is embedded and all Subsystems
below that level. Certain parameters (e.g., Simulink System Period) can be specified only in a
master.

Once a System Generator token is added, it is possible to specify how code generation and
synthesis should be handled. The System Generator Token dialog box is shown below:

Figure 22: System Generator Token Dialog Box

Compilation Type and the Generate Button

Pressing the Generate button instructs Model Composer to compile a portion of the design into
equivalent low-level results. The portion that is compiled is the sub-tree whose root is the
Subsystem containing the block. (To compile the entire design, use a System Generator token
placed at the top of the design.) The compilation type (under Compilation) specifies the type of
result that should be produced. The possible types are:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=39

• IP Catalog: Packages the design as an IP core that can be added to the Vivado IP catalog for
use in another design.

• Hardware Co-Simulation (JTAG): Generates HW co-simulation library block to verify an
algorithm in the hardware.

• Synthesized Checkpoint: Creates a design checkpoint file (synth_1.dcp) that can then be
used in any Vivado IDE project.

• HDL Netlist: Generates VHDL or Verilog RTL designs.

Table 1: System Generator Token Dialog Box Controls

Control Description
Board Specifies a Xilinx, Partner, or Custom board you will use to

test your design.
For a Partner board or a custom board to appear in the
Board list, you must configure Model Composer to access
the board files that describe the board. Board awareness in
Model Composer is detailed in Specifying Board Support in
Model Composer HDL Blockset.
When you select a Board, the Part field displays the name
of the Xilinx device on the selected Board, and this part
name cannot be changed.

Part Defines the Xilinx part to be used. If you have selected a
Board, the Part field will display the name of the Xilinx
device on the selected Board, and this part name cannot be
changed.

Hardware description language Specifies the language to be used for HDL netlist of the
design. The possibilities are VHDL and Verilog.

VHDL library Specifies the name of VHDL work library for code
generation. The default name is xil_defaultlib.

Use STD_LOGIC type for Boolean or 1 bit wide gateways If your design's Hardware Description Language (HDL) is
VHDL, selecting this option will declare a Boolean or 1-bit
port (Gateway In or Gateway Out) as a STD-LOGIC type. If
this option is not selected, Model Composer will interpret
Boolean or 1-bit ports as vectors.

Target Directory Defines where Model Composer should write compilation
results. Because Model Composer and the FPGA physical
design tools typically create many files, it is best to create a
separate target directory, i.e., a directory other than the
directory containing your Simulink model files. The directory
can be an absolute path (e.g. c:\netlist) or a path
relative to the directory containing the model (e.g.
netlist).

Synthesis strategy Choose a Synthesis strategy from the pre-defined strategies
in the drop-down list.

Implementation strategy Choose an Implementation strategy from the pre-defined
strategies in the drop-down list.

Create interface document When this box is checked and the Generate button is
activated for netlisting, Model Composer creates an HTM
document that describes the design being netlisted. This
document is placed in the netlist folder.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=40

Table 1: System Generator Token Dialog Box Controls (cont'd)

Control Description
Create testbench This instructs Model Composer to create an HDL test bench.

Simulating the test bench in an HDL simulator compares
Simulink simulation results with ones obtained from the
compiled version of the design. To construct test vectors,
Model Composer simulates the design in Simulink, and
saves the values seen at gateways. The top HDL file for the
test bench is named <name>_tb.vhd/.v, where <name> is
a name derived from the portion of the design being tested
and the extension is dependent on the hardware
description language.

FPGA clock period Defines the period in nanoseconds of the system clock. The
value need not be an integer. The period is passed to the
Xilinx implementation tools through a constraints file,
where it is used as the global PERIOD constraint. Multi-cycle
paths are constrained to integer multiples of this value.

Clock pin location Defines the pin location for the hardware clock. This
information is passed to the Xilinx implementation tools
through a constraints file.

Simulink System Period

You must specify a value for Simulink system period in the System Generator token dialog box.
This value tells the underlying rate, in seconds, at which simulations of the design should run.
The period must evenly divide all sample periods in the design. For example, if the design
consists of blocks whose sample periods are 2, 6, and 8, then the largest acceptable sample
period is 2, though other values such as 1 and 0.5 are also acceptable. Sample periods arise in
three ways: some are specified explicitly, some are calculated automatically, and some arise
implicitly within blocks that involve internal rate changes. For more information on how the
system period setting affects the hardware clock, refer to Timing and Clocking.

Before running a simulation or compiling the design, Model Composer verifies that the period
evenly divides every sample period in the design.

It is possible to assemble a Model Composer model that is inconsistent because its periods
cannot be reconciled. (For example, certain blocks require that they run at the system rate.
Driving an up-sampler with such a block produces an inconsistent model.) If, even after updating
the system period, Model Composer reports there are conflicts, then the model is inconsistent
and must be corrected.

The period control is hierarchical. See Hierarchical Controls for details.

Block Icon Display

The options on this control affect the display of the block icons on the model. After compilation
(which occurs when generating, simulating, or by pressing Ctrl-D) of the model various
information about the block in your model can be displayed, depending on which option is
chosen.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=41

• Default: Basic information about port directions are shown.

• Sample rates: The sample rates of each port are shown like Normalized samples periods and
Sample frequencies (MHz).

• Pipeline stages: The number of pipeline stages are shown.

• HDL port names: the names of the ports are shown

• Input data types: The input data types for each port are shown.

• Output data types: Output data types for each port are shown.

Hierarchical Controls

The Simulink System Period control (see the topic Simulink System Period above) on the System
Generator token is hierarchical. A hierarchical control on a System Generator token applies to the
portion of the design within the scope of the token, but can be overridden on other System
Generator tokens deeper in the design. For example, suppose Simulink System Period is set in a
System Generator token at the top of the design, but is changed in a System Generator token
within a Subsystem S. Then that Subsystem will have the second period, but the rest of the
design will use the period set in the top level.

Compilation Results

This topic discusses the low-level files Model Composer produces when HDL Netlist is selected
on the System Generator token and Generate is clicked. The files consist of HDL that implements
the design. In addition, Model Composer organizes the HDL files, and other hardware files into a
Vivado® IDE Project. All files are written to the target directory specified on theSystem
Generator token. If no test bench is requested, then the key files produced by Model Composer
are the following:

Table 2: Compilation Files

File Name or Type Description
<design_name>.vhd/.v This file contains a hierarchical structural netlist along with

clock/clock enable controls
<design_name_entity_declarations>.vhd/.v This file contains the entity of module definitions of HDL

blocks in the design.
<design_name>.xpr This file is the Vivado IDE project file that describes all of the

attributes of the Vivado IDE design.

If a test bench is requested, then, in addition to the above, Model Composer produces files that
allow simulation results to be compared. The comparisons are between Simulink® simulation
results and corresponding results from Questa, or any other RTL simulator supported by Vivado®

IDE such as Vivado simulator, or VCS. The additional files are as follows:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=42

Table 3: Additional Compilation Files

File Name or Type Description
Various .dat files These contain the simulation results from Simulink.
<design_name>_tb.vhd/.v This is a test bench that wraps the design. When simulated,

this test bench compares simulation results from the digital
simulator against those produced by Simulink.

Using the Constraints File

When a design is compiled during code generation, Model Composer produces constraints that
tell downstream tools how to process the design. This enables the tools to produce a higher
quality implementation, and to do so using considerably less time. Constraints supply the
following:

• The period to be used for the system clock.

• The speed, with respect to the system clock, at which various portions of the design must run.

• The pin locations at which ports should be placed.

• The speed at which ports must operate.

The system clock period (i.e., the period of the fastest hardware clock in the design) can be
specified in the System Generator token. Model Composer writes this period to the constraints
file. Downstream tools use the period as a goal when implementing the design.

Multicycle Path Constraints

Many designs consist of parts that run at different clock rates. For the fastest part, the system
clock period is used. For the remaining parts, the clock period is an integer multiple of the system
clock period. It is important that downstream tools know what speed each part of the design
must achieve. With this information, efficiency and effectiveness of the tools are greatly
increased, resulting in reduced compilation times and improved hardware realizations. The
division of the design into parts, and the speed at which each part must run, are specified in the
constraints file using multicycle path constraints.

IOB Timing and Placement Constraints

When translated into hardware, Model Composer's HDL Gateway In and Gateway Out blocks
become input and output ports. The locations of these ports and the speeds at which they must
operate can be entered in the Gateway In and Out parameter dialog boxes. Port location and
speed are specified in the constraints file by IOB timing.

This topic describes how Model Composer handles hardware clocks in the HDL it generates.
Assume the design is named <design>, and <design> is an acceptable HDL identifier. When
Model Composer compiles the design, it writes a collection of HDL entities or modules, the
topmost of which is named <design>, and is stored in a file named <design>.vhd/.v.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=43

The "Clock Enables" Multirate Implementation

Clock and clock enables appear in pairs throughout the HDL. Typical clock names are clk_1, clk_2,
and clk_3, and the names of the companion clock enables are ce_1, ce_2, and ce_3 respectively.
The name tells the rate for the clock/clock enable pair; logic driven by clk_1 and ce_1 runs at the
system (i.e., fastest) rate, while logic driven by (say) clk_2 and ce_2 runs at half the system rate.
Clocks and clock enables are not driven in the entity or module named <design> or any
subsidiary entities; instead, they are exposed as top-level input ports

The names of the clocks and clock enables in Model Composer HDL suggest that clocking is
completely general, but this is not the case. To illustrate this, assume a design has clocks named
clk_1 and clk_2, and companion clock enables named ce_1 and ce_2 respectively. You might
expect that working hardware could be produced if the ce_1 and ce_2 signals were tied high, and
clk_2 were driven by a clock signal whose rate is half that of clk_1. For most Model Composer
designs this does not work. Instead, clk_1 and clk_2 must be driven by the same clock, ce_1 must
be tied high, and ce_2 must vary at a rate half that of clk_1 and clk_2.

IP Instance Caching

For compilation targets that perform Vivado synthesis to generate their output products, Model
Composer incorporates a disk cache to speed up the iterative design process.

With the cache enabled for your design, whenever your compilation generates an IP instance for
synthesis, and the Vivado synthesis tool creates synthesis output products, the tools create an
entry in the cache area.

After the cache is populated, when a new customization of the IP is created which has the exact
same properties, the IP is not synthesized again; instead, the cache is referenced and the
corresponding synthesis output in the cache is copied to your design's output directory. Because
the IP instance is not synthesized again, and this process is repeated for every IP referenced in
your design, generation of the output products is completed more quickly.

The following compilation targets invoke Vivado synthesis; these compilation targets will access
the cache to synthesize IP in your design.

• Hardware Co-Simulation

• Synthesized Checkpoint

Also, when you compile your design and Perform analysis is selected for either Timing or
Resource analysis, Vivado synthesis always runs, regardless of the compilation target. Since
timing analysis or resource analysis may be performed several times for a design, enabling IP
caching will improve overall performance. For a description of the Perform analysis compilation
option, see Performing Timing Analysis or Performing Resource Analysis.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=44

The IP cache is shared across multiple Simulink models on your system. If you reuse an IP in one
design by including it in another design, and the IP is customized identically and has the same
part and language settings in both Simulink models, you can gain the benefit of caching when you
compile either of the designs.

You can enable IP caching for your design by selecting Remote IP cache in the System Generator
token dialog box. The cache will then be referenced for every compilation performed afterwards.

CAUTION! The IP Cache can grow large, depending on the number of IP present in your design.

Figure 23: Block Icon Display

You can clear the cache to save disk space by clicking Clear cache in the System Generator token
dialog box.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=45

To find the location of the IP cache directory on your system, enter the command
xilinx.environment.getipcachepath on the MATLAB command line. The full path to
the IP cache directory will display in the MATLAB command window.

>> xilinx.environment.getipcachepath
ans =
C:/Users/your_id/AppData/Local/Xilinx/Sysgen/SysgenVivado/win64.o/ip

IP caching in Model Composer is similar to IP caching in the Vivado Design Suite, described at
this link in the Vivado Design Suite User Guide: Designing with IP (UG896). However, the IP cache
for Model Composer designs is in a different location than the IP cache for Vivado projects.

Vivado Project

The HDL Netlist and IP Catalog compilation targets also generate an example Vivado project,
which represents an integration of the results of Code Generation.

In the case of the HDL Netlist compilation target, the Vivado project sets the module designed in
Model Composer as the top level and includes instances of IP. Also, if Create testbench is
selected in the System Generator token, a test bench and stimulus files (*.dat) are also added to
the project.

In the case of the IP Catalog compilation target, an example project is created with the following
features:

• The IP generated from Model Composer is already added to the IP catalog associated with the
project and available for the RTL flow as well as the IP integrator-based flow.

• The design includes an RTL instantiation of IP called <ip>_0 underneath <design>_stub that
indicates how to instanciate such an IP in the RTL flow

• The design includes an RTL test bench called <design>_tb that also instantiates the same IP in
the RTL flow.

Note: A test bench is not created if AXI4-Lite slave interface generation is selected in a Gateway In or
Gateway Out block.

• The project also includes an example IP integrator diagram with a Zynq-7000 subsystem if the
part selected in this example is a Zynq-7000 SoC part. For all other parts, a MicroBlaze™-
based subsystem is created.

HDL Testbench

Ordinarily, Model Composer designs are bit and cycle-accurate, so Simulink simulation results
exactly match those seen in hardware. There are, however, times when it is useful to compare
Simulink simulation results against those obtained from an HDL simulator. In particular, this
makes sense when the design contains black boxes. The Create Testbench checkbox in the
System Generator token makes this possible.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xSettingTheIPCache
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=46

Suppose the design is named <design>, and a System Generator token is placed at the top of
the design. Suppose also that in the token the Compilation field is set to HDL Netlist, and the
Create Testbench checkbox is selected. When the Generate button is clicked, Model Composer
produces the usual files for the design, and in addition writes the following:

• A file named <design>_tb.vhd/.v that contains a test bench HDL entity.

• Various .dat files that contain test vectors for use in an HDL test bench simulation.

You can perform RTL simulation using the Vivado Integrated Design Environment (IDE). For more
details, refer to the document Vivado Design Suite User Guide: Logic Simulation (UG900).

Model Composer generates the .dat files by saving the values that pass through gateways. In
the HDL simulation, input values from the .dat files are stimuli, and output values are expected
results. The test bench is simply a wrapper that feeds the stimuli to the HDL for the design, then
compares HDL results against expected ones.

Compiling MATLAB into an FPGA
Model Composer provides direct support for MATLAB through the MCode block. The MCode
block applies input values to an M-function for evaluation using Xilinx's fixed-point data type.
The evaluation is done once for each sample period. The block is capable of keeping internal
states with the use of persistent state variables. The input ports of the block are determined by
the input arguments of the specified M-function and the output ports of the block are
determined by the output arguments of the M-function. The block provides a convenient way to
build finite state machines, control logic, and computation heavy systems.

In order to construct an MCode block, an M-function must be written. The M-file must be in the
directory of the model file that is to use the M-file or in a directory in the MATLAB path.

The following text provides examples that use the MCode block:

• Example 1 Simple Selector shows how to implement a function that returns the maximum
value of its inputs;

• Example 2 Simple Arithmetic Operations shows how to implement simple arithmetic
operations;

• Example 3 Complex Multiplier with Latency shows how to build a complex multiplier with
latency;

• Example 4 Shift Operations shows how to implement shift operations;

• Example 5 Passing Parameters into the MCode Block shows how to pass parameters into a
MCode block;

• Example 6 Optional Input Ports shows how to implement optional input ports on an MCode
block;

• Example 7 Finite State Machines shows how to implement a finite state machine;

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=47

• Example 8 Parameterizable Accumulator shows how to build a parameterizable accumulator;

• Example 9 FIR Example and System Verification shows how to model FIR blocks and how to
do system verification;

• Example 10 RPN Calculator shows how to model a RPN calculator – a stack machine;

• Example 11 Example of disp Function shows how to use disp function to print variable values.

Simple Selector

This example is a simple controller for a data path, which assigns the maximum value of two
inputs to the output. The M-function is specified as the following and is saved in an M-file
xlmax.m:

function z = xlmax(x, y)
 if x > y
 z = x;
 else
 z = y;
 end

The xlmax.m file should be either saved in the same directory of the model file or should be in
the MATLAB path. Once the xlmax.m has been saved to the appropriate place, you should drag
a MCode block into your model, open the block parameter dialog box, and enter xlmax into the
MATLAB Function field. After clicking the OK button, the block has two input ports x and y, and
one output port z.

The following figure shows what the block looks like after the model is compiled. You can see
that the block calculates and sets the necessary fixed-point data type to the output port.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=48

Figure 24: Simple Selector Design

Simple Arithmetic Operations

This example shows some simple arithmetic operations and type conversions. The following
shows the xlSimpleArith.m file, which specifies the xlSimpleArith M-function.

function [z1, z2, z3, z4] = xlSimpleArith(a, b)
 % xlSimpleArith demonstrates some of the arithmetic operations
 % supported by the Xilinx MCode block. The function uses xfix()
 % to create Xilinx fixed-point numbers with appropriate
 % container types.%
 % You must use a xfix() to specify type, number of bits, and
 % binary point position to convert floating point values to
 % Xilinx fixed-point constants or variables.
 % By default, the xfix call uses xlTruncate
 % and xlWrap for quantization and overflow modes.
 % const1 is Ufix_8_3
 const1 = xfix({xlUnsigned, 8, 3}, 1.53);
 % const2 is Fix_10_4
 const2 = xfix({xlSigned, 10, 4, xlRound, xlWrap}, 5.687);
 z1 = a + const1;
 z2 = -b - const2;
 z3 = z1 - z2;
 % convert z3 to Fix_12_8 with saturation for overflow
 z3 = xfix({xlSigned, 12, 8, xlTruncate, xlSaturate}, z3);
 % z4 is true if both inputs are positive
 z4 = a>const1 & b>-1;

This M-function uses addition and subtraction operators. The MCode block calculates these
operations in full precision, which means the output precision is sufficient to carry out the
operation without losing information.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=49

One thing worth discussing is the xfix function call. The function requires two arguments: the
first for fixed-point data type precision and the second indicating the value. The precision is
specified in a cell array. The first element of the precision cell array is the type value. It can be
one of three different types: xlUnsigned, xlSigned, or xlBoolean. The second element is
the number of bits of the fixed-point number. The third is the binary point position. If the
element is xlBoolean, there is no need to specify the number of bits and binary point position.
The number of bits and binary point position must be specified in pair. The fourth element is the
quantization mode and the fifth element is the overflow mode. The quantization mode can be
one of xlTruncate, xlRound, or xlRoundBanker. The overflow mode can be one of
xlWrap, xlSaturate, or xlThrowOverflow. Quanitization mode and overflow mode must
be specified as a pair. If the quantization-overflow mode pair is not specified, the xfix function
uses xlTruncate and xlWrap for signed and unsigned numbers. The second argument of the
xfix function can be either a double or a Xilinx fixed-point number. If a constant is an integer
number, there is no need to use the xfix function. The Mcode block converts it to the
appropriate fixed-point number automatically.

After setting the dialog box parameter MATLAB function to xlSimpleArith, the block shows
two input ports a and b, and four output ports z1, z2, z3, and z4.

Figure 25: xlSimpleArith MCode Parameter

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=50

Figure 26: xlSimpleArith Design

M-functions using Xilinx data types and functions can be tested in the MATLAB Command
Window. For example, if you type: [z1, z2, z3, z4] = xlSimpleArith(2, 3) in the
MATLAB Command Window, you'll get the following lines:

UFix(9, 3): 3.500000
Fix(12, 4): -8.687500
Fix(12, 8): 7.996094
Bool: true

Notice that the two integer arguments (2 and 3) are converted to fixed-point numbers
automatically. If you have a floating-point number as an argument, an xfix call is required.

Complex Multiplier with Latency

This example shows how to create a complex number multiplier. The following shows the
xlcpxmult.m file which specifies the xlcpxmult function.

function [xr, xi] = xlcpxmult(ar, ai, br, bi)
 xr = ar * br - ai * bi;
 xi = ar * bi + ai * br;

The following diagram shows the sub-system:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=51

Figure 27: Complex Multiplier Subsystem

Two delay blocks are added after the MCode block. By selecting the option Implement using
behavioral HDL on the Delay blocks, the downstream logic synthesis tool is able to perform the
appropriate optimizations to achieve higher performance.

Shift Operations

This example shows how to implement bit-shift operations using the MCode block. Shift
operations are accomplished with multiplication and division by powers of two. For example,
multiplying by 4 is equivalent to a 2-bit left-shift, and dividing by 8 is equivalent to a 3-bit right-
shift. Shift operations are implemented by moving the binary point position and if necessary,
expanding the bit width. Consequently, multiplying a Fix_8_4 number by 4 results in a Fix_8_2
number, and multiplying a Fix_8_4 number by 64 results in a Fix_10_0 number.

The following shows the xlsimpleshift.m file which specifies one left-shift and one right-
shift:

function [lsh3, rsh2] = xlsimpleshift(din)
 % [lsh3, rsh2] = xlsimpleshift(din) does a left shift
 % 3 bits and a right shift 2 bits.
 % The shift operation is accomplished by
 % multiplication and division of power
 % of two constant.
 lsh3 = din * 8;
 rsh2 = din / 4;

The following diagram shows the sub-system after compilation:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=52

Figure 28: Shift Operations

Passing Parameters into the MCode Block

This example shows how to pass parameters into the MCode block. An input argument to an M-
function can be interpreted either as an input port on the MCode block, or as a parameter
internal to the block.

The following M-code defines an M-function xl_sconvert that is contained in file
xl_sconvert.m:

function dout = xl_sconvert(din, nbits, binpt)
 proto = {xlSigned, nbits, binpt};
 dout = xfix(proto, din);

The following diagram shows a Subsystem containing two MCode blocks that use M-function
xl_sconvert. The arguments nbits and binpt of the M-function are specified differently for
each block by passing different parameters to the MCode blocks. The parameters passed to the
MCode block labeled signed convert 1 cause it to convert the input data from type
Fix_16_8 to Fix_10_5 at its output. The parameters passed to the MCode block labeled
signed convert 2 causes it to convert the input data from type Fix_16_8 to Fix_8_4 at
its output.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=53

Figure 29: Subsystem with Two MCode Blocks

To pass parameters to each MCode block in the diagram above, you can click the Edit M-File
button on the block GUI then set the values for the M-function arguments. The mask for MCode
block signed convert 1 is shown below:

Figure 30: Masking MCode Block

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=54

The above interface window sets the M-function argument nbits to be 10 and binpt to be 5.
The mask for the MCode block signed convert 2 is shown below:

Figure 31: Mask for MCode Block Signed Convert 2

Optional Input Ports

This example shows how to use the parameter passing mechanism of MCode blocks to specify
whether or not to use optional input ports on MCode blocks.

The following M-code, which defines M-function xl_m_addsub is contained in file
xl_m_addsub.m:

function s = xl_m_addsub(a, b, sub)
 if sub
 s = a - b;
 else
 s = a + b;
 end

The following diagram shows a Subsystem containing two MCode blocks that use M-function
xl_m_addsub.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=55

Figure 32: Two MCode Blocks Using M-Function

The labeled add is shown in below.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=56

Figure 33: Block Interface Editor of the MCode Block

As a result, the add block features two input ports a and b; it performs full precision addition.
Input parameter sub of the MCode block labeled addsub is not bound with any value.
Consequently, the addsub block features three input ports: a, b, and sub; it performs full
precision addition or subtraction based on the value of input port sub.

Finite State Machines

This example shows how to create a finite state machine using the MCode block with internal
state variables. The state machine illustrated below detects the pattern 1011 in an input stream
of bits.

Figure 34: Finite State Machine Diagram

0 1

3 2

1/0

0/1

0/0

1/0

Seen 10

0/0

Seen 101

Seen first 1

Input/Output
0/0 1/0

1/1

No Part of
Sequence Seen

X23323-100219

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=57

The M-function that is used by the MCode block contains a transition function, which computes
the next state based on the current state and the current input. Unlike example 3 though, the M-
function in this example defines persistent state variables to store the state of the finite state
machine in the MCode block. The following M-code, which defines function
detect1011_w_state is contained in file detect1011_w_state.m:

function matched = detect1011_w_state(din)
% This is the detect1011 function with states for detecting a
% pattern of 1011.

 seen_none = 0; % initial state, if input is 1, switch to seen_1
 seen_1 = 1; % first 1 has been seen, if input is 0, switch
 % seen_10
 seen_10 = 2; % 10 has been detected, if input is 1, switch to
 % seen_1011
 seen_101 = 3; % now 101 is detected, is input is 1, 1011 is
 % detected and the FSM switches to seen_1

 % the state is a 2-bit register
 persistent state, state = xl_state(seen_none, {xlUnsigned, 2, 0});

 % the default value of matched is false
 matched = false;

 switch state
 case seen_none
 if din==1
 state = seen_1;
 else
 state = seen_none;
 end
 case seen_1 % seen first 1
 if din==1
 state = seen_1;
 else
 state = seen_10;
 end
 case seen_10 % seen 10
 if din==1
 state = seen_101;
 else
 % no part of sequence seen, go to seen_none
 state = seen_none;
 end
 case seen_101
 if din==1
 state = seen_1;
 matched = true;
 else
 state = seen_10;
 matched = false;
 end
 end

The following diagram shows a state machine Subsystem containing a MCode block after
compilation; the MCode block uses M-function detect1101_w_state.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=58

Figure 35: Subsystem Containing MCode Block After Compilation

Parameterizable Accumulator

This example shows how to use the MCode block to build an accumulator using persistent state
variables and parameters to provide implementation flexibility. The following M-code, which
defines function xl_accum is contained in file xl_accum.m:

function q = xl_accum(b, rst, load, en, nbits, ov, op, feed_back_down_scale)
% q = xl_accum(b, rst, nbits, ov, op, feed_back_down_scale) is
% equivalent to our Accumulator block.
 binpt = xl_binpt(b);
 init = 0;
 precision = {xlSigned, nbits, binpt, xlTruncate, ov};
 persistent s, s = xl_state(init, precision);
 q = s;
 if rst
 if load
 % reset from the input port
 s = b;
 else
 % reset from zero
 s = init;
 end
 else
 if ~en
 else
 % if enabled, update the state
 if op==0
 s = s/feed_back_down_scale + b;
 else
 s = s/feed_back_down_scale - b;
 end
 end
 end

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=59

The following diagram shows a Subsystem containing the accumulator MCode block using M-
function xl_accum. The MCode block is labeled MCode Accumulator. The Subsystem also
contains the Xilinx Accumulator block, labeled Accumulator, for comparison purposes. The
MCode block provides the same functionality as the Xilinx Accumulator block; however, its mask
interface differs in that parameters of the MCode block are specified with a cell array in the
Function Parameter Bindings parameter.

Figure 36: MCode Accumulator

Optional inputs rst and load of block Accum_MCode1 are disabled in the cell array of the
Function Parameter Bindings parameter. The block mask for block MCode Accumulator is shown
below:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=60

Figure 37: Mask for MCode Accumulator

The example contains two additional accumulator Subsystems with MCode blocks using the
same M-function, but different parameter settings to accomplish different accumulator
implementations.

FIR Example and System Verification

This example shows how to use the MCode block to model FIRs. It also shows how to do system
verification with the MCode block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=61

Figure 38: FIR Example

The model contains two FIR blocks. Both are modeled with the MCode block and both are
synthesizable. The following are the two functions that model those two blocks.

function y = simple_fir(x, lat, coefs, len, c_nbits, c_binpt, o_nbits,
o_binpt)
 coef_prec = {xlSigned, c_nbits, c_binpt, xlRound, xlWrap};
 out_prec = {xlSigned, o_nbits, o_binpt};

 coefs_xfix = xfix(coef_prec, coefs);
 persistent coef_vec, coef_vec = xl_state(coefs_xfix, coef_prec);
 persistent x_line, x_line = xl_state(zeros(1, len-1), x);
 persistent p, p = xl_state(zeros(1, lat), out_prec, lat);

 sum = x * coef_vec(0);
 for idx = 1:len-1
 sum = sum + x_line(idx-1) * coef_vec(idx);
 sum = xfix(out_prec, sum);
 end
 y = p.back;
 p.push_front_pop_back(sum);
 x_line.push_front_pop_back(x);
function y = fir_transpose(x, lat, coefs, len, c_nbits, c_binpt, o_nbits,
o_binpt)
 coef_prec = {xlSigned, c_nbits, c_binpt, xlRound, xlWrap};
 out_prec = {xlSigned, o_nbits, o_binpt};
 coefs_xfix = xfix(coef_prec, coefs);
 persistent coef_vec, coef_vec = xl_state(coefs_xfix, coef_prec);
 persistent reg_line, reg_line = xl_state(zeros(1, len), out_prec);
 if lat <= 0
 error('latency must be at least 1');
 end
 lat = lat - 1;
 persistent dly,

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=62

 if lat <= 0
 y = reg_line.back;
 else
 dly = xl_state(zeros(1, lat), out_prec, lat);
 y = dly.back;
 dly.push_front_pop_back(reg_line.back);
 end
 for idx = len-1:-1:1
 reg_line(idx) = reg_line(idx - 1) + coef_vec(len - idx - 1) * x;
 end
 reg_line(0) = coef_vec(len - 1) * x;

The parameters are configured as following:

Figure 39: Parameters

In order to verify that the functionality of two blocks is equal, we also use another MCode block
to compare the outputs of two blocks. If the two outputs are not equal at any given time, the
error checking block will report the error. The following function does the error checking:

function eq = error_ne(a, b, report, mod)
 persistent cnt, cnt = xl_state(0, {xlUnsigned, 16, 0});
 switch mod
 case 1
 eq = a==b;
 case 2
 eq = isnan(a) || isnan(b) || a == b;
 case 3
 eq = ~isnan(a) && ~isnan(b) && a == b;
 otherwise
 eq = false;
 error(['wrong value of mode ', num2str(mod)]);
 end
 if report

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=63

 if ~eq
 error(['two inputs are not equal at time ', num2str(cnt)]);
 end
 end
 cnt = cnt + 1;

The block is configured as following:

Figure 40: Block Configuration

RPN Calculator

This example shows how to use the MCode block to model a RPN calculator which is a stack
machine. The block is synthesizable:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=64

Figure 41: RPN Calculator

The following function models the RPN calculator.

function [q, active] = rpn_calc(d, rst, en)
 d_nbits = xl_nbits(d);
 % the first bit indicates whether it's a data or operator
 is_oper = xl_slice(d, d_nbits-1, d_nbits-1)==1;
 din = xl_force(xl_slice(d, d_nbits-2, 0), xlSigned, 0);
 % the lower 3 bits are operator
 op = xl_slice(d, 2, 0);
 % acc the the A register
 persistent acc, acc = xl_state(0, din);
 % the stack is implemented with a RAM and
 % an up-down counter
 persistent mem, mem = xl_state(zeros(1, 64), din);
 persistent acc_active, acc_active = xl_state(false, {xlBoolean});
 persistent stack_active, stack_active = xl_state(false, ...
 {xlBoolean});
 stack_pt_prec = {xlUnsigned, 5, 0};
 persistent stack_pt, stack_pt = xl_state(0, {xlUnsigned, 5, 0});
 % when en is true, it's action
 OP_ADD = 2;
 OP_SUB = 3;

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=65

 OP_MULT = 4;
 OP_NEG = 5;
 OP_DROP = 6;
 q = acc;
 active = acc_active;
 if rst
 acc = 0;
 acc_active = false;
 stack_pt = 0;
 elseif en
 if ~is_oper
 % enter data, push
 if acc_active
 stack_pt = xfix(stack_pt_prec, stack_pt + 1);
 mem(stack_pt) = acc;
 stack_active = true;
 else
 acc_active = true;
 end
 acc = din;
 else
 if op == OP_NEG
 % unary op, no stack op
 acc = -acc;
 elseif stack_active
 b = mem(stack_pt);
 switch double(op)
 case OP_ADD
 acc = acc + b;
 case OP_SUB
 acc = b - acc ;
 case OP_MULT
 acc = acc * b;
 case OP_DROP
 acc = b;
 end
 stack_pt = stack_pt - 1;
 elseif acc_active
 acc_active = false;
 acc = 0;
 end
 end
 end
 stack_active = stack_pt ~= 0;

Example of disp Function

The following MCode function shows how to use the disp function to print variable values.

function x = testdisp(a, b)
 persistent dly, dly = xl_state(zeros(1, 8), a);
 persistent rom, rom = xl_state([3, 2, 1, 0], a);
 disp('Hello World!');
 disp(['num2str(dly) is ', num2str(dly)]);
 disp('disp(dly) is ');
 disp(dly);
 disp('disp(rom) is ');
 disp(rom);
 a2 = dly.back;
 dly.push_front_pop_back(a);
 x = a + b;

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=66

 disp(['a = ', num2str(a), ', ', ...
 'b = ', num2str(b), ', ', ...
 'x = ', num2str(x)]);
 disp(num2str(true));
 disp('disp(10) is');
 disp(10);
 disp('disp(-10) is');
 disp(-10);
 disp('disp(a) is ');
 disp(a);
 disp('disp(a == b)');
 disp(a==b);

Check the Enable printing with disp option.

Figure 42: Enable Printing with disp

Here are the lines that are displayed on the MATLAB console for the first simulation step.

mcode_block_disp/MCode (Simulink time: 0.000000, FPGA clock: 0)
Hello World!
num2str(dly) is [0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000]
disp(dly) is
 type: Fix_11_7,
 maxlen: 8,
 length: 8,
 0: binary 0000.0000000, double 0.000000,
 1: binary 0000.0000000, double 0.000000,
 2: binary 0000.0000000, double 0.000000,
 3: binary 0000.0000000, double 0.000000,
 4: binary 0000.0000000, double 0.000000,
 5: binary 0000.0000000, double 0.000000,
 6: binary 0000.0000000, double 0.000000,
 7: binary 0000.0000000, double 0.000000,
disp(rom) is
 type: Fix_11_7,
 maxlen: 4,
 length: 4,
 0: binary 0011.0000000, double 3.0,
 1: binary 0010.0000000, double 2.0,
 2: binary 0001.0000000, double 1.0,
 3: binary 0000.0000000, double 0.0,
a = 0.000000, b = 0.000000, x = 0.000000
1
disp(10) is
 type: UFix_4_0, binary: 1010, double: 10.0
disp(-10) is

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=67

 type: Fix_5_0, binary: 10110, double: -10.0
disp(a) is
 type: Fix_11_7, binary: 0000.0000000, double: 0.000000
disp(a == b)
 type: Bool, binary: 1, double: 1

Importing a Model Composer HDL Design into a
Bigger System
A Model Composer design is often a sub-design that is incorporated into a larger HDL design.
This topic shows how to embed two Model Composer designs into a larger design and how
VHDL created by Model Composer can be incorporated into the simulation model of the overall
system.

HDL Netlist Compilation

Selecting the HDL Netlist compilation target from the System Generator token instructs Model
Composer to generate HDL along with other related files that implement the design. In addition,
Model Composer produces auxiliary files that simplify downstream processing such as simulating
the design using an Vivado simulator, and performing logic synthesis using Vivado synthesis. See
Compilation Types for HDL Library designs for more details.

Integration Design Rules

When a Model Composer model is to be included into a larger design, the following two design
rules must be followed.

• Rule 1: No Gateway or System Generator token should specify an IOB/CLK location.

Also, IOB timing constraints should be set to "none".

• Rule 2: If there are any I/O ports from theModel Composer design that are required to be
ports on the top-level design, appropriate buffers should be instantiated in the top-level HDL
code.

Configurable Subsystems and Model Composer
A configurable Subsystem is a kind of block that is made available as a standard part of Simulink.
In effect, a configurable Subsystem is a block for which you can specify several underlying blocks.
Each underlying block is a possible implementation, and you are free to choose which
implementation to use. In Model Composer you might, for example, specify a general-purpose
FIR filter as a configurable Subsystem whose underlying blocks are specific FIR filters. Some of
the underlying filters might be fast but require much hardware, while others are slow but require
less hardware. Switching the choice of the underlying filter allows you to perform experiments
that trade hardware cost against speed.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=68

Defining a Configurable Subsystem

A configurable Subsystem is defined by creating a Simulink® library. The underlying blocks that
implement a configurable Subsystem are organized in this library. To create such a library, do the
following:

1. Make a new empty library.

Figure 43: New Empty Library

2. Add the underlying blocks to the library.

Figure 44: Adding Underlying Blocks

3. Drag a template block into the library. (Templates can be found in the Simulink library
browser under Simulink/Ports & Subsystems/Configurable Subsystem.)

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=69

Figure 45: Template

4. Rename the template block if desired.

5. Save the library.

6. Double-click to open the template for the library.

7. In the template GUI, turn on each check box corresponding to a block that should be an
implementation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=70

Figure 46: Check Boxes

8. Press OK, and then save the library again.

Using a Configurable Subsystem

To use a configurable Subsystem in a design, do the following:

1. As described above, create the library that defines the configurable Subsystem.

2. Open the library.

3. Drag a copy of the template block from the library to the appropriate part of the design.

4. The copy becomes an instance of the configurable Subsystem.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=71

Figure 47: Configurable Subsystem

5. Right-click the instance, and under Block Choice select the block that should be used as the
underlying implementation for the instance.

Figure 48: Block Choice

Deleting a Block from a Configurable Subsystem

To delete an underlying block from a configurable Subsystem, do the following:

1. Open and unlock the library for the Subsystem.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=72

2. Double-click the template, and deselect the checkbox associated with the block to be
deleted.

3. Press OK, and then delete the block.

Figure 49: Deleting a Block

4. Save the library.

5. Compile the design by typing Ctrl + D.

6. If necessary, update the choice for each instance of the configurable Subsystem.

Adding a Block to a Configurable Subsystem

To add an underlying block to a configurable Subsystem, do the following:

1. Open and unlock the library for the Subsystem.

2. Drag a block into the library.

3. Double-click the template, and select the checkbox next to the added block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=73

Figure 50: Add a Block

4. Press OK, and then save the library.

5. Compile the design by typing Ctrl-D.

6. If necessary, update the choice for each instance of the configurable Subsystem.

Notes for Higher Performance FPGA Design
If you focus all your optimization efforts using the back-end implementation tools, you may not
be able to achieve timing closure because of the following reasons:

• The more complex IP blocks in a Model Composer design like FIR Compiler and FFT are
generated under the hood. They are provided as highly-optimized netlists to the synthesis tool
and the implementation tools, so further optimization may not be possible.

• Model Composer netlisting produces HDL code with many instantiated primitives such as
registers, BRAMs, and DSP48E1s. There is not much a synthesis tool can do to optimize these
elements.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=74

The following tips focus on what you can do in Model Composer to increase the performance of
your design before you start the implementation process.

• Review the Hardware Notes Included with Each Block Dialog Box

• Register the Inputs and Outputs of Your Design

• Insert Pipeline Registers

• Use Saturation Arithmetic and Rounding Only When Necessary

• Set the Data Rate Option on All Gateway Blocks

• Pipeline for Maximum Performance

• Other Things to Try

Review the Hardware Notes Included with Each Block Dialog Box

Pay close attention to the Hardware Notes included in the block dialog boxes. Many blocks in the
Xilinx Blockset library have notes that explain how to achieve the most hardware efficient
implementation. For example, the notes point out that the Scale block costs nothing in hardware.
By contrast, the Shift block (which is sometimes used for the same purpose) can use hardware.

Register the Inputs and Outputs of Your Design

Register the inputs and outputs of your design. As shown below, this can be done by placing one
or more Delay blocks with a latency 1 or Register blocks after the Gateway In and before
Gateway Out blocks. Selecting any of the Register block features adds hardware.

Figure 51: Register Inputs and Outputs

Double registering the I/Os may also be beneficial. This can be performed by instantiating two
separate Register blocks, or by instantiating two Delay blocks, each having latency 1. This allows
one of the registers to be packed into the IOB and the other to be placed next to the logic in the
FPGA fabric. A Delay block with latency 2 does not give the same result because the block with a
latency of 2 is implemented using an SRL32 and cannot be packed into an IOB.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=75

Insert Pipeline Registers

Insert pipeline registers wherever possible and reasonable. Deep pipelines are efficiently
implemented with the Delay blocks since the SRL32 primitive is used. If an initial value is needed
on a register, the Register block should be used. Also, if the input path of an SRL32 is failing
timing, you should place a Register block before the related Delay block and reduce the latency
of the Delay block by one. This allows the router more flexibility to place the Register and Delay
block (SRL + Register) away from each other to maximize the margin for the routing delay of this
path.

Figure 52: Pipeline Registers

As shown in the following figure, the Convert block can be pipelined with embedded register
stages to guarantee maximum performance.

Figure 53: Convert Block

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=76

To achieve a more efficient implementation on some Xilinx blocks, you can select the Implement
using behavioral HDL option. As shown below, if the delay on a Delay block is 32 or greater,
Xilinx synthesis infers a SRLC32E (32-bit Shift-Register) which maps into a single LUT.

Figure 54: Implement Using Behavioral HDL

For block RAMs (BRAMs), use the internal output register. You do this by setting the latency from
1 (the default) to 2. This enables the block RAM output register.

When you are using DSP48E1s, use the input, output and internal registers; for FIFOs, use the
embedded registers option. Also, check all the high-level IP blocks for pipelining options.

Use Saturation Arithmetic and Rounding Only When Necessary

Saturation arithmetic and rounding have area and performance costs. Use only if necessary. For
example a Reinterpret block doesn‘t cost any logic. A Convert (cast) block doesn‘t cost any logic if
Quantization is set to Truncate and if Overflow is set to Wrap. If the data type requires the use of
the Rounding and Saturation options, then pipeline the Convert block with embedded register
stages. If you are using a DSP48E1, the rounding can be done within the DSP48E1.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=77

Set the Data Rate Option on All Gateway Blocks

Select the IOB timing constraint option Data Rate on all Gateway In and Gateway Out blocks.
When Data Rate is selected, the IOBs are constrained at the data rate at which the IOBs operate.
The rate is determined by the Simulink system period (sec) field in the System Generator token
and the sample rate of the Gateway relative to the other sample periods in the design.

Pipeline for Maximum Performance

For Model Composer HDL blocks that use Xilinx LogiCORE™ IP internally, the default tool
behavior is to place at least one register outside of the core. For latency values greater than the
optimum value of the core, the optimal pipeline registers are placed inside the core, and the
remainder of the registers get pushed out.

Other Things to Try

• Change the Source Design

○ Use Additional Pipelining

Use the Output and Pipeline registers inside block RAM and DSP48s.

○ Run Functions in Parallel

Run functions in parallel at a slower clock rate

○ Use Retiming Techniques

Move existing registers through combinational logic.

○ Use Hard Cores where Possible

Use Block RAM instead of distributed RAM.

○ Use a Different Design Approach for Functions

• Avoid Over-Constraining the Design

Do not over-constrain the design and use up/down sample blocks where appropriate.

• Consider Decreasing the Frequency of Critical Design Modules

• Squeeze Out the Implementation Tools

○ Try Different Synthesis Options.

○ Floorplan Critical Modules

Using FDATool in Digital Filter Applications
The FDATool block is used to define the filter order and coefficients, and the HDL blocks are
used to implement a filter. The Tools library in the HDL Blockset contains the FDATool block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=78

Figure 55: FDATool Block

A simple Model Composer model below illustrates a standard FIR filter design using the FDATool
and digital FIR filter block.

The design uses two sine wave sources which are being added together and passed separately
through two low-pass filters.

• The first filter is the one that could be implemented using the Xilinx HDL blockset. It is a
digital low pass filter implemented using the Digital FIR filter block.

• The second filter is what is referred to as a reference filter. A low pass filter is implemented
using a Direct-form FIR structure.

The frequency response of both filters visualized in Spectrum Analyzer block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=79

Figure 56: Spectrum Analyzer Block

The Xilinx version of the FDAtool can be used to define the coefficients of the low-pass filter to
eliminate high-frequency noise. The filter configuration parameters like Response Type, Filter
Order, Frequency Specification, and Magnitude Specification can be modified from the Properties
Editor of the FDATool as shown below.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=80

Figure 57: Filter Configuration

The Design Filter option at the bottom of the tool window allows you to find out the filter order
and observe the Magnitude Response. You can also view the Phase Response, Impulse Response,
Coefficients, and more by selecting the appropriate icon at the top-right of the window. You can
display the filter coefficients in the MATLAB® workspace by typing the following:

>> xlfda_numerator('FDATool')

The following functions help you find the maximum and minimum coefficient values to
adequately specify the coefficient width and binary point:

>> max(xlfda_numerator('FDATool'))
>> min(xlfda_numerator('FDATool'))

Now, the filter parameters of the FDATool instance can be associated with the Digital FIR filter
instance.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=81

Figure 58: Digital FIR Filter

The Xilinx Filter response can be viewed and compared with the Simulink® response using the
Spectrum Analyzer.

Figure 59: Spectrum Analyzer

Note: The frequency response results of Model Composer (right side), shown above, differs slightly with
the original design (left side) due to the quantization and sampling effect inherent when a continuous time
system is described in discrete time hardware.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=82

For complete example along with steps to use the FDATool, refer to the Vitis Model Composer
Tutorial (UG1498).

Multiple Independent Clocks Hardware Design
Model Composer is a cycle accurate, high-level hardware modeling and implementation tool
where the notion of a cycle is analogous to that of clock in hardware. The design can be
partitioned into groups of Subsystem blocks, where each Subsystem has a common cycle period,
independent of the cycle period of other Subsystems. This section details how blocks can be
grouped into one cycle or clock domain and how data can be transferred between these cycle
domains. In the rest of this section, the terms cycle and clock are used interchangeably.

Grouping Blocks within a Clock Domain

Blocks are grouped together in Model Composer by using a Subsystem. Grouping blocks within a
clock domain is no different except that a System Generator token has to be placed in the
Subsystem you want to “mark” as a Clock Domain. This is shown in the figure below.

Figure 60: Source Clock Domain

In this figure, a clock domain Subsystem called src_domain has been created and a System
Generator token added. Notice that the clocking tab of the System Generator token is selected.
In this tab, the FPGA clock period has been set to (1000/368) ns (368 MHz) and the Simulink
system period to 1. This implies that an advance of 1 Simulink second corresponds to (1000/368)
ns of FPGA clock.

Similarly, another group of blocks representing another clock domain is included in a Subsystem
called dest_domain, as shown in the figure below.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 83Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=83

Figure 61: Destination Clock Domain

In this design, the dest_domain Subsystem is configured to run at an FPGA clock period of
1000/245 ns(245 MHz). The Simulink system period is set to 368/245. This is done because the
Simulink system period of the src_domain Subsystem is set to 1. Hence, you normalize with
the System period from the src_domain which is faster.

HDL Blocks used to Create Asynchronous Clock Domains

To pass data between the src_domain and dest_domain Subsystems, you can use any one of
the following logics:

1. FIFO block

2. Dual Port RAM block

3. Register block

4. Black Box block, which allows existing VHDL, Verilog, and EDIF to be brought into a design.
For more information about Black Box utility, please refer to Importing HDL Modules.

These blocks configure themselves to be either synchronous single clock blocks or multiple clock
blocks based on their context in the design. In this design, the FIFO block is used to cross the
clock domains as shown in the figure below.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=84

Figure 62: Cross Domain FIFO Block

To complete the design, the FIFO block and an additional System Generator token block at the
top level of the design is included to enable Code Generation.

Configuring the Top-Level System Generator Token

The top-level System Generator token has to be configured to indicate that the Code Generation
must proceed for a multiple clock design. This is indicated by turning on the Enable multiple
clocks check box in the top-level System Generator token. This indicates to the Code Generation
engine that the clock information for the Subsystems src_domain and dest_domain must be
obtained from the System Generator tokens contained in those Subsystems. If this check box is
not enabled, then the design will be treated as a single clock design where all the clock
information is inherited from the top-level System Generator token block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=85

Figure 63: Enable Multiple Clocks

Clock Propagation Algorithm

For all HDL blocks in the src_domain, the clocking is governed by the System Generator token
in the src_domain Subsystem. Similarly for the dest_domain Subsystem. For the FIFO block,
the clocks are derived from its context in the design. Because the we and din ports are driven by
signals emanating from the src_domain Subsystem, the wr_clk of the FIFO is tied to the
src_domain clock. Because the dout, full, and re ports either drive or load signals from
dest_domain, the rd_clk of the FIFO is tied to the dest_domain clock. Mixing and
matching these signals across clock domains or using any other block (other than FIFO or Dual
Port RAM) to cross clock domains will result in a DRC error.

Debugging Clock Propagation

The top-level System Generator token can be used to control the display of all HDL Block Icons
using the Block icon display control in the General Tab. From this tab, you can either select
Normalized sample periods or Sample frequencies to help understand how clocks get
propagated in the design.

For multiple clock designs, the behavior of Normalized sample periods, is that the smallest
Simulink system period is used to normalize all the sample periods in the design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=86

Figure 64: Debugging Clock Propagation

To enable the above display, set the Block icon display of the top-level System Generator token
to Normalized Sample Periods and press Apply.

For Sample Frequencies, the port icon text display is the result of the following computation:

(1e6/FPGA clock period) * Simulink system period/Port sample period

where FPGA clock period is the FPGA clock period specified in ns in the domain’s System
Generator token, and Simulink system period is the Simulink system period in seconds specified
in the domain’s System Generator token.

The Sample Frequencies can also be used to validate correct clock propagation as shown in the
following figure:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=87

Figure 65: Sample Frequencies

To ensure that the simulation models the hardware behavior relatively with respect to the clocks,
the ratio of Simulink system period to FPGA clock period in each domain must be the same. If
this relationship is not complied with the correct ratio, a warning is thrown to indicate this
problem as shown in the figure below:

Figure 66: Warning

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=88

Simulation

After performing the simulation, the following results are obtained as seen in the dest_domain
scope.

Figure 67: Simulation

As shown above, the simulation results indicate that the data obtained is the data expected.

Note: This cross-clock domain simulation behavior is NOT cycle accurate.

Debugging Multiple Clock Domain Signals

In System Generator, you can use cross probing between the signal in the Xilinx Waveform
Viewer and the Simulink® diagram to aid the debugging process.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=89

Figure 68: Source Clock Domain

To add a signal to the Waveform viewer, right-click the signal in the model and select Xilinx Add
To Viewer. Simulating the design should launch the Waveform Viewer as shown below.

Figure 69: Waveform Viewer

All signals in same clock domain are colored similarly. In the figure above: src_domain/Slice/
Out1 and dest_domain/Relational/Out1 are in different clock domains.

Code Generation

Code generation for a Multiple Clock design supports the following compilation targets:

• HDL Netlist

• IP Catalog

• Synthesized Checkpoint

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=90

A screen shot of the top-level hardware is shown in the figure below.

Figure 70: Top-Level Hardware

As many clock ports as there are clock domains are exposed at the top level and can be driven by
a variety of Xilinx clocking constructs like MMCM, PLL etc. It is assumed that these clocks are
completely asynchronous and the following period constraints are created:

These are the only constraints that are required because only FIFO or Dual Port RAM are allowed
which have any additional clock domain constraints embedded in the IP.

Known Issues

The following are some of the known issues:

• The HWCosim Compilation Target is not supported for Multiple Clock Designs.

• Only FIFO & Dual Port RAM blocks can be in the top-level of the design when using multiple
clocks.

• The behavior of blocks that aid in the crossing of Multiple clock domains is NOT cycle
accurate.

• Unconnected or terminated output ports cannot be viewed in the Waveform Viewer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=91

AXI Interface
AMBA AXI4 (Advanced eXtensible Interface 4) is the fourth generation of the AMBA interface
defined and controlled by Arm®, and has been adopted by Xilinx as the next-generation
interconnect for FPGA designs. Xilinx and Arm worked closely to ensure that the AXI4
specification addresses the needs of FPGAs.

AXI is an open interface standard that is widely used by many 3rd-party IP vendors since it is
public, royalty-free and an industry standard.

The AMBA AXI4 interface connections are point-to-point and come in three different flavors:
AXI4, AXI4-Lite Slave, and AXI4-Stream.

• AXI4 is a memory-mapped interface which support burst transactions

• AXI4-Lite Slave is a lightweight version of AXI4 and has a non-bursting interface

• AXI4-Stream is a high-performance streaming interface for unidirectional data transfers (from
master to slave) with reduced signaling requirements (compared to AXI4). AXI4-Stream
supports multiple channels of data on the same set of wires.

In the following documentation, AXI4 refers to the AXI4 memory map interface, and AXI4-Lite
Slave and AXI4-Stream each refer to their respective flavor of the AMBA AXI4 interface. When
referring to the collection of interfaces, the term AMBA AXI4 shall be used.

The purpose of this section is to provide an introduction to AMBA AXI4 and to draw attention to
AMBA AXI4 details with respect to Model Composer. For more detailed information on the
AMBA AXI4 specification please refer to the Xilinx AMBA-AXI4 documents found on the AMBA
AXI4 Interface Protocol page on the Xilinx website.

AXI4-Stream Support in Model Composer

The three most common AXI4-Stream signals are TVALID, TREADY and TDATA. Of all the AXI4-
Stream signals, only TVALID is denoted as mandatory, all other signals are optional. All
information-carrying signals propagate in the same direction as TVALID; only TREADY
propagates in the opposite direction.

Since AXI4-Stream is a point-to-point interface, the concept of master and slave interface is
pertinent to describe the direction of data flow. A master produces data and a slave consumes
data.

Naming Conventions

AXI4-Stream signals are named in the following manner:

<Role>_<ClassName>[_<BusName>]_[<ChannelName>]<SignalName>

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 92Send Feedback

https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=92

For example:

m_axis_tvalid

Here m denotes the Role (master), axis the ClassName (AXI4-Stream) and tvalid the
SignalName.

s_axis_control_tdata

Here s denotes the Role (slave), axis the ClassName, control the BusName which
distinguishes between multiple instances of the same class on a particular IP, and tdata the
SignalName.

Notes on TREADY/TVALID Handshaking

The TREADY/TVALID handshake is a fundamental concept in AXI to control how data is
exchanged between the master and slave allowing for bidirectional flow control. TDATA, and all
the other AXI4-Stream signals (TSTRB, TUSER, TLAST, TID, and TDEST) are all qualified by the
TREADY/TVALID handshake. The master indicates a valid beat of data by the assertion of
TVALID and must hold the data beat until TREADY is asserted. TVALID once asserted cannot be
de-asserted until TREADY is asserted in response (this behavior is referred to as a “sticky”
TVALID). AXI also adds the rule that TREADY can depend on TVALID, but the assertion of
TVALID cannot depend on TREADY. This rule prevents circular timing loops. The timing diagram
below provides an example of the TREADY/TVALID handshake.

Figure 71: TREADY/TVALID Handshake Timing Diagram

Handshaking Key Points

• A transfer on any given channel occurs when both TREADY and TVALID are high in the same
cycle.

• TVALID once asserted, may only be de-asserted after a transfer has completed (TREADY is
sampled high). Transfers may not be retracted or aborted.

• Once TVALID is asserted, no other signals in the same channel (except TREADY) may change
value until the transfer completes (the cycle after TREADY is asserted).

• TREADY may be asserted before, during or after the cycle in which TVALID is asserted.

• The assertion of TVALID may not be dependent on the value of TREADY. But the assertion of
TREADY may be dependent on the value of TVALID.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=93

• There must be no combinatorial paths between input and output signals on both master and
slave interfaces:

○ Applied to AXI4-Stream IP, this means that the TREADY slave output cannot be
combinatorially generated from the TVALID slave input. A slave that can immediately
accept data qualified by TVALID, should pre-assert its TREADY signal until data is received.
Alternatively TREADY can be registered and driven the cycle following TVALID assertion.

○ The default design convention is that a slave should drive TREADY independently or pre-
assert TREADY to minimize latency.

○ Note that combinatorial paths between input and output signals are permitted across
separate AXI4-Stream channels. It is however a recommendation that multiple channels
belonging to the same interface (related group of channels that operate together) should
not have any combinatorial paths between input and output signals.

• For any given channel, all signals propagate from the source (typically master) to the
destination (typically slave) except for TREADY. Any other information-carrying or control
signals that need to propagate in the opposite direction must either be part of a separate
channel ("back-channel" with separate TREADY/TVALID handshake) or be an out-of-band
signal (no handshake). TREADY should not be used as a mechanism to transfer opposite
direction information from a slave to a master.

• AXI4-Stream allows TREADY to be omitted which defaults its value to 1. This may limit
interoperability with IP that generates TREADY. It is possible to connect an AXI4-Stream
master with only forward flow control (TVALID only).

AXI4-Stream Blocks in Model Composer

HDL blocks that present an AXI4-Stream interface can be found in the Vitis Model Composer
HDL Blockset Library entitled DSP/AXI4. Blocks in this library are drawn slightly differently from
regular (non AXI4-Stream) blocks.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=94

Port Groupings

Figure 72: DDS Compiler 6.0

Blocks that offer AXI4-Stream interfaces have AXI4-Stream channels grouped together and color
coded. For example, on the DDS compiler 6.0 block shown above, the input port data_tready,
and the three output ports, data_tvalid, data_tdata_sine, data_tdata_cosine belong
in the same AXI4-Stream channel. Similarly, the input port config_tvalid,
config_tdata_pinc and output port config_tready belong in the same AXI4-Stream
channel. As does phase_tready, phase_tvalid, and phase_tdata_phase_out.

Signals that are not part of any AXI4-Stream channels are given the same background color as
the block; aresetn is an example.

Port Name Shortening

In the example shown below, the AXI4-Stream signal names have been shortened to improve
readability on the block. Name shortening is purely cosmetic and when netlisting occurs, the full
AXI4-Stream name is used. Name shorting is turned on by default; you can uncheck the Display
shortened port names option in the block parameter dialog box to reveal the full name.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=95

Figure 73: DDS Compiler 6.0

Breaking Out Multi-Channel TDATA

In AXI4-Stream, TDATA can contain multiple channels of data. In Model Composer, the individual
channels for TDATA are broken out. So for example, the TDATA of port dout below contains
both real and imaginary components.

Figure 74: Complex Multiplier 6.0

The breaking out of multi-channel TDATA does not add additional logic to the design and is done
in Model Composer as a convenience to the users. The data in each broken out TDATA port is
also correctly byte-aligned.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=96

AXI4-Lite Slave Interface Generation
Design modules that are developed using Model Composer usually form a Subsystem of a larger
DSP or Video system. These Model Composer modules are typically algorithmic and data path
heavy modules that are best created in the visually-rich environment like MATLAB/Simulink. The
larger system is typically assembled from IP from the Vivado® IP catalog. These IP typically use
standard stream and control interfaces like AXI4-Lite Slave and the larger system is typically
assembled using a tool like the Vivado IP integrator.

This topic describes features in Model Composer that allow you to create a standard AXI4-Lite
Slave interface for a Model Composer module and then export the module to the Vivado® IP
catalog for later inclusion in a larger design using IP integrator. Model Composer also allows
creation of multiple AXI4-Lite Slave interfaces across multiple clock domains.

AXI4-Lite Interface Synthesis in Model Composer

Design creation and verification is exactly the same as any other Model Composer design that
does not include an AXI4-Lite interface. Consider the example_dds design shown below.

Figure 75: Example DDS Design

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=97

This design contains a DDS Compiler where the two input ports, config_tvalid and
config_tdata_pinc are used to control the output frequency.

Following are the simulation results of this design which indicate both sine and cosine output
separately.

Figure 76: Simulation Results

Configuring the Design for an AXI4-Lite Interface

In the example_dds design, Gateway In and Gateway Out blocks mark the boundary of the Cycle
and Bit accurate FPGA portion of the Simulink design. Control of the DDS Compiler frequency is
accomplished by “injecting” the correct value on the signals attached to the output port of
Gateway In’s called phase_valid and phase_data. This is accomplished by modifying the
Interface Options, as shown below for the phase_valid block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=98

Figure 77: Interface Options

As you can see, the Interface is specified as a slave AXI4-Lite Interface in Model Composer,
which means that it will be transformed to a top-level AXI4-Lite interface.

The following options are also of particular interest:

Auto assign address offset (Enabled): Each Gateway is associated with a register within the AXI4-
Lite Interface and this control specifies that Automatic assignment of address offsets will take
place in the design based on number of different Gateway Ins mapped to the AXI4‑Lite interface.
Addresses are byte aligned to a 32-bit data width.

Address offset (Disabled): This option is only enabled if Auto assign address offset is unchecked.
It allows the user to manually override of Address Offset.

Interface Name: Assigns a unique name to this interface. This name can be used to differentiate
between multiple AXI4-Lite interfaces in the design.

IMPORTANT! The Interface Name must be composed of alphanumeric characters (lowercase alphabetic)
or an underscore (_) only, and must begin with a lowercase alphabetic character. axi4_lite1 is acceptable,
1Axi4-Lite is not.

Description: The text you enter here is captured in the "Interface Documentation" that is
automatically created when the design is exported to the Vivado IP catalog.

Configure the other Gateways in the design in a similar fashion.

Packaging the Design for Use in Vivado IP Integrator

When you complete the verification in Model Composer, you can package the design for use in
IP integrator.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=99

Figure 78: Model Composer Verification

The HDL block must first be configured to a Compilation target of IP Catalog (the default
generation target). This compilation target will consolidate all hardware source created from
Model Composer (RTL + IP + Constraints) into an IP.

The part selected is the same part as that available on the Xilinx Zynq-7000 ZC702 Evaluation
Board. In addition, you may also use the Settings button on the System Generator token to
change the information that goes along with the IP. In this case, the default values shown below
are used.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=100

Figure 79: IP Catalog Settings

When you click the Generate button in System Generator token GUI, RTL+IP+Constraints
generation, as well as packaging takes place.

Description of the Generated Results

Based on the Model Composer settings shown above, the following folders and files are created.

• <target directory>/ip: This directory contains all the IP-related hardware files, as well
as the software drivers. It is this directory that you must add to the IP Catalog.

• <target directory>/ip_catalog: This directory contains an example Vivado IDE
project called example_dds.xpr.

Mapping to AXI4-Lite Interfaces

Gateway Ins and Gateway Outs that are tagged as AXI4-Lite registers are mapped to different
32-bit registers within a Memory Map as shown in the Schematic below.

The schematic below is an example of mapping to a single AXI4-Lite interface, assuming all
gateways have the same interface name. In a schematic with multiple AXI4-Lite interfaces, for
each group of gateways having the same interface name you would see a separate AXI4-Lite
Interface.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=101

Figure 80: Single AXI4-Lite Interface

As you can see in the diagram, a module called example_dds_inf_axi_lite_interface is
inserted into the design RTL, and drives the config_tvalid and config_tdata ports of the
Model Composer design. And at the top level, a slave AXI4-Lite Interface is exposed. It is within
this module that address decoding is done and the config_tvalid and config_tdata ports
are driven based on the address obtained from the processor.

The number of bits required for addressing (s_axi_araddr and s_axi_awaddr) is determined
by the number of AXI4-Lite interface registers and the offset specifications of each AXI4-Lite
register. Enough bits are provided during module generation to uniquely decode each register. In
this example, there are two Gateways – phase_data and phase_valid. Each port is assigned
an address offset of 0x0000 & 0x0004. Hence three address bits are allocated.

Managing Multiple AXI4-Lite Interfaces

Model Composer supports creation of IP with multiple AXI4-Lite interfaces. You can group
Gateway In and Gateway Out blocks into different AXI4-Lite interfaces. This feature can be used
in Multiple Clock designs as well. Software drivers will also be provided.

To assign a name to an AXI4-Lite interface, use the Interface Name control for the Gateway In
and Gateway Out blocks associated with the interface.

All Gateway Ins and Gateway Outs with the same Interface Name are grouped into one AXI4-
Lite Interface. An Interface Name must begin with a lower case alphabetic character, and can
only contain alphanumeric characters (lowercase alphabetic) or an underscore (_). Having the
same Interface Name across multiple clock domains is not supported.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=102

Figure 81: Interface Name

To generate the netlist you can use the IP Catalog or the HDL Netlist compilation target.

If you specify the HDL Netlist compilation target in the System Generator token, and then
elaborate the design in Vivado, two AXI4-Lite Decoders will be created, as shown in red
rectangle in the following figure.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=103

Figure 82: AXI4-Lite Decoders

If you specify the IP Catalog compilation target in the System Generator token, the flow will also
generate an example BD with multiple AXI4-Lite interfaces and an aresetn signal.

The naming convention for an interface is:

<clock domain name/design name>_<interface name>_s_axi

Figure 83: Example BD

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=104

To generate a document describing the IP, select the Create interface document option on the
System Generator Token Compilation tab before you perform the compilation.

Figure 84: Create Interface Document

Access the document the same way you access the document for any other Vivado IP. Double-
click the IP in the Vivado schematic, then select Documentation → Product Guide.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=105

Figure 85: Accessing Documents

A document (HTML file) will open up (see example below).

Figure 86: Sample Document

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=106

This document contains a section on the Memory Map for the IP. If you selected Auto assign
address offset in the Gateway In or Gateway Out port for the AXI4-Lite interfaces, you can find
out the address offset the different interfaces are mapped to.

Software Drivers are automatically generated and packaged as well in the Vitis™ software
plaform. The documentation for the software drivers can be found in the Vitis environment.

Figure 87: Software Driver Documentation

Address Generation

The following assumptions are made in the automatic address-generation process:

1. Each AXI4-Lite gateway is associated with a unique address offset that is aligned with a 32-
bit word boundary (i.e., will be a multiple of 4).

2. Addressing begins at zero.

3. Addressing is incrementally assigned in the lexicographical order of the gateways. In the
event two gateways have the same name - disambiguation will be arbitrary.

4. All AXI4-Lite gateways must be less than 32-bits wide else an error is issued.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=107

5. If an AXI4-Lite gateway is less than 32-bits wide, then from the internal register, LSBs will be
assigned into the Design Under Test (DUT).

6. The following criteria is used to manage the user-specified offset addresses:

a. All user-specified addresses are allocated to AXI4-Lite gateways before automatic
allocation.

b. If two user-specified addresses are the same, an error is issued only during generation
(otherwise it will be ignored).

c. If the remaining AXI4-Lite gateways that are set to allocate address automatically, Model
Composer attempts to fill the "holes" left behind by user-specified addressing.

Features of the Vivado IDE Example Project

The Vivado® IDE example project (example_dds.xpr) is created to help you jump start your
usage of the IP created from Model Composer. This project is configured as follows:

1. The IP generated from Model Composer is already added to the IP catalog associated with
the project and available for the RTL flow as well as the IP integrator-based flow.

2. The design includes an RTL instantiation of IP called example_dds_0 underneath
example_dds_stub that indicates how to instance such an IP in RTL flow.

3. The design includes a test bench called example_dds_tb that also instances the same IP in
RTL flow.

4. The design includes an example IP integrator diagram with a Zynq®-7000 Subsystem as the
part selected in this example is a Zynq®-7000 SoC part. For all other parts, a MicroBlaze-
based Subsystem is created.

Figure 88: IP Integrator Diagram

5. If the part selected is the same as one of the supported boards, the project is set to the first
board encountered with the same part setting.

6. A wrapper instancing the block design is created and set as Top.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=108

TIP: The interface documentation associated with the IP is accessible through the block GUI. To access this
documentation, double-click the Model Composer IP, and click the Documentation button in the GUI.

Software Drivers

Bare-metal software drivers are created based on the address offsets assigned to the gateways.
These drivers are located in the folder called <target_directory>/ip/drivers.
<target_directory>/ip must be added to the Vitis™ environment search paths to use these
drivers.

For each Gateway In mapped to an AXI4-Lite interface, the following two APIs are created.

/**
* Write to <Gateway In id> of <design name>. Assignments are LSB-justified.
*
 * @param InstancePtr is the <Gateway In id> instance to operate on.
* @param Data is value to be written to gateway <Gateway In id>.
*
* @return None.
*
* @note <Text from Description control of the Gateway In GUI>
*
*/
void <Gateway In id>_write(example_dds *InstancePtr, u32 Data);

/**
* Read from <Gateway In id> of <design name>. Assignments are LSB-justified.
*
* @param InstancePtr is the phase_valid instance to operate on.
*
* @return u32
*
* @note Phase Valid Port That Must Be Asserted.
*
*/
u32 <Gateway In id>_read(example_dds *InstancePtr);

<Gateway In id>: <design_name>_<gateway_name> where <design_name> is the
VHDL/Verilog top-level name of the design and <gateway_name> is the scrubbed name of the
gateway.

Gateway Outs generate a similar driver, but are read-only.

Known Issue in AXI4-Lite Interface Generation

Test Bench generation is not supported for designs that have gateways (Gateway In or Gateway
Out) configured as an AXI4-Lite Interface.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=109

Tailor Fitting a Platform Based Accelerator Design in
Model Composer
Platform based accelerators use a bottom-up design methodology to ease the development of
larger systems. Two distinct design portions are created: the connectivity platform which
connects board level interfaces to a processing system, and the differentiated logic accelerator(s)
which represent the data path internal to the SoC and are controlled and/or fed by the
connectivity platform design. DSP data paths or accelerators can take advantage of automation
to tie into the connectivity platform and its interfaces to external devices.

To speed up creating a design in the Vivado IP Integrator in which the accelerator portion of the
design will be developed in Model Composer, the following procedure can be used:

1. Create a Block Diagram (BD) of your design in the Vivado IP Integrator. This will act as your
connectivity platform.

2. Import the connectivity platform into Model Composer.

3. Enter the accelerator portion of the design in Model Composer.

4. In Model Composer, compile the accelerator model using the IP Catalog flow, to create a
Vivado project containing the original design (from the Vivado BD file) and the circuitry in the
Model Composer model.

Step 1: Create a Connectivity Platform in Vivado as an IP Integrator
Block Diagram (.bd)

First, you must create a block diagram containing your platform design in the Vivado® IP
integrator. You may use a configurable example design, a reference design, or a custom-built
design as the platform based system that will contain the accelerator part of the design.

In the example below, the platform design contains a Zynq®-7000 Processing System, and AXI
DMA. The connectivity platform designer intends to transfer data to and from the DDR memory
using the DMA, perform DES Encryption on the data received from the DDR, and then send the
encrypted data back into the DDR. The AXI4-Stream ports M_AXIS_MM2S and S_AXIS_S2MM
(Data Path) are made external to the Block Diagram (BD). It shows the intent of the platform
designer that these interfaces are available for Model Composer to use during the Model
Composer BD import process. An AXI4-Lite interface, M00_AXI, is also made external, indicating
that there will be a control interface on the accelerator IP.

These are requirements for the design in the IP integrator:

• This system has to be built for a specific board or part. This ensures that certain ports and
interfaces have known location attributes assigned to them.

• The AXI Interfaces that you want to bring into the accelerator portion of the design have to
be made external.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=110

Figure 89: AXI Interfaces

Currently we support the following interfaces from the platform framework point of view:

Table 4: Supported AXI Interfaces

Interface Master Slave
AXI4 Yes No

AXI4-Lite Yes No

AXI4-Stream Yes Yes

Step 2: Parse the BD File and Import Un-Located Ports and
Interfaces into Model Composer

You can now use the xilinx.utilities.importBD utility in Model Composer to import the
BD (Block Diagram) that you created in the Vivado® IP integrator.

This utility takes in the platform framework Vivado project and the name of the new model to be
created in Model Composer. It parses the platform design for potential Model Composer ports
and external interfaces (that is, interfaces whose ports do not have location attributes, based on
the board connectivity and automation) and creates a sample stub in Model Composer
representing the accelerator portion of the design.

COMMAND USAGE:

xilinx.utilities.importBD takes in the platform Vivado project and the name of the new
model to be created. It parses the platform for potential Model Composer ports and interfaces
and creates a sample stub for the user to make development easy. If the new model name is not
specified an untitled model will be opened.

Inputs are: The Vivado project and the model_name (optional)

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=111

USAGE:

xilinx.utilities.importBD('<full_or_relative_path_to_vivado_project_director
y>/

<project_name>.xpr', 'mynewmodel')

EXAMPLES

xilinx.utilities.importBD('C:\test_importBD\platform.xpr', 'mynewmodel')
xilinx.utilities.importBD('C:\test_impportBD\platform.xpr')

In Model Composer, the resulting model will look like the example below.

Figure 90: Model Composer Model

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=112

The model in Model Composer will have these features:

• For each AXI4-Lite interface, a Gateway In and a Gateway Out block will appear. You can then
replicate and add as many AXI4-Lite gateways as your design requires.

• For an AXI4-Stream interface, the associated TDATA, TVALID, TREADY, and other AXI4-
Stream ports will appear.

• The model’s System Generator token is set to a Compilation target of IP Catalog and the Part
or Board will be set to the same Xilinx device or board as that of the Vivado project.

Step 3: In Model Composer, Connect Logic to the BD Socket

At this point you can create the accelerator in Model Composer. In the example below we have
connected to some other logic, and renamed the gateways.

Figure 91: Connect to BD Socket

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=113

Step 4: Compile the Accelerator Model (IP Catalog Flow) to Create a
Complete Design

You can now use the IP catalog compilation flow to create a complete design. When you double-
click the System Generator token in IP catalog flow and click the Settings button, the Use Plug-in
project directory must point to the Vivado® IP integrator project from which the design was
imported (see below). When you click the Generate button, a new Vivado project based on the
original Vivado platform framework/system plus the accelerator IP created in Model Composer,
along with a software driver, will be created. This project will be located in an ip_catalog directory
under the System Generator token's Target directory, and can also be placed into a common IP
repository.

Figure 92: Target Directory

You can open this new project in Vivado to complete the implementation of your design. The
block highlighted in the following figure indicates a block developed using Model Composer HDL
Blockset.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=114

Figure 93: New Project

Using Super Sample Rate (SSR) Blocks in Model
Composer
While the Super Sample Rate (SSR) feature introduced in this section can be widely applicable to
all Xilinx® devices, this section explains the motivation for it for Xilinx RFSoC devices. The
integration of direct RF-sampling data converters with Xilinx’s technology offers the most
flexible, smallest footprint, and lowest power solution for a wide range of high performance RF
applications such as Wireless communications, cable access, test & measurement, and radar.
RFSoC devices provide hardened Digital Up Converters (DUC) and Digital Down Converters
(DDC). NCO, Complex Mixers, and Filters are hard Macros, and filter characteristics are
optimized for general Commercial applications.

Figure 94: RFSoC Device

Depending on what is needed, RFSoC devices can be used in two ways.

• Use the available hardened NCO & Complex Mix and Half Band Decimation/interpolation
filters.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=115

• If the sequence of the hardened blocks does not meet the design requirement, you can bypass
them as shown in the figure above.

In the latter case, to meet the design requirements, you may need to implement the NCO,
Complex Mixerm and DDC blocks in the fabric using the HDL Blockset in Model Composer. To
do this, bypass the hardened blocks, and let Model Composer IPs run at Programmable Logic (PL)
clock frequency. When the sample rate from the ADC is in GSPS, and PL handles only the MSPS
range of data, you must accept and compute multiple parallel samples every clock cycle for each
data channel. The number of parallel samples is determined by calculating the ratio between the
sample frequency and the Programmable Logic clock frequency, which is defined as an SSR
parameter.

What is SSR?

SSR is a parameter that determines how many parallel samples to accept for every clock cycle.

How SSR helps users?

• SSR is beneficial for users who cannot use the hardened RFSoC DUC and DDCs.

• SSR provides programmatic subsystems for NCO and Complex Mixer among many others. The
user input parameters in the block mask and Model Composer programmatically construct the
underlying subsystem with multiple DDS blocks.

• SSR avoids manual and structural modifications to your design, which accelerates the design-
cycle.

SSR Library

Model Composer provides a separate set of library blocks for handling SSR. Currently, Model
Composer supports 25 vector blocks, which can be accessed from the MATLAB® Library
Browser.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=116

Figure 95: SSR Block set in HDL Library

The SSR parameter can be defined for all the blocks present in the SSR block set. When you add
a block from the library, the default SSR value is 4, and the maximum SSR valiue is 256.

The SSR block set is defined in Xilinx SSR Blockset.

Figure 96: Default SSR Value

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=117

No matter what the SSR rate is, you only need to provide a limited number of signal connections
as with a normal IP block. Model Composer automatically takes care of all the parallel path
connection internal to the SSR block, according to the SSR parameter value provided.

For example, for a Vector AddSub block, when SSR parameter is modified to 3, the internal
connections are done automatically as shown below. This creates 3 parallel paths for
computation and results in single output.

Figure 97: Vector AddSub Fabric Example

Performing Analysis in Model Composer
Model Composer is a bit and cycle accurate modeling tool. You can verify the functionality of
your designs by simulating in Simulink®. However, to ensure that your Model Composer design
will work correctly when it is implemented in your target Xilinx® device, these analysis tools have
been integrated into Model Composer:

• Timing Analysis: To ensure that the HDL files generated by Model Composer operate
correctly in hardware, you must close timing. To help accelerate this process, timing analysis
has been integrated into Model Composer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=118

• Resource Analysis: To ensure that the HDL files generated by Model Composer will fit into
your target device, you may need to analyze the resources being used. To help accelerate this
process, resource analysis has been integrated into Model Composer.

Timing Analysis in Model Composer Presents an overview of timing analysis in Model Composer.

Performing Timing Analysis
Describes how to perform timing analysis on your model.

Cross Probing from the Timing Analysis Results to the
Model

Describes how you can cross probe from a row in the Timing
Analyzer table to the Simulink model, highlighting the
corresponding HDL blocks in the path.

Accessing Existing Timing Analysis Results
Describes how to re-launch the Timing Analyzer table on
pre-existing Timing Analysis results.

Recommendations For Troubleshooting Timing
Violations

Describes methods to help you discover the source of
timing violations in your design.

Resource Analysis in Model Composer Presents an overview of resource analysis in Model
Composer.

Performing Resource Analysis
Describes how to perform resource analysis on your model.

Cross Probing from the Resource Analysis Results to the
Model

Describes how you can cross probe from a row in the
Resource Analyzer table to the Simulink model, highlighting
the corresponding block or subsystem in the design.

Accessing Existing Resource Analysis Results
Describes how to re-launch the Resource Analyzer table on
pre-existing Resource Analysis results.

Recommendations for Optimizing Resource Analysis
Describes methods to help you use the Resource Analyzer
to optimize resource utilization in the design.

Timing Analysis in Model Composer
To ensure that the HDL files generated by Model Composer work correctly in hardware, you
must close timing. To help accelerate this process, timing analysis has been integrated into Model
Composer.

Timing analysis allows you to perform static timing analysis on the HDL files generated from
Model Composer, either Post-Synthesis or Post-Implementation. It also provides a mechanism to
correlate the results of running the Vivado® Timing Engine on either the Post-Synthesized netlist
or the Post Implementation netlist with the Model Composer model in Simulink®. Thus, you do
not have to leave the Simulink® modeling environment to close timing on the DSP sub-module of
the design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=119

Invoking timing analysis on a compilation target (for example, HDL Netlist) results in a tabulated
display of paths with columns showing information such as timing slack, path delay, etc. This is
the Timing Analyzer table. You can sort the contents of the table using any of the column metrics
such as slack, etc. Also, cross probing is enabled between the table entries and the Simulink
model to accelerate finding and fixing timing failures in the model. Cross probing between the
Timing Analyzer table and the Simulink model is accomplished by selecting/clicking a row in the
table. The corresponding path in the model will be highlighted. The path is highlighted in red if
the path corresponds to a timing violation; otherwise it is highlighted in green.

Performing Timing Analysis

Timing analysis can be invoked whenever you generate any of the following compilation targets:

• IP catalog

• Hardware Co-Simulation

• Synthesized Checkpoint

• HDL Netlist

To perform timing analysis in Model Composer:

1. Double-click the System Generator token in the Simulink model.

2. Enter the following in the System Generator token dialog box:

• In the Compilation tab, specify a Target Directory.

• In the Clocking tab, set the Perform Analysis field to Post Synthesis or Post
Implementation based on the runtime vs. accuracy tradeoff.

• In the Clocking tab, set the Analyzer Type field to Timing.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=120

Figure 98: Performing Timing Analysis

3. In the System Generator token dialog box, click Generate.

When you generate, the following occurs:

a. Model Composer generates the required files for the selected compilation target. For
timing analysis Model Composer invokes Vivado in the background for the design project,
and passes design timing constraints to Vivado.

b. Depending on your selection for Perform Analysis (Post Synthesis or Post
Implementation), the design runs in Vivado through synthesis or through implementation.

c. After the Vivado tools run is completed, timing paths information is collected and saved
in a specific file format from the Vivado timing database. At the end of the timing paths
data collection the Vivado project is closed and control is passed to the MATLAB®/Model
Composer process.

d. Model Composer processes the timing information and displays a Timing Analyzer table
with timing paths information (see below).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=121

Figure 99: Timing Analyzer Table

In the timing analyzer table:

• Only unique paths from the Simulink model are reported.

• The 50 paths with the lowest Slack values are displayed with the worst Slack at the top,
and increasing Slack below.

• Paths with timing violations have a negative Slack and display in red.

• The display order can be sorted for any column’s values by clicking the column head.

• If you want to hide a column in the table, right-click any column head in the table and
deselect the column to hide in the list that appears.

Figure 100: Hide/Show Dialog

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=122

• For a design with multiple clock cycle constraints, the Timing Analyzer can identify
multicycle path constraints, and show them in the Path Constraints column. In that case,
the Source Clock, and Destination Clock columns display clock enable signals to reflect
different sampling rates.

Figure 101: Clock Enable Signals

• You can cross probe from the table to the Simulink model by selecting a path in the table,
which will highlight the corresponding HDL blocks in the Simulink model. See Cross
Probing from the Timing Analysis Results to the Model.

Cross Probing from the Timing Analysis Results to the Model

You can cross probe from the Timing Analyzer table to the Simulink model by clicking any path
(row) in the Timing Analyzer table, which highlights the corresponding HDL blocks in the model.
This allows you to troubleshoot timing violations by analyzing the path on which they occur.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=123

Figure 102: Timing Analyzer Table

When you cross probe, the following will display in the model:

• Blocks in a path with a timing violation are highlighted in red in the model, whereas blocks
that belong to a path with no timing violation (that is, a path with a positive Slack value) are
highlighted in green in the model.

• If blocks in a highlighted path are inside a subsystem, then the subsystem is highlighted in red
so you may expand the subsystem to inspect the blocks underneath.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=124

Figure 103: Cross Probing

• When you select a path (row in the table) to cross probe, this normally highlights the
destination block at the end of the path. That brings the subsystem containing the destination
block to the front in the model. As a result, you may not be able to see the highlighted source
block if the source block is in a different subsystem. If you want to see the source block, click
the path in the Source column in the table. This will bring the subsystem containing the source
block to the front of the model. Selecting the path in any other column will bring the
subsystem containing the destination block to the front.

Accessing Existing Timing Analysis Results

A Launch button is provided under the Clocking tab of the System Generator token dialog box to
relaunch the Timing Analyzer table using the existing timing analysis results for the model. Make
sure the Target directory specified on the Compilation tab of the dialog box is readable by the
Timing Analyzer, and the Analyzer Type field is set to Timing. This will only work if you already
ran timing analysis on the Simulink model and haven't changed the Simulink model since the last
run.

When you click the Launch button, the Timing Analyzer table will display the timing analysis
results stored in the specified Target directory, regardless of the option selected for Perform
analysis (Post Synthesis or Post Implementation).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=125

Figure 104: Launch Button

You can also launch the Timing Analyzer table to display existing timing analysis results by
entering this command at the MATLAB® command prompt:

xlAnalyzeTiming(<mdl_hdle>, <netlist_dir>)

where <mdl_hdle> is the Simulink® model handle (the handle of the top level design), and
<netlist_dir> is the Target directory specified in the System Generator token dialog box.

Recommendations For Troubleshooting Timing Violations

The following are recommended for troubleshooting timing violations:

• For quicker timing analysis iterations, post-synthesis analysis is preferred over post-
implementation analysis.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=126

• After logic optimization during the Vivado Synthesis process the tool doesn't keep information
about merged logic in the Vivado database. Merged and shared logic may make it difficult to
accurately cross probe from Vivado timing paths to the Simulink model. Hence, it is
recommended that you create a custom Vivado Synthesis strategy to control merged and
shared logic.

For information about how to create a custom Synthesis strategy in Vivado, see this link in the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

To control merged and shared logic in the Vivado IDE, make the following changes to the default
Vivado Synthesis strategy.

1. Set these Synthesis options in Vivado IDE:

• Select the Synthesis option -keep_equivalent_registers.

• Set the Synthesis option -resource_sharing to the value off.

2. Save the new Synthesis strategy and exit Vivado IDE.

3. In Model Composer, select the new custom Synthesis strategy in the System Generator
token dialog box before generating the design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 127Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf;a=xCreatingRunStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=127

Figure 105: Custom for Timing Analysis

Resource Analysis in Model Composer
To ensure that the HDL files generated by Model Composer will fit into your target device, you
may need to analyze the resources being used. To help accelerate this process, resource analysis
has been integrated into Model Composer.

Resource analysis allows you to determine the number of look-up tables (LUTs), registers,
DSP48s (DSPs), and block RAMs (BRAMs) used by your model. The analysis is performed either
Post-Synthesis or Post-Implementation and provides a mechanism to correlate the resources
used in the Vivado® tools with the Model Composer model in Simulink®. Thus, you do not have
to leave the Simulink modeling environment to investigate and determine areas where excessive
resources are being used in your design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=128

Invoking resource analysis on a compilation target (for example, IP catalog) results in a tabulated
display of blocks, and hierarchies showing LUT, Register, DSP, and block RAM resource usage.
This is the Resource Analysis table. You can sort the contents of the table using any of the
column metrics such as DSPs, etc. Also, cross probing is enabled between the table entries and
the Simulink model to accelerate finding and fixing excessive resource usage in the model. Cross
probing between the Resource Analysis table, and the Simulink model is accomplished by
selecting (clicking) a row in the table. The corresponding block, or hierarchy in the model is
highlighted in yellow.

Performing Resource Analysis

Resource analysis can be performed whenever you generate any of the following compilation
targets:

• IP Catalog

• Hardware Co-Simulation

• Synthesized Checkpoint

• HDL Netlist

To perform resource analysis in Model Composer:

1. Double-click the System Generator token in the Simulink model.

2. Select the following in the System Generator token dialog box:

a. In the Compilation tab:

• Specify the Part in which your design will be implemented.

Note: If you select a Board instead of a Part, the Part field will be filled in with the name of the
part on the selected Board.

• Select one of the Compilation targets.

Model Composer can perform resource analysis for any Compilation target you select.

• Specify a Target Directory.

b. In the Clocking tab:

• Set the Perform Analysis field to Post Synthesis or Post Implementation based on the
runtime vs. accuracy tradeoff.

• Set the Analyzer type field to Resource.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=129

Figure 106: Resource Analyzer

3. In the System Generator token dialog box, click Generate.

When you generate, the following occurs:

a. Model Composer generates the required files for the selected compilation target. For
resource analysis Model Composer invokes Vivado in the background for the design
project.

b. Depending on your selection for Perform analysis (Post Synthesis or Post
Implementation), the design runs in Vivado through synthesis or through implementation.

c. After the Vivado tools run is completed, resource utilization data is collected from the
Vivado resource utilization database and saved in a specific file format under the target
directory. At the end of the resource utilization data collection the Vivado project is
closed and control is passed to the MATLAB/Model Composer process.

d. Model Composer processes the resource utilization data and displays a Resource
Analyzer table with resource utilization information (see below).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=130

Figure 107: Resource Analyzer

In the resource analyzer table:

• The header section of the dialog box indicates the Vivado design stage after which
resource utilization data was collected from Vivado. This will be either Post Synthesis or
Post Implementation.

• The local toolbar contains the following commands to change the display of resource
counts:

○ Hierarchical/Flat Display: Toggles the display between a hierarchical tree and a

flattened list.

○ Collapse All: Collapses the design hierarchy to display only the top-level objects.

○ Expand All: Expands the design hierarchy at all levels to display resources used by each

subsystem and each block in the design.

• The number shown in each column heading indicates the total number of each type of
resource available in the Xilinx device for which you are targeting your design. In the
example below, the design is targeting a Kintex-7 FPGA.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=131

Figure 108: Resource Analysis Report for Kintex-7

• The example displays a hierarchical listing of each subsystem and block in the design, with
the count of the following resource types:

• BRAMs: block RAM and FIFO primitives.block RAMs (BRAMs) are counted in this way.

Table 5: Number of BRAMs

Primitive Type # BRAMs
RAMB36E 1

FIFO36E 1

RAMB18E 0.5

FIFO18E 0.5

Variations of Primitives (for example, RAM36E1 and RAM36E2) are all counted in the
same way.

Total BRAMs = (Number of RAMB36E) + (Number of FIFO36E) + 0.5
(Number of RAMB18E + Number of FIFO18E)

• DSPs: DSP48 primitives (DSP48E, DSP48E1, DSP48E2) and DSP58

• Registers: Registers and Flip-Flops. All primitive names that start with FD* (FDCE,
FDPE, FDRE, FDSE, etc.) and LD* (LDCE, LDPE, etc.) are considered as Registers.

• LUTs: All LUT types combined.

• The display order can be sorted for any column’s values by clicking the column head.

• You can cross probe from the table to the Simulink model by selecting a row in the table,
which will highlight the corresponding HDL blocks in the Simulink model. See Cross
Probing from the Resource Analysis Results to the Model.

Cross Probing from the Resource Analysis Results to the Model

You can cross probe from the Resource Analyzer table to the Simulink® model by clicking a block
or subsystem name in the Resource Analyzer table, which highlights the corresponding HDL
block or subsystem in the model. The cross probing is useful to identify blocks and subsystems
that are implemented using a particular type of resource.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=132

Figure 109: Resource Analyzer

When you cross probe, the following will display in the model:

• The block you have selected in the table will be highlighted in yellow and outlined in red.

• If the block or subsystem you have selected in the table is within an upper-level subsystem,
then the parent subsystem is highlighted in red in addition to the underlying block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=133

Figure 110: Selected Subsystem

Accessing Existing Resource Analysis Results

A Launch button is provided under the Clocking tab of the System Generator token dialog box to
launch the Resource Analyzer table using the existing resource utilization results for the model.
Make sure the Target directory specified on the Compilation tab of the dialog box is readable by
the Resource Analyzer, and the Analyzer type field is set to Resource. This will only work if you
already ran analysis on the Simulink model and haven't changed the Simulink model since the last
run.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=134

When you click the Launch button, the Resource Analyzer table will display the resource
utilization results stored in the Target directory specified on the Compilation tab, regardless of
the option selected for Perform analysis (the Post Synthesis or Post Implementation option).

Figure 111: Launch Button

You can launch the Resource Analyzer table to display existing resource utilization results by
entering the following command at the MATLAB® command prompt:

>> xlAnalyzeResource(get_param('model_name','handle'),'./netlist')

• get_param('model_name','handle') gives you the model handle.

Note: model_name represents the name of the model.

• For the path to netlist directory, you can use an absolute path, or if you are using this API
from the same directory where netlist directory is present, then you can use a relative path
like './netlist'.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=135

Recommendations for Optimizing Resource Analysis

The following are recommended for using the Resource Analyzer to optimize resource utilization
in the design:

• For quicker resource analysis iterations, post-synthesis analysis is preferred over post-
implementation analysis.

• After logic optimization during the Vivado Synthesis process the tool does not keep
information about merged logic in the Vivado database. Merged and shared logic may make it
difficult to accurately cross probe from Vivado resource data to the Simulink model. Hence, it
is recommended that you create a custom Vivado Synthesis strategy to control merged and
shared logic.

For information about how to create a custom Synthesis strategy in Vivado IDE, see this link
in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

To control merged and shared logic in the Vivado IDE, make the following changes to the
default Vivado Synthesis strategy.

1. In Vivado IDE:

• Select the Synthesis option -keep_equivalent_registers.

• Set the Synthesis option -resource_sharing to the value off.

2. Save the new Synthesis strategy and exit Vivado IDE.

3. In Model Composer, select the new custom Synthesis strategy in the System Generator
token dialog box before generating the design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 136Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf;a=xCreatingRunStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=136

Figure 112: Synthesis Strategy

Using Hardware Co-Simulation
Model Composer provides hardware co-simulation, making it possible to incorporate a design
running in an FPGA directly into a Simulink® simulation. This allows all (or a portion) of the Model
Composer design that had been simulating in Simulink as sequential software to be executed in
parallel on the FPGA, and can speed up simulation dramatically. Users of this flow can send larger
data sets, or more test vectors, doing an exhaustive functional test of the implemented logic. This
increased code coverage allows more corner cases to be verified to help identify design bugs in
the logic. Data at the input to the compiled co-simulation block on the Simulink model is sent to
the target FPGA, either as one transaction or a burst of transactions, executed for a given
number of clock cycles in parallel, and read back to the model's co-simulation outputs.

Hardware co-simulation has two compilation types: burst or non-burst (standard). The burst
mode provides much higher performance. Channels to each input of the compiled co-simulation
target are opened and packets of data are sent to the open channel, followed by bursting to all of
the remaining inputs. The FPGA design is executed in parallel for enough cycles to consume the
data, and the target outputs are burst read in a channelized fashion. Bursting provides for less
overhead to send and receive large amounts of data from the FPGA. However, burst mode is only

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=137

supported through MATLAB® script-based hardware co-simulation of the Hardware Co-
Simulation target and is not used within Simulink. Exhaustive data vectors can be scripted to test
the functionality of the co-simulation target, and an example script is returned as part of the
compilation. Non-burst mode has lower performance but allows a compiled co-simulation block
to be used within Simulink in place of the original Model Composer design hierarchy.

Note: Hardware co-simulation does not support designs which contain multiple clocks.

Board support allows the JTAG-based physical interface to communicate with the co-simulation
target: JTAG-based communication is available for most of the JTAG aware boards that exist as a
project target in Vivado®. Boards from Xilinx partners are available and can be downloaded from
the partner websites and installed as part of the Vivado Design Suite. Custom boards can also be
created as detailed in Appendix A, Board Interface File, in the Vivado Design Suite User Guide:
System-Level Design Entry (UG895). Setting up board awareness in Model Composer and the
minimum tags needed in the board.xml file are detailed in the section Specifying Board
Support in Model Composer HDL Blockset.

Hardware Co-Simulation compilation targets automatically create a bitstream based on the
selected communication interface and associate it to a block.

• If a board is supported for JTAG hardware co-simulation, the Hardware Co-Simulation option
for Compilation is enabled in the System Generator token dialog box when you perform the
procedure described in Compiling a Model for Hardware Co-Simulation. If the Hardware Co-
Simulation option is grayed out and disabled, you cannot perform JTAG hardware co-
simulation on the board.

This support applies to the following types of boards:

Table 6: Board Support

Board Name Display Name
zed ZedBoard Zynq Evaluation and Development Kit

ac701 Artix-7 AC701 Evaluation Platform 1.0/1.1

kc705 Kintex-7 KC705 Evaluation Platform 1.0/1.1

kcu105 Kintex-UltraScale KCU105 Evaluation Platform

vc707 Virtex-7 VC707 Evaluation Platform

vc709 Virtex-7 VC709 Evaluation Platform

vcu108 Virtex-UltraScale VCU108 Evaluation Platform

zc702 ZYNQ-7 ZC702 Evaluation Board

zc706 ZYNQ-7 ZC706 Evaluation Board

○ Xilinx boards installed as part of your Vivado installation.

○ Partner boards, which are available and can be downloaded from the partner websites and
installed as part of the Vivado Design Suite,

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 138Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=138

○ Custom boards, which can be created in the Vivado Design Suite as detailed in Appendix A,
Board Interface File, in the Vivado Design Suite User Guide: System-Level Design Entry
(UG895).

Compiling a Model for Hardware Co-Simulation
The starting point for hardware co-simulation is the Model Composer model or subsystem you
would like to run in hardware. A model can be co-simulated if it meets the requirements of the
underlying hardware board. The model must include a System Generator token; this block
defines how the model should be compiled into hardware.

For information on how to use the System Generator token, see Compiling and Simulating Using
the System Generator Token.

To compile your Model Composer model for hardware co-simulation, perform the following:

1. Double-click the System Generator token to open the System Generator token dialog box.

Figure 113: System Generator Token Dialog Box

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 139Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=139

2. In the Compilation tab, select a Board and a version of the board.

The boards appearing in the Board list are:

• All of the boards installed as part of the Vivado.

• Any custom boards you have created in the Vivado.

• Any Partner boards you have purchased and enabled in the Vivado.

For a Partner board or a custom board to appear in the Board list, you must configure Model
Composer to access the board files that describe the board. Board awareness in Model
Composer is detailed in Specifying Board Support in Model Composer HDL Blockset.

To compile for hardware co-simulation, you must select a Board. You cannot set the Board
field to None and select a Part instead of a Board.

When you select a Board, the Part field displays the name of the Xilinx device on the
selected Board, and the Part setting cannot be changed.

3. In the Compilation field, select Hardware Co-Simulation and, further select JTAG interface to
perform hardware co-simulation.

If the Hardware Co-Simulation option is grayed out and disabled, you cannot perform JTAG
hardware co-simulation on the selected board.

4. If you will use burst mode for a faster hardware co-simulation run, click the Settings button
next to the Compilation field, select Burst mode, and enter a FIFO depth for the burst mode
operation. Then click OK to close the Hardware Co-Simulation Settings dialog box.

For a description of the burst mode, see Burst Data Transfers for Hardware Co-Simulation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=140

Figure 114: Burst Mode

IMPORTANT! To perform a burst mode hardware co-simulation, you must create a test bench by
checking the Create Testbench box in the System Generator token dialog box.

5. If you want to create a test bench as part of the compilation, select the Create Testbench
option.

If you select Create Testbench, the compilation will automatically create an example test
bench for you. You can also create your own test bench for hardware co-simulation (see M-
Code Access to Hardware Co-Simulation).

6. Click the Generate button.

The code generator produces an FPGA configuration bitstream for your design that is
suitable for hardware co-simulation. Model Composer not only generates the HDL and netlist
files for your model during the compilation process, but it also runs the downstream tools
necessary to produce an FPGA configuration file.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=141

The configuration bitstream contains the hardware associated with your model, and also
contains additional interfacing logic that allows Model Composer to communicate with your
design using a physical interface between the board and the PC. This logic includes a memory
map interface over which Model Composer can read and write values to the input and output
ports on your design. It also includes any board-specific circuitry that is required for the
target FPGA board to function correctly.

When the Compilation finishes the results are as follows:

• If you have not selected Burst mode in step 4 above (standard mode), a JTAG Cosim
hardware co-simulation block will appear in a separate window. Drag (or Copy and Paste)
the Hardware Cosim block into your Simulink model. The Hardware Cosim block will
enable you to perform hardware co-simulation from within the Simulink window.

For a description of the hardware co-simulation block, see Hardware Co-Simulation
Blocks.

Figure 115: Hardware Co-Simulation Library Block

If you selected the Create Testbench option for compilation, an M-Code HWCosim
example test bench will also be generated (see M-Code Access to Hardware Co-
Simulation) by the compilation. You can use this test bench to perform hardware co-
simulation, or customize this test bench to develop a test bench of your own.

• If you have selected Burst mode in step 4 above (burst mode), no hardware co-simulation
block will appear. When you perform the burst mode co-simulation, you will use the
MATLAB® M-code test bench placed in the target directory during compilation.

○ If you compiled the top-level design the test bench will be named:

<design_name>_hwcosim_test.m

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=142

○ If you compiled a subsystem of the design the test bench will be named:

<design_name>_<sub_system>_hwcosim_test.m

The compilation has prepared the Simulink model for performing hardware co-simulation.

To perform the hardware co-simulation, proceed as follows:

○ To perform the standard (non-burst mode) hardware co-simulation, see Performing
Standard Hardware Co-Simulation.

○ To perform the burst mode hardware co-simulation, see Performing Burst Mode
Hardware Co-Simulation.

Performing Standard Hardware Co-Simulation
If you are performing the standard (non-burst mode) hardware co-simulation, your Simulink
model will contain a JTAG hardware co-simulation block. This block was created automatically
when Model Composer finished compiling your design into an FPGA bitstream (see Compiling a
Model for Hardware Co-Simulation). The block is stored in a Simulink library with this file name:

<design_name>_hwcosim_lib.slx

The hardware co-simulation block was moved into your Simulink model at the end of the
compilation procedure. In the following procedure, you will have to wire up this block in your
Simulink model to perform hardware co-simulation.

Note: If your board contains a Zynq® SoC device, you must install the Vitis™ unified software platform with
the Vivado® Design Suite to perform hardware co-simulation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=143

Figure 116: Hardware Co-Simulation Block

To perform the standard hardware co-simulation:

1. Connect the hardware co-simulation block to the Simulink blocks that supply its inputs and
receive its outputs.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=144

Figure 117: Connect to Simulink Blocks

2. Double-click the hardware co-simulation block to display the properties dialog box for the
block.

Figure 118: Hardware Co-Simulation Library Block Properties

3. Fill out the block parameters in the properties dialog box.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=145

The properties are described in Block Parameters for the JTAG Hardware Co-Simulation
Block .

4. To set up the board for performing JTAG hardware co-simulation.You should connect a cable
to the board’s JTAG port.

For a description of the setup procedure for a JTAG hardware co-simulation, using a KC705
board as an example, see Setting Up a KC705 Board for JTAG Hardware Co-Simulation.

5. In the Simulink model, simulate the model and the hardware by selecting Simulation → Run or
clicking the Run simulation button.

Figure 119: Run Button

Running the simulation will simulate both the Model Composer design (or subsystem) in your
Simulink model and the Xilinx device on your target board. You can then examine the results
of the two simulations and compare the results to determine if the design implemented in
hardware will operate as expected.

Performing Burst Mode Hardware Co-Simulation
To perform the burst mode hardware co-simulation, you will execute the MATLAB M-code test
bench that was generated automatically during compilation (see Compiling a Model for Hardware
Co-Simulation).

This test bench resides in the Target directory specified when the design was compiled for the
hardware co-simulation compilation target.

The test bench is named as follows:

• If you compiled the top-level design the test bench will be named:

<design_name>_hwcosim_test.m

• If you compiled a subsystem of the design the test bench will be named:

<design_name>_<sub_system>_hwcosim_test.m

Note: If your board contains a Zynq® SoC device, you must install the Vitis™ unified software platform
with the Vivado to perform hardware co-simulation.

To perform burst mode hardware co-simulation,

1. Set up the board for performing JTAG hardware co-simulation.

• Connect a cable to the board's JTAG port.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=146

For a description of the setup procedure for a JTAG hardware co-simulation, using a
KC705 board as an example, see Setting Up a KC705 Board for JTAG Hardware Co-
Simulation.

2. Run the test bench script from the MATLAB console. To run the test bench script, you can
open the MATLAB console, change directory to the Target directory and run the script by
name.

The script runs the Simulink model to determine the stimulus data driven to the Xilinx
Gateway In blocks (from the other Simulink source blocks or MATLAB variables), and
captures the expected output produced by the Xilinx block design (BD), and exports the data
to the Target directory as these separate data files:

<design_name>_<sub_system>_<port_name>.dat

The test bench then compares actual to expected outputs.

If the test fails this will be printed on the console, and the failing comparisons will be listed in
this file:

<design_name>_<sub_system>_hwcosim_test.result

M-Code Access to Hardware Co-Simulation
It is possible to programmatically control the hardware created through the Model Composer
HDL hardware co-simulation flow using MATLAB M-code (M-Hwcosim). The M-Hwcosim
interfaces allow for MATLAB objects that correspond to the hardware to be created in pure M-
code, independent of the Simulink framework. These objects can then be used to read and write
data into hardware. This capability is useful for providing a scripting interface to hardware co-
simulation, allowing for the hardware to be used in a scripted test bench or deployed as
hardware acceleration in M-code.

For more information on this subject, refer to M-Code Access to Hardware Co-Simulation.

Setting Up Your Hardware Board
The first step in performing hardware co-simulation is to set up your hardware board. The
hardware setup for JTAG hardware co-simulation is as follows:

For JTAG-based hardware co-simulation, you will connect a cable to the board's JTAG port.
Consult your board's documentation for the location of the board's JTAG port. Documentation
for Xilinx boards can be downloaded from the Boards and Kits page on the Xilinx website.

For a description of the setup procedure for a JTAG hardware co-simulation, using a KC705
board as an example, see Setting Up a KC705 Board for JTAG Hardware Co-Simulation

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 147Send Feedback

https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=147

Setting Up a KC705 Board for JTAG Hardware Co-Simulation

The following procedure describes how to set up the hardware required to run JTAG hardware
co-simulation on a KC705 board.

For detailed information about the KC705 board, see the KC705 Evaluation Board for the Kintex-7
FPGA User Guide (UG810).

Assemble the Required Hardware

1. Xilinx Kintex-7 KC705 board which includes the following:

a. Kintex-7 KC705 board

b. 12V Power Supply bundled with the KC705 kit

c. Micro USB-JTAG cable

Set Up the KC705 Board

The figure below illustrates the KC705 components of interest in this JTAG setup procedure:

Figure 120: KC705 Board

1. Position the KC705 board as shown above.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 148Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=kc705;d=ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=148

2. Make sure the power switch, located in the upper-right corner of the board, is in the OFF
position.

3. Connect the AC power cord to the power supply brick. Plug the power supply adapter cable
into the KC705 board. Plug in the power supply to AC power.

4. Connect the small end of the Micro USB-JTAG cable to the JTAG socket.

5. Connect the large end of the Micro USB-JTAG cable to a USB socket on your PC.

6. Turn the KC705 board Power switch ON.

Hardware Co-Simulation Blocks
Model Composer automatically creates a new hardware co-simulation block once it has finished
compiling your design into an FPGA bitstream. It also creates a Simulink library to store the
hardware co-simulation block. At this point, you can copy the block out of the library and use it in
your Model Composer design like any other Simulink or HDL blocks.

Figure 121: Hardware Co-Simulation Blocks

The hardware co-simulation block assumes the external interface of the model or Subsystem
from which it is derived. The port names on the hardware co-simulation block match the ports
names on the original Subsystem. The port types and rates also match the original design.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=149

Figure 122: Port Names

Hardware co-simulation blocks are used in a Simulink design the same way other blocks are used.
During simulation, a hardware co-simulation block interacts with the underlying FPGA board,
automating tasks such as device configuration, data transfers, and clocking. A hardware co-
simulation block consumes and produces the same types of signals that other Model Composer
HDL blocks use. When a value is written to one of the block's input ports, the block sends the
corresponding data to the appropriate location in hardware. Similarly, the block retrieves data
from hardware when there is an event on an output port.

hardware co-simulation blocks may be driven by Xilinx® fixed-point signal types, Simulink fixed-
point signal types, or Simulink doubles. Output ports assume a signal type that is appropriate for
the block they drive. If an output port connects to an HDL block, the output port produces a
Xilinx® fixed-point signal. Alternatively, the port produces a Simulink data type when the port
drives a Simulink block directly.

Note: When Simulink data types are used as the block signal type, quantization of the input data is handled
by rounding, and overflow is handled by saturation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=150

Like other HDL blocks, hardware co-simulation blocks provide parameter dialog boxes that allow
them to be configured with different settings. The parameters that a hardware co-simulation
block provides depend on the FPGA board the block is implemented for (i.e., different FPGA
boards provide their own customized hardware co-simulation blocks).

Block Parameters for the JTAG Hardware Co-Simulation Block

The block parameters dialog box for the JTAG hardware co-simulation block can be invoked by
double-clicking the block icon in your Simulink model.

Parameters specific to the block are as follows:

Basic tab

Has combinational path: Select this if your circuit has any combinational paths. A combinational
path is one in which a change propagates from input to output without any clock event. There is
no latch, flip-flop, or register in the path. Enabling this option causes Model Composer to read
the outputs immediately after writing inputs, before clocking the design. This ensures that value
changes on combinational paths extending from the hardware co-simulation block into the
Simulink Model get propagated correctly.

Bitstream file: Specify the FPGA configuration bitstream. By default this field contains the path
to the bitstream generated by Model Composer during the last Generate triggered from the
System Generator Token.

Advanced tab

Skip device configuration: When selected, the configuration bitstream will not be loaded into the
FPGA or SoC. This option can be used if another program is configuring the device (for example,
the Vivado Hardware Manager and the Vivado Logic Analyzer).

Display Part Information: This option toggles the display of the device part information string
(for example, xc7k325tffg900-2 for a Kintex device) in the center of the hardware co-simulation
block.

Cable tab

Cable Settings

• Type: Currently, Auto Detect is the only setting for this parameter. Model Composer will
automatically detect the cable type.

Hardware Co-Simulation Clocking
If you are performing a standard hardware co-simulation, you will have to select a clocking mode
when you configure the co-simulation block. included in your Simulink model.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=151

Clocking Modes

There are several ways in which a Model Composer hardware co-simulation block can be
synchronized with its associated FPGA hardware. In single-step clock mode, the FPGA is in effect
clocked from Simulink, whereas in free-running clock mode, the FPGA runs off an internal clock,
and is sampled asynchronously when Simulink wakes up the hardware co-simulation block.

Single-Step Clock

In single-step clock mode, the hardware is kept in lock step with the software simulation. This is
achieved by providing a single clock pulse (or some number of clock pulses if the FPGA is over-
clocked with respect to the input/output rates) to the hardware for each simulation cycle. In this
mode, the hardware co-simulation block is bit-true and cycle-true to the original model.

Because the hardware co-simulation block is in effect producing the clock signal for the FPGA
hardware only when Simulink awakes it, the overhead associated with the rest of the Simulink
model's simulation, and the communication overhead (e.g. bus latency) between Simulink and the
FPGA board can significantly limit the performance achieved by the hardware. As long as the
amount of computation inside the FPGA is significant with respect to the communication
overhead (e.g. the amount of logic is large, or the hardware is significantly over-clocked), the
hardware will provide significant simulation speed-up.

Free-Running Clock

In free-running clock mode, the hardware runs asynchronously relative to the software
simulation. Unlike the single-step clock mode, where Simulink effectively generates the FPGA
clock, in free-running mode, the hardware clock runs continuously inside the FPGA itself. In this
mode, simulation is not bit and cycle true to the original model, because Simulink is only sampling
the internal state of the hardware at the times when Simulink awakes the hardware co-simulation
block. The FPGA port I/O is no longer synchronized with events in Simulink. When an event
occurs on a Simulink port, the value is either read from or written to the corresponding port in
hardware at that time. However, since an unknown number of clock cycles have elapsed in
hardware between port events, the current state of the hardware cannot be reconciled to the
original Model Composer model. For many streaming applications, this is in fact highly desirable,
as it allows the FPGA to work at full speed, synchronizing only periodically to Simulink.

In free-running mode, you must build explicit synchronization mechanisms into the Model
Composer model. A simple example is a status register, exposed as an output port on the
hardware co-simulation block, which is set in hardware when a condition is met. The rest of the
Model Composer model can poll the status register to determine the state of the hardware.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=152

Selecting the Clock Mode

Not every hardware board supports a free-running clock. However, for those that do, the
parameters dialog box for the hardware co-simulation block provides a means to select the
desired clocking mode. You may change the co-simulation clocking mode before simulation starts
by selecting either the Single stepped or Free running radio button for Clock Source in the
parameters dialog box.

Note: The clocking options available to a hardware co-simulation block depend on the FPGA board being
used (i.e., some boards may not support a free-running clock source, in which case it is not available as a
dialog box parameter).

Figure 123: Single Stepped Button

For a description of a way to programmatically turn on or off a free-running clock using M-
Hardware Cosim, see the description of the Run operation under in M-Hwcosim MATLAB Class.

Burst Data Transfers for Hardware Co-Simulation
Hardware co-simulation (HWCosim) is a methodology by which a user can offload, either
partially or whole, the most compute intensive portion of a model into the actual target FPGA
platform. The host system provides the stimulus to the model via the co-simulation interface
(typically JTAG) and post-processes the response. This methodology is useful for validating the
correctness of the generated hardware design on the target platform itself, as well as for
speeding up the simulation time during verification of the model in a hardware co-verification
scenario.

MATLAB/Simulink in conjunction with Model Composer currently supports two variants of
HWCosim: GUI-based and MATLAB M-script based. The first is run under the control of the
Simulink scheduler, and can only progress one clock cycle at a time, due to the potential for
feedback loops in the model.

The second variant is MATLAB M-script based simulation under Model Composer control (M-
HWCosim), which is commonly used in testbenches produced as collateral during the bitstream
generation from the System Generator token. These testbenches are typically feedback-free and
come with a-priori known input that can be transferred to the device in larger batches.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=153

Hardware Co-Simulation Overview

A high-level overview of hardware co-simulation (HWCosim) is given in the figure below. At the
center of it is the device under test (DUT). The DUT is typically a piece of IP that is developed
and tested within a Simulink test framework providing the stimulus and receiving (and potentially
evaluating) the response. In order to allow for Simulink to communicate with the DUT it needs to
be embedded into the HWCosim wrapper consisting of the following components:

Figure 124: Hardware Co-Simulation Flow

• Communication interface (JTAG): Used for communications with the host PC, receiving the
command messages and sending responses.

• Command processor: Command messages are parsed and executed.

• Memory-mapped AXI4-Lite register bank: Use write commands to set up the stimulus data
in the register map, which is driving the inputs to the DUT. Similarly, use read commands to
query the memory-mapped DUT outputs. Finally, use a run(x) command to the memory-
mapped clock control register to trigger exactly "x" clock pulses on the DUT's clock input.
Alternatively, use run(inf) to start the free-running clock mode and run(0) to turn the
clock off.

Burst Data Transfer Mode

If you enable burst data transfer mode in the System Generator token (Compilation → Settings → 
Burst mode), the non-clock input and output registers will be replaced with "n"-entry FIFOs. You
can select "n" (FIFO depth), which is useful for trading off performance versus FPGA block RAM
resource use.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=154

Figure 125: Burst Mode

Enabling Burst mode allows the M-HWCosim scheduler to "burst write" a time-sequence of "n"
values into each input FIFO, run the clock for a number of cycles determined by the rate of
input/output ports and the FIFO depths, and capture the resulting output in the output FIFOs.
After the batch has been run, the scheduler proceeds to "burst read" the contents of the output
FIFOs into a MATLAB array, where it can be checked against expected data.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=155

Figure 126: Burst Mode Flow

This batch processing of time samples allows to better pack data into JTAG sequences or thereby
significantly reducing overhead.

How to Use Burst Data Transfer Mode

The simplest way for you to start using burst data transfer mode is via an automatically
generated test bench script. Advanced users can make use of the HWCosim API exposed via the
MATLAB Hwcosim objects that are shipped with Model Composer.

Automatic Testbench Generation

Testbench generation is run alongside the hardware co-simulation compilation flow. Open the
System Generator token in the Simulink model and wait for the dialog box to appear. The first tab
shows the Compilation options. A drop-down list shows the available compilation targets. After
selecting one of the two hardware co-simulation flows (depending on which one is available for
the selected board), the Settings button will be enabled and when selected it will open a
secondary dialog box where burst mode and the desired FIFO depth can be chosen. After burst
mode has been turned on, you can enable the automatic creation of an M-HWCosim test bench
script by enabling Create testbench at the bottom of the Compilation tab.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=156

Figure 127: Create Test Bench

The test generator will produce this M-script file in the Target Directory:

<design_name>_<sub_system>_hwcosim_test.m

You can run this script from the MATLAB® console. The script will also run the Simulink model to
determine the stimulus data driven to the Xilinx® Gateway In blocks (from the other Simulink
source blocks or MATLAB variables), while also capturing the expected output produced by the
Xilinx® Block Design (BD) and exporting the data to the Target directory as these separate data
files:

<design_name>_<sub_system>_<port_name>.dat

To run the test bench, you can open the MATLAB console, change directory to the Target
Directory, and run the script by name. If the test fails this will be printed on the console, and the
failing comparisons will be listed in this file:

<design_name>_<sub_system>_hwcosim_test.result

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=157

Burst Mode Testbench Script

The following is a test bench generated for an example design as part of the compilation flow:

%% project3_burst_hwcosim_test
% project3_burst_hwcosim_test is an automatically generated example MCode
% function that can be used to open a hardware co-simulation (hwcosim)
target,
% load the bitstream, write data to the hwcosim target's input blocks, fetch
% the returned data, and verify that the test passed. The returned value of
% the test is the amount of time required to run the test in seconds.
% Fail / Pass is indicated as an error or displayed in the command window.

%%
% PLEASE NOTE that this file is automatically generated and gets re-created
% every time the Hardware Co-Simulation flow is run. If you modify any part
% of this script, please make sure you save it under a new name or in a
% different location.

%%
% The following sections exist in the example test function:
% Initialize Bursts
% Initialize Input Data & Golden Vectors
% Open and Simulate Target
% Release Target on Error
% Test Pass / Fail

function eta = project3_burst_hwcosim_test
eta = 0;

%%
% ncycles is the number of cycles to simulate for and should be adjusted if
% the generated testbench simulation vectors are substituted by user data.
ncycles = 10;

%%
% Initialize Input Data & Golden Vectors
% xlHwcosimTestbench is a utility function that reformats fixed-point HDL
Netlist
% testbench data vectors into a double-precision floating-point MATLAB
binary
% data array.
xlHwcosimTestbench('.','project3_burst');

%%
% The testbench data vectors are both stimulus data for each input port, as
% well as expected (golden) data for each output port, recorded during the
% Simulink simulation portion of the Hardware Co-Simulation flow.
% Data gets loaded from the data file ('<name>_<port>_hwcosim_test.dat')
% into the corresponding 'testdata_<port>' workspace variables using
% 'getfield(load('<name>_<port>_hwcosim_test.dat' ... ' commands.
%
% Alternatively, the workspace variables holding the stimulus and / or
golden
% data can be assigned other data (including dynamically generated data) to
% test the design with. If using alternative data assignment, please make
% sure to adjust the "ncycles" variable to the proper number of cycles, as
% well as to disable the "Test Pass / Fail" section if unused.
testdata_noise_x0 =
getfield(load('project3_burst_noise_x0_hwcosim_test.dat', '-mat'),
'values');
testdata_scale = getfield(load('project3_burst_scale_hwcosim_test.dat', '-

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=158

mat'), 'values');
testdata_wave = getfield(load('project3_burst_wave_hwcosim_test.dat', '-
mat'), 'values');
testdata_intout = getfield(load('project3_burst_intout_hwcosim_test.dat', '-
mat'), 'values');
testdata_sigout = getfield(load('project3_burst_sigout_hwcosim_test.dat', '-
mat'), 'values');

%%
% The 'result_<port>' workspace variables are arrays to receive the actual
results
% of a Hardware Co-Simulation read from the FPGA. They will be compared to
the
% expected (golden) data at the end of the Co-Simulation.
result_intout = zeros(size(testdata_intout));
result_sigout = zeros(size(testdata_sigout));

%%
% project3_burst.hwc is the data structure containing the Hardware Co-
Simulation
% design information returned after netlisting the Simulink / System
% Generator model.
% Hwcosim(project) instantiates and returns a handle to the API shared
library object.
project = 'project3_burst.hwc';
h = Hwcosim(project);
try
 %% Open the Hardware Co-Simulation target and co-simulate the design
 open(h);
 cosim_t_start = tic;
 h('noise_x0') = testdata_noise_x0;
 h('scale') = testdata_scale;
 h('wave') = testdata_wave;
 run(h, ncycles);
 result_intout = h('intout');
 result_sigout = h('sigout');
 eta = toc(cosim_t_start);
 % Release the handle for the Hardware Co-Simulation target
 release(h);

%% Release Target on Error
catch err
 release(h);
 rethrow(err);
 error('Error running hardware co-simulation testbench. Please refer to
hwcosim.log for
details.');
end

%% Test Pass / Fail
logfile = 'project3_burst_hwcosim_test.results';
logfd = fopen(logfile, 'w');
sim_ok = true;
sim_ok = sim_ok & xlHwcosimCheckResult(logfd, 'intout', testdata_intout,
result_intout);
sim_ok = sim_ok & xlHwcosimCheckResult(logfd, 'sigout', testdata_sigout,
result_sigout);
fclose(logfd);
if ~sim_ok
 error('Found errors in the simulation results. Please refer to

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=159

project3_burst_hwcosim_test.results for details.');
end
disp(['Hardware Co-Simulation successful. Data matches the Simulink
simulation and completed in
' num2str(eta) ' seconds.']) ;

This script first defines the number of cycles (ncycles) to run in the simulation, prepares the
test bench, and loads the stimulus data and expected output into MATLAB arrays. Then it
creates an Hwcosim object instance with a handle (h), which loads the HWCosim API shared
library. Inside the try-catch block it opens the instance, initializes the FPGA, and opens a
connection to it.

Once the setup phase is complete, the code between the tic and toc timing commands
executes the write-run-read commands. Please note that unlike in previous versions of
HWCosim, this test bench does not require a for-loop to cycle through every clock cycle. This is
due to the new smart cache layer which can buffer up nearly arbitrary size write commands in
host memory before issuing smaller cycles of write-run-read batches to the hardware (during
execution of the user-visible run(h, ncycles) command).

At the end of the execution phase the HWCosim instance is released and the test bench
compares actual to expected outputs.

Comments in the test bench code will help you understand the flow of the hardware co-
simulation and help you develop customized test bench scripts for your design.

Importing HDL Modules
Sometimes it is important to add one or more existing HDL modules to a Model Composer
design. The HDL Black Box block allows VHDL and Verilog to be brought into a design. The Black
Box block behaves like other System Generator HDL blocks - it is wired into the design,
participates in simulations, and is compiled into hardware. When Model Composer compiles a
Black Box block, it automatically connects the ports of the Black Box to the rest of the design. A
Black Box can be configured to support either synchronous clock designs or multiple hardware
clock designs based on the context and System Generator token settings.

The Black Box Interface

Black Box HDL Requirements and Restrictions Details the requirements and restrictions for VHDL, Verilog,
and EDIF associated with black boxes.

Black Box Configuration Wizard Describes how to use the Black Box Configuration Wizard.

Black Box Configuration M-Function Describes how to create a black box configuration M-
function.

HDL Co-Simulation

Configuring the HDL Simulator Explains how to configure the Vivado® simulator or Questa
to co-simulate the HDL in the Black Box block.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=160

Co-Simulating Multiple Black Boxes Describes how to co-simulate several Black Box blocks in a
single HDL simulator session.

Black Box HDL Requirements and Restrictions
An HDL component associated with a black box must adhere to the following Model Composer
requirements and restrictions:

• The entity name must not collide with any other entity name in the design.

• Bi-directional ports are supported in HDL black boxes, however they will not be displayed in
the Model Composer as ports; they only appear in the generated HDL after netlisting.

• For Verilog black boxes, the module and port names must follow standard HDL naming
conventions.

• Any port that is a clock or clock enable must be of type std_logic. (For Verilog black boxes,
ports must be of non-vector inputs, e.g., input clk.)

• Clock and clock enable ports in black box HDL should be expressed as follows: Clock and
clock enables must appear as pairs (i.e., for every clock, there is a corresponding clock enable,
and vice-versa). A black box may have more than one clock port and its behavior changes
based on the context of the design.

○ In Synchronous single clock design context, a single clock source is used to drive each clock
port. Only the clock enable rates differ.

○ In case of multiple independent hardware clock design context, two different clock sources
is used to drive clock and clock enable pins.

• Each clock name (respectively, clock enable name) must contain the substring clk, for
example my_clk_1 and my_ce_1.

• The name of a clock enable must be the same as that for the corresponding clock, but with ce
substituted for clk. For example, if the clock is named src_clk_1, then the clock enable
must be named src_ce_1.

• Falling-edge triggered output data cannot be used.

IMPORTANT! It is not recommended to use the black box block to import encrypted RTLs which are
generated for Vivado IP. As an alternative, try to import Vivado IPs using a DCP file.

Black Box Configuration M-Function
An imported module is represented in Model Composer by a Black Box block. Information about
the imported module is conveyed to the black box by a configuration M-function. This function
defines the interface, implementation, and the simulation behavior of the black box block it is
associated with. The information a configuration M-function defines includes the following:

• Name of the top-level entity for the module

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=161

• VHDL or Verilog language selection

• Port descriptions

• Generics required by the module

• Synchronous single clock or asynchronous multiple independent clock configuration

• Clocking and sample rates

• Files associated with the module

• Whether the module has any combinational paths

The name of the configuration M-function associated with a black box is specified as a parameter
in the dialog box (parity_block_config.m).

Figure 128: Parameter Dialog

Configuration M-functions use an object-based interface to specify black box information. This
interface defines two objects, SysgenBlockDescriptor and SysgenPortDescriptor. When Model
Composer invokes a configuration M-function, it passes the function a block descriptor:

function sample_block_config(this_block)

A SysgenBlockDescriptor object provides methods for specifying information about the black
box. Ports on a block descriptor are defined separately using port descriptors.

Language Selection

The black box can import VHDL and Verilog modules. SysgenBlockDescriptor provides a method,
setTopLevelLanguage, that tells the black box what type of module you are importing. This
method should be invoked once in the configuration M-function. The following code shows how
to select between the VHDL and Verilog languages.

VHDL Module:

this_block.setTopLevelLanguage('VHDL');

Verilog Module:

this_block.setTopLevelLanguage('Verilog');

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=162

Note: The Configuration Wizard automatically selects the appropriate language when it generates a
configuration M-function.

Specifying the Top-Level Entity

You must tell the black box the name of the top-level entity that is associated with it.
SysgenBlockDescriptor provides a method, setEntityName, which allows you to specify the name
of the top-level entity.

Note: Use lower case text to specify the entity name.

For example, the following code specifies a top-level entity named foo.

this_block.setEntityName('foo');

Note: The Configuration Wizard automatically sets the name of the top-level entity when it generates a
configuration M-function.

Defining Port Blocks

The port interface of a black box is defined by the block's configuration M-function. Recall that
black box ports are defined using port descriptors. A port descriptor provides methods for
configuring various port attributes, including port width, data type, binary point, and sample rate.

Adding New Ports

When defining a black box port interface, it is necessary to add input and output ports to the
block descriptor. These ports correspond to the ports on the module you are importing. In your
model, the black box block port interface is determined by the port names that are declared on
the block descriptor object. SysgenBlockDescriptor provides methods for adding input and
output ports:

Adding an input port:

this_block.addSimulinkInport('din');

Adding an output port:

this_block.addSimulinkOutport('dout');

The string parameter passed to methods addSimulinkInport and addSimulinkOutport specifies
the port name. These names should match the corresponding port names in the imported
module.

Note: Use lower case text to specify port names.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=163

Adding a bidirectional port:

config_phase = this_block.getConfigPhaseString;
if (strcmpi(config_phase,'config_netlist_interface'))
 this_block.addInoutport('bidi');
 % Rate and type info should be added here as well
end

Bidirectional ports are supported only during the netlisting of a design and will not appear on the
Model Composer diagram; they only appear in the generated HDL. As such, it is important to
only add the bi-directional ports when Model Composer is generating the HDL. The if-end
conditional statement is guarding the execution of the code to add-in the bi-directional port.

It is also possible to define both the input and output ports using a single method call. The
setSimulinkPorts method accepts two parameters. The first parameter is a cell array of strings
that define the input port names for the block. The second parameter is a cell array of strings
that define the output port names for the block.

Note: The Configuration Wizard automatically sets the port names when it generates a configuration M-
function.

Obtaining a Port Object

Once a port has been added to a block descriptor, it is often necessary to configure individual
attributes on the port. Before configuring the port, you must obtain a descriptor for the port you
would like to configure. SysgenBlockDescriptor provides methods for accessing the port objects
that are associated with it. For example, the following method retrieves the port named din on
the this_block descriptor:

Accessing a SysgenPortDescriptor object:

din = this_block.port('din');

In the above code, an object din is created and assigned to the descriptor returned by the port
function call.

SysgenBlockDescriptor also provides methods, inport and outport, that return a port object
given a port index. A port index is the index of the port (in the order shown on the block
interface) and is some value between 1 and the number of input/output ports on the block.
These methods are useful when you need to iterate through the block's ports (e.g., for error
checking).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=164

Configuring Port Types

SysgenPortDescriptor provides methods for configuring individual ports. For example, assume
port dout is unsigned, 12 bits, with binary point at position 8. The code below shows one way in
which this type can be defined.

dout = this_block.port('dout');
dout.setWidth(12);
dout.setBinPt(8);
dout.makeUnsigned();

The following also works:

dout = this_block.port('dout');
dout.setType('Ufix_12_8');

The first code segment sets the port attributes using individual method calls. The second code
segment defines the signal type by specifying the signal type as a string. Both code segments are
functionally equivalent.

The black box supports HDL modules with 1-bit ports that are declared using either single bit
port (e.g., std_logic) or vectors (e.g., std_logic_vector(0 downto 0)) notation. By default, Model
Composer assumes ports to be declared as vectors. You may change the default behavior using
the useHDLVector method of the descriptor. Setting this method to true tells Model Composer
to interpret the port as a vector. A false value tells Model Composer to interpret the port as
single bit.

dout.useHDLVector(true); % std_logic_vector
dout.useHDLVector(false); % std_logic

Note: The Configuration Wizard automatically sets the port types when it generates a configuration M-
function.

Configuring Bi-Directional Ports for Simulation

Bidirectional ports (or inout ports) are supported only during the generation of the HDL netlist,
that is, bi-directional ports will not show up in the Model Composer diagram. By default, bi-
directional ports will be driven with 'X' during simulation. It is possible to overwrite this behavior
by associating a data file to the port. Be sure to guard this code because bi-directional ports can
only be added to a block during the config_netlist_interface phase.

if (strcmpi(this_block.getConfigPhaseString,'config_netlist_interface'))
 bidi_port = this_block.port('bidi');
 bidi_port.setGatewayFileName('bidi.dat');
end

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=165

In the above example, a text file, bidi.dat, is used during simulation to provide stimulation to
the port. The data file should be a text file, where each line represents the signal driven on the
port at each simulation cycle. For example, a 3-bit bi-directional port that is simulated for 4
cycles might have the following data file:

ZZZ
110
011
XXX

Simulation will return with an error if the specified data file cannot be found.

Configuring Port Sample Rates

The Black Box block supports ports that have different sample rates. By default, the sample rate
of an output port is the sample rate inherited from the input port (or ports, if the inputs run at
the same sample rate). Sometimes, it is necessary to explicitly specify the sample rate of a port
(e.g., if the output port rate is different than the block's input sample rate).

Note: When the inputs to a black box have different sample rates, you must specify the sample rates of
every output port.

SysgenPortDescriptor provides a method called setRate that allows you to explicitly set the rate
of a port.

Note: The rate parameter passed to the setRate method is not necessarily the Simulink® sample rate that
the port runs at. Instead, it is a positive integer value that defines the ratio between the desired port
sample period and the Simulink® system clock period defined by the System Generator token dialog box.

Assume you have a model in which the Simulink system period value for the model is defined as
2 sec. Also assume that the example dout port is assigned a rate of 3 by invoking the setRate
method as follows:

dout.setRate(3);

A rate of 3 means that a new sample is generated on the dout port every 3 Simulink system
periods. Because the Simulink system period is 2 sec, this means the Simulink sample rate of the
port is 3 x 2 = 6 sec.

Note: If your port is a non-sampled constant, you can define it in the configuration M-function using the
setConstant method of SysgenPortDescriptor. You can also define a constant by passing Inf to the setRate
method.

Dynamic Output Ports

A useful feature of the black box is its ability to support dynamic output port types and rates. For
example, it is often necessary to set an output port width based on the width of an input port.
SysgenPortDescriptor provides member variables that allow you to determine the configuration
of a port. You can set the type or rate of an output port by examining these member variables on
the block's input ports.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=166

For example, you can obtain the width and rate of a port (in this case din) as follows:

input_width = this_block.port('din').width;
input_rate = this_block.port('din').rate;

Note: A black box's configuration M-function is invoked at several different times when a model is
compiled. The configuration function may be invoked before the data types and rates have been
propagated to the black box.

The SysgenBlockDescriptor object provides Boolean member variables inputTypesKnown and
inputRatesKnown that tell whether the port types and rates have been propagated to the
block. If you are setting dynamic output port types or rates based on input port configurations,
the configuration calls should be nested inside conditional statements that check that values of
inputTypesKnown and inputRatesKnown.

The following code shows how to set the width of a dynamic output port dout to have the same
width as input port din:

if (this_block.inputTypesKnown)
 dout.setWidth(this_block.port('din').width);
end

Setting dynamic rates works in a similar manner. The code below sets the sample rate of output
port dout to be twice as slow as the sample rate of input port din:

if (this_block.inputRatesKnown)
 dout.setRate(this_block.port('din').rate*2);
end

Black Box Clocking

In order to import a multirate module, you must tell Model Composer information about the
module's clocking in the configuration M-function. Model Composer treats clock and clock
enables differently than other types of ports. A clock port on an imported module must always
be accompanied by a clock enable port (and vice versa). In other words, clock and clock enables
must be defined as a pair, and exist as a pair in the imported module. This is true for both single
rate and multirate designs.

Although clock and clock enables must exist as pairs, Model Composer drives all clock ports on
your imported module with the FPGA system clock. The clock enable ports are driven by clock
enable signals derived from the FPGA system clock.

SysgenBlockDescriptor provides a method, addClkCEPair, which allows you to define clock
and clock enable information for a black box. This method accepts three parameters. The first
parameter defines the name of the clock port (as it appears in the module). The second
parameter defines the name of the clock enable port (also as it appears in the module).

The port names of a clock and clock enable pair must follow the naming conventions provided
below:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=167

• The clock port must contain the substring clk

• The clock enable must contain the substring ce

• The strings containing the substrings clk and ce must be the same (e.g. my_clk_1 and
my_ce_1).

The third parameter defines the rate relationship between the clock and the clock enable port.
The rate parameter should not be thought of as a Simulink sample rate. Instead, this parameter
tells Model Composer the relationship between the clock sample period, and the desired clock
enable sample period. The rate parameter is an integer value that defines the ratio between the
clock rate and the corresponding clock enable rate.

For example, assume you have a clock enable port named ce_3 that would like to have a period
three times larger than the system clock period. The following function call establishes this clock
enable port:

addClkCEPair('clk_3','ce_3',3);

When Model Composer compiles a black box into hardware, it produces the appropriate clock
enable signals for your module, and automatically wires them up to the appropriate clock enable
ports.

Combinational Paths

If the module you are importing has at least one combinational path (i.e. a change on any input
can effect an output port without a clock event), you must indicate this in the configuration M-
function. SysgenBlockDescriptor object provides a tagAsCombinational method that
indicates your module has a combinational path. It should be invoked as follows in the
configuration M-function:

this_block.tagAsCombinational;

Specifying VHDL Generics and Verilog Parameters

You may specify a list of generics that get passed to the module when Model Composer compiles
the model into HDL. Values assigned to these generics can be extracted from mask parameters
and from propagated port information (e.g. port width, type, and rate). This flexible means of
generic assignment allows you to support highly parametric modules that are customized based
on the Simulink environment surrounding the black box.

The addGeneric method allows you to define the generics that should be passed to your
module when the design is compiled into hardware. The following code shows how to set a
VHDL Integer generic, dout_width, to a value of 12.

addGeneric('dout_width','Integer','12');

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=168

It is also possible to set generic values based on port on propagated input port information (e.g. a
generic specifying the width of a dynamic output port).

Because a black box's configuration M-function is invoked at several different times when a
model is compiled, the configuration function may be invoked before the data types (or rates)
have been propagated to the black box. If you are setting generic values based on input port
types or rates, the addGeneric calls should be nested inside a conditional statement that
checks the value of the inputTypesKnown or inputRatesKnown variables. For example, the
width of the dout port can be set based on the value of din as follows:

if (this_block.inputTypesKnown)
 % set generics that depend on input port types
 this_block.addGeneric('dout_width', ...
 this_block.port('din').width);
end

Generic values can be configured based on mask parameters associated with a block box.
SysgenBlockDescriptor provides a member variable, blockName, which is a string representation
of the black box's name in Simulink. You may use this variable to gain access the black box
associated with the particular configuration M-function. For example, assume a black box defines
a parameter named init_value. A generic with name init_value can be set as follows:

simulink_block = this_block.blockName;
init_value = get_param(simulink_block,'init_value');
this_block.addGeneric('init_value', 'String', init_value);

Note: You can add your own parameters (e.g. values that specify generic values) to the black box by doing
the following:

• Copy a black box into a Simulink library or model.

• Break the link on the black box.

• Add the desired parameters to the black box dialog box.

Black Box VHDL Library Support

This Black Box feature allows you to import VHDL modules that have predefined library
dependencies. The following example illustrates how to do this import.

The VHDL module below is a 4-bit, Up counter with asynchronous clear
(async_counter.vhd). It will be compiled into a library named async_counter_lib.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=169

The VHDL module below is a 4-bit, Up counter with synchronous clear (sync_counter.vhd). It
will be compiled into a library named sync_counter_lib.

The VHDL module below is the top-level module that is used to instantiate the previous
modules. This is the module that you need to point to when adding the BlackBox into your Model
Composer model.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=170

The VHDL is imported by first importing the top-level entity, top_level, using the Black Box.

Once the file is imported, the associated Black Box Configuration M-file needs to be modified as
follows:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=171

The interface function addFileToLibrary is used to specify a library name other than “work”
and to instruct the tool to compile the associated HDL source to the specified library.

The Model Composer model should look similar to the following figure.

Figure 129: Model Composer Model with Black Box Support

The next step is to double-click the System Generator token and click the Generate button to
generate the HDL netlist.

During the generation process, a Vivado IDE project (.xpr) is created and placed with the
hdl_netlist folder under the netlist folder. If you double-click the Vivado IDE project and
select the Libraries tab under the Source view, you will see not only a work library, but an
async_counter_lib library and sync_counter_lib library as well.

Error Checking

It is often necessary to perform error checking on the port types, rates, and mask parameters of a
black box. SysgenBlockDescriptor provides a method, setError, that allows you to specify an error
message that is reported to the user. The error message that a user sees is the string parameter
passed to setError.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=172

Black Box API

SysgenBlockDescriptor Member Variables

Type Member Description
String entityName Name of the entity or module.

String blockName Name of the black box block.

Integer numSimulinkInports Number of input ports on black box.

Integer numSimulinkOutports Number of output ports on the black
box.

Boolean inputTypesKnown true if all input types are defined, and
false otherwise.

Boolean inputRatesKnown true if all input rates are defined, and
false otherwise.

Array of Doubles inputRates Array of sample periods for the input
ports (indexed as in inport(indx)).
Sample period values are expressed as
integer multiples of the Simulink
System Period value specified by the
master System Generator token

Boolean error true if an error has been detected, and
false otherwise.

Cell Array of Strings errorMessages Array of all error messages for this
block.

SysgenBlockDescriptor Methods

Method Description
setTopLevelLanguage(language) Declares language for the top-level entity (or module) of the

black box. The language should be VHDL or Verilog.

setEntityName(name) Sets name of the entity or module.

addSimulinkInport(pname) Adds an input port to the black box. pname defines the
name the port should have.

addSimulinkOutport(pname) Adds an output port to the black box. pname defines the
name the port should have.

setSimulinkPorts(in,out) Adds input and output ports to the black box. in
(respectively, out) is a cell array whose element tell the
names to use for the input (resp., output) ports.

addInoutport(pname) Adds a bidirectional port to the black box. pname defines
the name the port should have. Bidirectional ports can only
be added during the config_netlist_interface phase of
configuration.

tagAsCombinational() Indicate that the block has a combinational path (i.e., direct
feedthrough) from an input port to an output port.

addClkCEPair(clkPname, cePname, rate) Defines a clock/clock enable port pair for the block.
clkPname and cePname tell the names for the clock and
clock enable ports respectively. rate, a double, tells the rate
at which the port pair runs. The rate must be a positive
integer. Note the clock (respectively, clock enable) name
must contain the substring clk (resp., ce). The names must
be parallel in the sense that the clock enable name is
obtained from the clock name by replacing clk with ce.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=173

Method Description
port(name) Returns the SysgenPortDescriptor that matches the

specified name.

inport(indx) Returns the SysgenPortDescriptor that describes a given
input port. indx tells the index of the port to look for, and
should be between 1 and numInputPorts.

outport(indx) Returns the SysgenPortDescriptor that describes a given
output port. indx tells the index of the port to look for, and
should be between 1 and numOutputPorts.

addGeneric(identifier, value) Defines a generic (or parameter if using Verilog) for the
block. identifier is a string that tells the name of the generic.
value can be a double or a string. The type of the generic is
inferred from value's type. If value is an integral double
(e.g., 4.0), the type of the generic is set to integer. For a non-
integral double, the type is set to real. When value is a string
containing only zeros and ones (e.g., `0101'), the type is set
to bit_vector. For any other string value, the type is set to
string.

addGeneric(identifier, type, value) Explicitly specifies the name, type, and value for a generic
(or parameter, if using Verilog) for the block. All three
arguments are strings. identifier tells the name, type tells
the type, and value tells the value.

addFile(fn) Adds a file name to the list of files associated to this black
box, fn is the file name. Ordinarily, HDL files are associated
to black boxes, but any sorts of files are acceptable. VHDL
file names should end in .vhd; Verilog file names should
end in .v. The order in which file names are added is
preserved, and becomes the order in which HDL files are
compiled. File names can be absolute or relative. Relative
file names are interpreted with respect to the location of
the .mdl or library .mdl for the design.

getDeviceFamilyName() Gets the name of the FPGA corresponding to the black box.

getConfigPhaseString Returns the current configuration phase as a string. A valid
return string includes: config_interface,
config_rate_and_type, config_post_rate_and_type,
config_simulation, config_netlist_interface, and
config_netlist.

setSimulatorCompilationScript(script) Overrides the default HDL co-simulation compilation script
that the black box generates. script tells the name of the
script to use. For example, this method can be used to
short-circuit the compilation phase for repeated simulations
where the HDL for the black box remains unchanged.

setError(message) Indicates that an error has occurred, and records the error
message. message gives the error message.

SysgenPortDescriptor Member Variables

Type Member Description
String name Tells the name of the port.

Integer simulinkPortNumber Tells the index of this port in Simulink®.
Indexing starts with 1 (as in Simulink).

Boolean typeKnown True if this port's type is known, and
false otherwise.

String type Type of the port, such as UFix_<n>_,
Fix_<n>_, or Bool.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=174

Type Member Description
Boolean isBool True if port type is Bool, and false

otherwise.

Boolean isSigned True if type is signed, and false
otherwise.

Boolean isConstant True if port is constant, and false
otherwise.

Integer width Tells the port width.

Integer binpt Tells the binary point position, which
must be an integer in the range
0..width.

Boolean rateKnown True if the rate is known, and false
otherwise.

Double rate Tells the port sample time. Rates are
positive integers expressed as
MATLAB® doubles. A rate can also be
infinity, indicating that the port outputs
a constant.

SysgenPortDescriptor Methods

Method Description
setName(name) Sets the HDL name to be used for this port.

setSimulinkPortNumber(num) Sets the index associated with this port in Simulink®. num
tells the index to assign. Indexing starts with 1 (as in
Simulink).

setType(typeName) Sets the type of this port to type. Type must be one of Bool,
UFix_<n>_ , Fix_<n>_ , signed or unsigned. The last
two choices leave the width and binary point position
unchanged.
XFloat_<exponent_bit_width>_fraction_bit_width> is also
supported. For example: ap_return_port =
this_block.port('ap_return');
ap_return_port.setType('XFloat_30_2');

setWidth(w) Sets the width of this port to w.

setBinpt(bp) Sets the binary point position of this port to bp.

makeBool() Makes this port Boolean.

makeSigned() Makes this port signed.

makeUnsigned() Makes this port unsigned.

setConstant() Makes this port constant

setGatewayFileName(filename) Sets the dat file name that will be used in simulations and
test-bench generation for this port. This function is only
meant for use with bi-directional ports so that a hand
written data file can be used during simulation. Setting this
parameter for input or output ports is invalid and will be
ignored.

setRate(rate) Assigns the rate for this port. rate must be a positive integer
expressed as a MATLAB® double or Inf for constants.

useHDLVector(s) Tells whether a 1-bit port is represented as single-bit (ex:
std_logic) or vector (ex: std_logic_vector(0 downto 0)).

HDLTypeIsVector() Sets representation of the 1-bit port to std_logic_vector(0
downto 0).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=175

Multiple Independent Clock Support on Black Box

Design Rule Checks on Port Connection

When a black box is used in a multiple independent hardware clock design context, design rule
checks (DRCs) for its port connections must be added in the configuration M-function. This helps
to avoid invalid or incorrect port connection with different clock sources. You need to ensure all
port signals are connected from/to a proper clocked-subsystem interface.

The utility checkPortsOfSameClockDomain() should be used to specify a list of ports from
a particular clock domain and to group it together. The input arguments to this application
programming interface (API) are 'SysgenBlockDescriptor' objects followed by the list of port
names associated with a particular clock domain.

In the example shown below, the API puts out an error check, and verifies that the four ports are
connected to the same subsystem clock domain.

checkPortsOfSameClockDomain (<block_descriptor>, '<port_name_1>',
'<port_name_2>',
'<port_name_3>', '<port_name_4>');

Configuring Port Sample Rates

In multiple clock hardware designs, the clock period of the port interface should be computed
using the connected "clocked subsystem domain". By default, "synchronous system clock" source
is used by all the ports, but for asynchronous clock hardware designs, it is necessary to explicitly
specify the clock sources of every port (e.g., if the output port clock is different than the block's
input port clock).

Note: You must set the sample rate to '1.0' for all output ports of multiple independent clock black box
designs; it automatically sets the output ports to the destination clock subsystem period.

SysgenPortDescriptor provides a method called setRate that you can use to explicitly set the
rate of a port.

Example:

port('<port_name>').setRate(1.0)

Black Box Clocking

In order to import a synchronous or asynchronous black box module, you must tell System
Generator information about the module's clocking in the configuration M-function. System
Generator treats clock and clock enables differently than other types of ports. A clock port on an
imported module must always be accompanied by a clock enable port, and vice versa. In other
words, clock and clock enables must be defined as a pair, and exist as a pair in the imported
module. This is true for both single synchronous clock and multiple independent clock designs.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=176

SysgenBlockDescriptor provides a method called addClkCEPair that you can use to define clock,
clock enable, and its associated clock period by using clock sub-system domain. The clock
domain information is not required for synchronous single clock designs.

The first parameter defines the name of the clock port (as it appears in the module). The second
parameter defines the name of the clock enable port (also as it appears in the module).

The port names of a clock and clock enable pair must follow the naming conventions provided
below:

• The clock port must contain the substring clk.

• The clock enable must contain the substring ce.

• The strings containing the substrings clk and ce must be the same, such as: my_clk_1 and
my_ce_1.

The third parameter defines the rate relationship between the clock and the clock-enable port.
The rate parameter should not be thought of as a Simulink® sample rate. Instead, this parameter
tells System Generator the relationship between the clock sample period, and the desired clock
enable sample period. The rate parameter is an integer value that defines the ratio between the
clock rate and the corresponding clock enable rate.

For multiple independent clock designs, the fourth and fifth optional parameters are mandatory.

The fourth parameter holds a "Boolean" value, and it defines whether clock and clock enable pair
is tied to ground. If you set it to true, both clock and clock enable would be tied to ground
during simulation. Setting it to false would activate clock and clock enable rate transitions.

The fifth parameter defines the clock period for the corresponding clock-clock enable pair. The
'clockDomain' property of the black box "SysgenPortDescriptor" must be used to set the clock
periods for multiple independent clock designs.

Example:

rate_data = this_block.port('<port_name>').rate;
clkDomain_data = this_block.port(<port_name>).clockDomain;
this_block.addClkCEPair('clk',ce',rate_data, false, clkDomain_data);

HDL Co-Simulation
This topic describes how a mixed language/mixed flow design that includes Xilinx® HDL blocks,
HDL modules, and a Simulink block design can be simulated in its entirety.

Model Composer simulates black boxes by automatically launching an HDL simulator, generating
additional HDL as needed (analogous to an HDL test bench), compiling HDL, scheduling
simulation events, and handling the exchange of data between the Simulink and the HDL
simulator. This is called HDL co-simulation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=177

Configuring the HDL Simulator

Black box HDL can be co-simulated with Simulink® using the Model Composer interface to either
the Vivado® simulator or the Questa simulation software from Model Technology, Inc.

Xilinx® Simulator

To use the Xilinx simulator for co-simulating the HDL associated with the black box, select
Vivado Simulator as the option for the Simulation mode parameter on the black box. The model
is then ready to be simulated and the HDL co-simulation takes place automatically.

Questa Simulator

To use the Questa simulator by Model Technology, Inc., you must first add the Questa block that
appears in the Tools library of the Xilinx HDL Blockset to your Simulink diagram.

Figure 130: Questa Block

For each black box that you wish to have co-simulated using the Questa simulator, you need to
open its block parameterization dialog and set it to use the Questa session represented by the
black box that was just added. You do this by making the following two settings:

1. Change the Simulation Mode field from Inactive to External co-simulator.

2. Enter the name of the Questa block (e.g., Questa) in the HDL co-simulator to use field.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=178

Figure 131: Black Box Parameters

The block parameter dialog for the Questa block includes some parameters that you can use to
control various options for the Questa session. See the block help page for details. The model is
then ready to be simulated with these options, and the HDL co-simulation takes place
automatically.

Co-Simulating Multiple Black Boxes

Model Composer allows many black boxes to share a common Questa co-simulation session. For
example, many black boxes can be set to use the same Questa block. In this case, Model
Composer automatically combines all black box HDL components into a single shared top-level
co-simulation component, which is transparent to the user. However, only one Questa simulation
license is needed to co-simulate several black boxes in the Simulink® simulation.

Multiple black boxes can also be co-simulated with the Vivado simulator by selecting Vivado
Simulator as the option for Simulation mode on each black box.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=179

Black Box Configuration Wizard
Model Composer provides a configuration wizard that makes it easy to associate a VHDL or
Verilog module to a Black Box block. The Configuration Wizard parses the VHDL or Verilog
module that you are trying to import, and automatically constructs a configuration M-function
based on its findings. Then, it associates the configuration M-function it produces to the Black
Box block in your model. Whether or not you can use the configuration M-function as is depends
on the complexity of the HDL you are importing. Sometimes the configuration M-function must
be customized by hand to specify details the configuration wizard misses. Details on the
construction of the configuration M-function can be found in the Black Box Configuration M-
Function topic.

Using the Configuration Wizard

The Black Box Configuration Wizard opens automatically when a new black box block is added to
a model.

Note: Before running the Configuration Wizard, ensure the VHDL or Verilog you are importing meets the
specified Black Box HDL Requirements and Restrictions.

For the Configuration Wizard to find your module, the model must be saved in the same
directory as the module you are trying to import.

Note: The wizard only searches for .vhd and .v files in the same directory as the model. If the wizard does
not find any files it issues a warning and the black box is not automatically configured. The warning looks
like the following:

Figure 132: Warning

After searching the model's directory for .vhd and .v files, the Configuration Wizard opens a
new window that lists the possible files that can be imported. An example screenshot is shown
below:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=180

Figure 133: Files to Import

You can select the file you would like to import by selecting the file, and then pressing the Open
button. At this point, the configuration wizard generates a configuration M-function, and
associates it with the black box block.

Note: The configuration M-function is saved in the model's directory as <module>_config.m, where
<module> is the name of the module that you are importing.

Configuration Wizard Fine Points

The configuration wizard automatically extracts certain information from the imported module
when it is run, but some things must be specified by hand. These things are described below:

Note: The configuration function is annotated with comments that instruct you where to make these
changes.

• If your model has a combinational path, you must call the tagAsCombinational method of the
block's SysgenBlockDescriptor object. A multiple independent hardware clock design will not
support a combinational path.

• The Configuration Wizard only knows about the top-level entity that is being imported. There
are typically other files that go along with this entity. These files must be added manually in
the configuration M-function by invoking the addFile method for each additional file.

• The Configuration Wizard automatically creates either a synchronous single clock black box
descriptor or an asynchronous multiple clock black box descriptor.

○ In the case of single-rate black box, every port on the black box runs at the same rate. In
most cases, this is acceptable. You may want to explicitly set port rates, which can result in
a faster simulation time.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=181

○ In the case of a multiple clock black box, the input port rate must be derived from the
"source clock subsystem" and the output port rate must be set based on the "destination
clock subsystem". In some cases, you may want to explicitly set port rates for a required
configuration.

Compilation Types for HDL Library designs
There are different ways in which Model Composer can compile your design into an equivalent,
often lower-level, representation. The way in which a design is compiled depends on settings in
the System Generator dialog box. The support of different compilation types provides you the
freedom to choose a suitable representation for your design's environment. For example, an HDL
Netlist or IP catalog is an appropriate target if your design is used as a component in a larger
system.

HDL Netlist Compilation Describes how to generate HDL files that implement the
design.

Hardware Co-Simulation Compilation Describes how Model Composer can be configured to
compile your design into FPGA hardware that can be used
by Simulink® and Questa.

IP Catalog Compilation Describes how to package a Model Composer design as an
IP core that can be added to the Vivado® IP catalog for use
in another design.
Model Composer uses the IP catalog compilation type as
the default generation target.

Synthesized Checkpoint Compilation Describes how to generate a synthesized checkpoint file
(synth_1.dcp) that can be used in a Vivado integrated
design environment (IDE) project.

HDL Netlist Compilation
The HDL Netlist compilation type produces HDL files that implement the design. More details
regarding the HDL Netlist compilation flow can be found in the Compilation Results section.

As shown below, you may select HDL Netlist compilation by left-clicking the Compilation
submenu control on the System Generator token dialog box, and selecting the HDL Netlist
target.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=182

Figure 134: HDL Netlist

The Board and Part fields allow you to specify the board or part for which you are targeting the
HDL Netlist compilation. When you select a Board, the Part field automatically displays the
name of the Xilinx® device on the selected Board, and this part name cannot be changed.

The HDL Netlist compilation can be performed for any of the boards or parts your Vivado tools
support. In addition to accessing the Xilinx development boards installed as part of your Vivado
installation, you can also specify Partner boards or custom boards (see Specifying Board Support
in Model Composer HDL Blockset).

The files generated as part of an HDL Netlist compilation are placed in an hdl_netlist
subdirectory under the directory you specified in the Target directory field. These files are
described in the Compilation Results section.

Hardware Co-Simulation Compilation
Model Composer can compile designs into FPGA hardware that can be used in the loop with
Simulink® simulations. This capability is discussed in the topic Using Hardware Co-Simulation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=183

As shown below, you may select Hardware Co-Simulation compilation by left-clicking the
Compilation submenu control on the System Generator token dialog box, and selecting the
Hardware Co-Simulation target.

Figure 135: Hardware Co-Simulation

The Board fields allows you to specify the development board you are targeting when you are
performing the Hardware Co-Simulation compilation. You can only select a Board for Hardware
Co-Simulation compilation - you cannot select a Part. When you select a Board, the Part field
automatically displays the name of the Xilinx® device on the selected Board, and this part name
cannot be changed.

JTAG Hardware Co-Simulation is supported for all Xilinx development boards.

The Simulink library (<design_name>_hwcosim_lib.slx) generated as part of a Hardware
Co-Simulation compilation is placed in the directory you specified in the Target directory field.
This library, and the hardware co-simulation block stored in the library, are described in Hardware
Co-Simulation Blocks.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=184

IP Catalog Compilation
Model Composer uses the IP Catalog compilation type as the default generation target.

The IP Catalog compilation target allows you to package your Model Composer design into an IP
module that can be included in the Vivado IP catalog. From there, the generated IP can be
instantiated into another Vivado user design as a submodule.

Model Composer first generates an HDL NetList based on the block design. If there are Vivado IP
modules in the design, all the necessary IP files are copied into a subfolder named IP. Finally, all
the RTL design files and Vivado IP design files are included into a ZIP file that is placed in a
subfolder named ip_catalog.

The IP Catalog Flow

In a Model Composer design, double-click the System Generator token.

As shown below, under Compilation, click the > button, then select IP Catalog.

Figure 136: IP Catalog

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=185

The Board and Part fields allow you to specify the board or part for which you are targeting the
IP Catalog compilation. When you select a Board, the Part field automatically displays the name
of the Xilinx device on the selected Board, and this part name cannot be changed.

The IP Catalog compilation can be performed for any of the boards or parts your Vivado tools
support. In addition to accessing the Xilinx development boards installed as part of your Vivado
installation, you can also specify Partner boards or custom boards (see Specifying Board Support
in Model Composer HDL Blockset).

The Target directory field allows you to specify the location of the generated files.

The Settings button activates and when you click on it, a dialog box appears as shown below,
allowing you to enter information about the module that will appear in the Vivado IP catalog.

Figure 137: IP Catalog Settings

The Use common repository directory field allows you to specify a directory referred to as the
Common Repository. In an IP catalog compilation, the IP created is copied over to this location. If
a Vivado user adds this Path as User Repository in the Vivado project's IP Settings, then all IPs
that a Model Composer user has placed in this Common Repository will automatically be picked
up by Vivado and can be used either in an IP integrator or an RTL flow.

The Use Plug-in project field is used to specify a Vivado project containing an IP integrator Block
Diagram (BD) that has been imported into Model Composer. For an example of a procedure that
will need to have a Vivado project specified in this field, see Tailor Fitting a Platform Based
Accelerator Design in Model Composer.

Once you click the Generate button, the IP catalog flow starts. As shown below, Compilation
status windows pop up and indicate the progress of the flow. Once the IP Catalog flow is
finished, it will indicate Generation Completed. You can then click Show Details, to get more
detailed information.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=186

Figure 138: Compilation Status

Navigate to the specified Target directory, to find a folder named ip_catalog. This folder
contains all the necessary files to form an IP from your Model Composer design. The ZIP file,
circled below, contains all the files required to include the Model Composer design as IP in the
Vivado IP catalog.

Figure 139: ZIP File

Using AXI4 Interfaces

Selecting the Auto Infer Interface option in the IP Catalog: Settings dialog box ensures AXI4
interfaces are automatically inferred from the design Gateway In and Gateway Out ports. The
Auto Infer Interface option groups signals into AXI4-Stream, AXI4-Lite and AXI4 interfaces
based on the port names.

The Auto Infer Interface option will infer interfaces based on the following criteria:

• The Gateway In and Gateway Out port name suffix must exactly match the signal names in
the AXI4 interface standard.

• The design must contain the minimum number of signals to be considered a valid AXI4
interface.

For example, if a design has two Gateway In ports named PortName_tdata and PortName_tvalid,
and also a Gateway Out port named PortName_tready, the Auto Infer Interface option infers
these three ports into a single AXI4-Stream port named PortName. In this example.

• The port name suffixes are exact matches for the signals in an AXI4-Stream interface (TDATA,
TREADY and TVALID).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=187

• These three signals are the minimum signals required for an AXI4-Stream interface.

If optional AXI4 sideband signals are present, for example the TUSER signal is optional in the
AXI4-Stream standard, and they are named using the same naming convention (for example,
PortName_tuser) they will be grouped into the same AXI4 Interface.

For more details on AXI4 interfaces, AXI4 interface signals names and the minimum required
signals for an AXI4 interface, refer to the document Vivado Design Suite: AXI Reference Guide
(UG1037).

Including a Testbench with the IP Module

To verify the functionality of the newly generated IP, it is important to include a test bench. As
shown below, if you check Create testbench, a test bench is automatically created when you
click the Generate button.

Figure 140: Create Testbench

As shown below, when you include a test bench, you can verify the IP functionality by adding
three more steps to the flow.

• Step 1: Add the new IP to the Vivado IP catalog. Refer to the document Vivado Design Suite
User Guide: Designing with IP (UG896).

• Step 2: Create a new Vivado IDE project and add the IP as the top-level source.

• Step 3: Run simulation, synthesis and implementation to verify the functionality of the
generated IP.

The following figure shows an open Vivado IDE project with the newly created IP as the top-level
source.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 188Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=188

Figure 141: New IP

Adding an Interface Document to the IP Module

As shown below, check Create interface document, then click Generate, and Model Composer
generates an interface document for the IP and packages this HTML document with the IP.

Figure 142: Create Interface Document

You can find a new folder, documentation, under the netlist folder. Right-click the new IP
in the Vivado IDE, and click Product guide, to open one HTML file with interface information
about this IP.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=189

Adding the Generated IP to the Vivado IP Catalog

To use the IP generated from Model Composer, you need to create a new project, or open an
existing project that targets the same device as specified in Model Composer for creating the IP.

Note: The IP is only accessible in this project. For each new project where you use this IP, you need to
perform the same steps.

Select IP Catalog in the Project Manager, and right-click an empty area in IP Catalog window.
Select Add Repository, and add the directory that contains your new IP.

Figure 143: IP Catalog

Once the IP is added to the IP catalog, you can include it in larger designs just as you would with
any other IP in the IP catalog.

Synthesized Checkpoint Compilation
Vivado tools provide design checkpoint files (.dcp) as a mechanism to save and restore a design
at key steps in the design flow. Checkpoints are merely a snapshot of a design at a specific point
in the flow. A Synthesized Checkpoint is a checkpoint file that is created in the out-of-context
(OOC) mode after a design has been successfully synthesized.

When you select the Synthesized Checkpoint compilation target (see figure below), a
synthesized checkpoint target file named <design_name>.dcp is created, and placed in the
Target directory. You can then use this <design_name>.dcp file in any Vivado IDE project.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=190

Figure 144: Synthesized Checkpoint

The Board and Part fields allow you to specify the board or part for which you are targeting the
Synthesized Checkpoint compilation. When you select a Board, the Part field automatically
displays the name of the Xilinx device on the selected Board. This part name cannot be changed.

The Synthesized Checkpoint compilation can be performed for any of the boards or parts your
Vivado tools support. In addition to accessing the Xilinx development boards installed as part of
your Vivado installation, you can also specify partner boards or custom boards (see Specifying
Board Support in Model Composer HDL Blockset).

Creating Your Own Custom Compilation Target
Model Composer provides a custom compilation infrastructure to create your own custom
compilation target. In addition to generating HDL from your Model Composer design, you can
also create a compilation target plug-in that automates steps both before and after the HDL is
generated. Details about how to create a custom compilation target can be found in the topic
Creating Custom Compilation Targets topic.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=191

Creating Custom Compilation Targets
Model Composer provides a custom compilation infrastructure that allows you to create your
own custom compilation targets. In addition to generating HDL from your Model Composer
design, you can also create a compilation target plug-in that automates steps both before and
after the Vivado® integrated design environment (IDE) project is created. In order to create a
custom compilation target, you need to be familiar with the object-oriented programming
concepts in the MATLAB® environment.

xilinx_compilation Base Class
The custom compilation infrastructure provides a base class named xilinx_compilation.
From this base class, you can then create a subclass, and use its properties and override the
member functions to implement your own functionality.

Figure 145: Base Class

Creating a New Compilation Target
The following general procedure outlines how to create a new compilation target, and is followed
by more specific examples.

Running the Helper Function

Create a new custom compilation target by running the following helper function.

xilinx.environment.addCompilationTarget(target_name, directory_name)

For example, consider the following command:

xilinx.environment.addCompilationTarget('Impl', 'U:\demo')

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=192

Figure 146: Helper Function

When you enter this command in the MATLAB Command Window as shown above, the
following happens:

1. A folder is created named Impl/@Impl in U:\demo.

2. Inside the folder, a template class file Impl is created (Impl.m), which is derived from the
base class xilinx_compilation. At this point, if no modifications are made to the file, the
newly created Impl compilation target acts the same as the HDL Netlist compilation target.
The content of the Impl.m file is shown in the following figure.

3. The helper function then adds U:\demo\Impl to the MATLAB path, so that the new class
Impl can be discovered by MATLAB.

Note: Be aware that the target_name cannot contain spaces. After the class is created, you can add
spaces to the target_name property of the class.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=193

Modifying a Compilation Target

If modifications are made to a class file for a compilation target, you are required to call the
following helper function. This helper function ensures that Model Composer detects the new
class definition.

>> xilinx.environment.rehashCompilationTarget

Adding an Existing Compilation Target

You must add the path that contains the folder with the custom compilation target. As shown
below, you can use the addpath functionality provided by MATLAB® to do this:

>>addpath('U:\demo\Impl');

When you use addpath, you must provide the absolute path, not the relative path.

Saving a Custom Compilation Target

You can use the savepath functionality in MATLAB® to save the custom compilation target. To
do the save, you may need write permission to the MATLAB installation area.

Removing a Custom Compilation Target

To remove the custom compilation target, remove the path to the target from the MATLAB®

Search Path.

Base Class Properties and APIs
The xilinx_compilation base class resides in the following location:

<Vivado Install Path>/scripts/sysgen/matlab/@xilinx_compilation

System Generator Token-Related Properties and APIs

setup_sysgen_token()

This function is called to populate the System Generator token information by the Custom
Compilation Infrastructure. You can use any of the following functions related to the System
Generator token to set how the token looks by default when the custom target is selected. The
fields, their default values and the field enablement/disablement can be set by the following
System Generator token application programming interface (API) functions.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=194

add_part(family, device, speed, package, temperature)

An example of an explicit command is add_part('Kintex7', 'xc7k325t', '-1' ,
'fbg676',''). If the part-related APIs are not used, the end user can select any device that he
wants to choose from the list.

string target_name

This is a required field that has to be set in the setup_sysgen_token() function.

string hdl

The default value is an empty string. Valid options are verilog or vhdl. Once a value is set to
this field, this field will be disabled for further user selection.

string synth_strategy

The default value is an empty string. Once a value is set to this field, this field will be disabled for
further user selection. If this API is used, the user has to make sure that the specified strategy
exists. Otherwise, it will result in an error.

string impl_strategy

The default value is an empty string. Once a value is set to this field, this field will be disabled for
further user selection. If this API is used, the user has to make sure that the specified strategy
exists. Otherwise, it will result in an error.

string create_tb

The default value is an empty string. The valid options are on or off. Once a value is set to this
field, this field will be disabled for further user selection.

string create_iface_doc

The default value is an empty string. The valid options are on or off. Once a value is set to this
field, this field will be disabled for further user selection.

Vivado Project-Related Properties

top_level_module

You can use this property to set the top-level name of their choice. This parameter accepts a
MATLAB® string.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=195

Vivado IDE Project Generation-Related Functions

pre_project_creation(design_info)

This function should be called before you create the Vivado® IDE project. Before the Model
Composer Infrastructure creates the project, it has to know what files need to be added to the
Vivado® IDE project, and what additional Tcl commands need to be run. There might be use-
cases where the user wants to add some files to the project based on the top-level port interface
of the Model Composer design. For this purpose, a structure that describes the port interface is
passed into this function called design_info. design_info is described in detail in a later
section.

post_project_creation(design_info)

This function should be called at the end of Vivado IDE project creation. This is the last function
to be called after the Project Generation script is run. This is a useful function for things like error
parsing, generating reports, and opening the Vivado IDE project. A structure which describes the
port interface is passed into this function called design_info. design_info is described in
detail in a later section.

add_tcl_command(string)

This function adds the additional Tcl commands as a string. These Tcl commands will be issued
after the Vivado IDE project is created. Use this command to create a bitstream once project
creation occurs. The Tcl command can also be used to source a particular Tcl file. The commands
are executed in the order in which they are received.

add_file(string)

This function adds user-defined files to the Vivado IDE project. This application programming
interface (API) function can also be used to add XDC constraint files to the Vivado IDE project.
You should make sure that the order in which add_file is called, is hierarchical in nature. The top-
module file must be added last.

run_synthesis()

This function runs synthesis in the Vivado IDE project.

run_implementation()

This function runs implementation in the Vivado IDE project.

generate_bitstream()

This function generates a bitstream in the Vivado IDE project.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=196

Design Info

design_info is a MATLAB® struct and its contents are shown below:

Figure 147: Design Info

Examples of Creating Custom Compilation Targets
The following examples provide more detail on how you can create various kinds of customized
targets.

Example 1: Creating an Implementation Target

1. Open a Model Composer model, then open the System Generator token. This populates the
token with all the available compilation targets.

2. In the MATLAB® Command Window, modify the path as per your requirements, then enter
the following command:

xilinx.environment.addCompilationTarget('Impl', 'U:\demo')

This provides a template derived class for you to edit.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=197

3. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the new compilation target is picked up by the System Generator token.

4. Close and then re-open the System Generator token. You now see the compilation target,
Impl on the token as shown below.

Figure 148: Selecting Impl

5. At this point, selecting Impl does not perform any customized operations on the System
Generator token. It is equivalent to an HDL Netlist compilation target.

6. Open U:\demo\Impl\@Impl\Impl.m in the MATLAB Editor.

7. Populate the setup_sysgen_token() function as per the requirements. Using this
approach, you can control how the System Generator token should look, including the
enabled/disabled fields when the user-defined custom compilation is selected.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=198

8. In the MATLAB Command Window, you should enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the updated class definition of Impl is used.

9. Close and then re-open the System Generator token. Select Impl from the list of Compilation
targets.

10. The System Generator token appears as follows:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=199

Figure 149: Selecting Verilog, and Flow Quick

11. Observe that the Hardware description language field and the Implementation strategy field
are fixed to what you set in the Impl class and are disabled for user modification.

12. All the user specified files and additional Tcl commands to be run are known before the
Vivado® IDE project is created. The next step is to populate the
pre_project_creation() function as indicated below:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=200

13. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the updated class definition of Impl is used.

14. Close and then re-open the System Generator token. Select Impl from the list of Compilation
targets.

15. Click Generate. Once the process is finished, you can see the implementation results by
opening up the Vivado IDE project.

Example 2: Creating a Bitstream Target

1. Open a Model Composer design.

2. In the MATLAB command Window, modify the path as per your requirements, similar to the
first example, and then enter the following command:

xilinx.environment.addCompilationTarget('Bitstream', '.')

This provides a template derived class for the users to edit. The last field corresponds to the
directory which contains the board.xml file.

3. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This will ensure that the new compilation target is picked up by the System Generator token

4. Close and then re-open the System Generator token.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=201

5. You will now see the compilation target Bitstream on the System Generator token as shown
below.

Figure 150: Bitstream

6. Open the Bitstream.m created in the './Bitstream/@Bitstream/Bitstream.m'.

7. Download the following two files:

8. Inside the function pre_project_creation(), add the following lines to do the
following:

a. Set the board as a KC705 board.

b. Add a new top-level file (top.v) to use the differential clock ports of KC705.

c. Add a new XDC file to give the location constraints for the clock, dip, and led ports.

d. Set the newly added module top as the top.

e. Run synthesis.

f. Run implementation.

g. Generate bitstream.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=202

After you save the files to a location on your computer, you should give the full path to the
files in the add_file API as per your path.

add_tcl_command(obj, 'set_property board xilinx.com:kintex7:kc705:1.1
[current_project]');
add_file(obj,
'/group/dspusers-xsj/umangp/rel/2013.4/cust_comp_test/
bitstream_example.xdc');
add_file(obj, '/group/dspusers-xsj/umangp/rel/2013.4/cust_comp_test/
top.v');
obj.top_level_module = 'top';
run_synthesis(obj);
run_implementation(obj);
generate_bitstream(obj);

9. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the new compilation target is picked up by the System Generator token

10. Close and then re-open the System Generator token.

11. Select the Bitstream compilation target.

12. Click the Generate button.

13. After the generation is complete, you can find the bit file in the following directory:

./<Target_directory>/Bitstream/bitstream_example.runs/impl_1/top.bit

GUI Utilities for HDL Blocksets
Xilinx has added graphics commands to the Simulink® model popup menu that will help you
rapidly create and analyze your Model Composer design. As shown below, you can access these
commands by right-clicking the Simulink model canvas and selecting the appropriate Xilinx
command:

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=203

Figure 151: Xilinx Commands

A detailed description of the additional Xilinx commands is provided below.

Xilinx BlockAdd Facilitates the rapid addition of Xilinx HDL blocks (and a
limited set of Simulink blocks) to a Simulink model.

Xilinx Tools > Save as blockAdd default This feature allows you to pre-configure a block, then add
multiple copies of the pre-configured block using the
BlockAdd feature.

Xilinx BlockConnect Facilitates the rapid connection of blocks in a Simulink
model

Xilinx Tools > Terminate Facilitates the rapid addition of Simulink terminator blocks
on open output ports and/or Xilinx HDL Constant Blocks on
open input ports.

Xilinx Waveform Viewer The Xilinx Waveform Viewer displays a waveform diagram of
selected signals in your Model Composer design.
Waveforms can be displayed in the Waveform Viewer after
running a Simulink simulation. Inputs and outputs of blocks
in the Xilinx HDL Blockset can be displayed in the Waveform
Viewer.

Xilinx Clear Waveform Selections Deletes all of the waveforms currently displayed in the
Waveform Viewer, and closes the Waveform Viewer.

Xilinx BlockAdd
Facilitates the rapid addition of Xilinx® HDL blocks (and a limited set of Simulink® blocks) to a
Simulink model.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=204

How to Invoke

Method 1

Right-click the Simulink canvas and select Xilinx BlockAdd.

Method 2

Execute the short cut Ctrl 1 (one).

Method 3

From the Simulink model pull down menu, select the following item:

Tools → Xilinx → BlockAdd

How to Use

1. Right-click the Simulink canvas and select Xilinx BlockAdd.

Figure 152: Xilinx BlockAdd

2. Double-click AddSub.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=205

Figure 153: AddSub

3. To add multiple copies of the same block, add a block, select the block, press Ctrl + C, then
press Ctrl + V the required number of times.

4. To dismiss the Add block window, press Esc.

Xilinx Tools > Save as blockAdd default
This feature allows you to pre-configure a block, then add multiple copies of the pre-configured
block using the BlockAdd feature.

How to Use

Assume you need to add multiple Gateway In blocks of type Boolean to a model.

1. Add one Gateway In block to the model.

2. Double click the Gateway In block, change the Output type to Boolean and click OK.

3. Select the modified Gateway In block, right-click and select Xilinx Tools → Save as blockAdd
default.

4. Now, every time you add addition Gateway In blocks to the model using the BlockAdd
feature, the block is of Output type Boolean.

How to Restore the Block Default

1. Select a block with pre-configured (changed) defaults.

2. Right-click and select Xilinx Tools → Clear blockAdd defaults.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=206

Xilinx BlockConnect
Facilitates the rapid connection of blocks in a Simulink® model.

Simple Connections

1. As shown in the following figure, select an open port of a block, right-click, keep the cursor
on a particular port then right-click and select the Xilinx BlockConnect option to see the list
of possible connections for that port. Xilinx Block Connect only shows the list of possible
connections for one port at a time.

Figure 154: Xilinx BlockConnect

2. BlockConnect proposes the nearest connection with a green line. To confirm, you can double-
click the selected connection in the table. The connection then turns black. Otherwise, select
another connection in the table to see if the new green line connection is correct.

Figure 155: Connecting Blocks

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=207

Smart Connections

As shown in the following figure, a "lightning bolt" icon indicates a "smart" connection. Smart
connections have intelligence built in to help you manage the connection. For example, right-
clicking a block with an AXI interface allows you to:

• Group or separate the AXI signals to or from a bus.

• Connect to other ports with the same number of AXI connections.

Figure 156: Smart Connections

No port data type checking is performed and any AXI ports with the same number of ports are
allowed to connect.

In another smart connection example below, right-clicking the Accumulator block output,
selecting BlockConnect, and double-clicking Scope creates a smart connection to the Scope
block. The Gateway Out block is added automatically.

Figure 157: Connecting Scope Block

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=208

If a second connection is made to this Scope block, a second port is automatically added to the
Scope. The driving signal name is also used to name the signal driving the scope.

Xilinx Tools > Terminate
Facilitates the rapid addition of Simulink® terminator blocks on open output ports and/or Xilinx®

HDL Constant Blocks on open input ports.

How to Use

Terminating Open Outputs

Consider the following model with open input and output ports:

Figure 158: Model with Open Input and Output Ports

Right-click the DDS Compiler 6.0 block in this case and select Xilinx Tools → Terminate → 
Outputs.

The following figure illustrates the resulting terminated outputs.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=209

Figure 159: Terminated Output Ports

Terminating Open Inputs

Consider the following model with an open input port:

Figure 160: Model with Open Input Port

Right-click the DDS Compiler 6.0 block and select:

Xilinx Tools → Terminate → Inputs

The following figure illustrates the resulting terminated input.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=210

Figure 161: Terminated Input Port

Verifying Input Port Data Type Requirements

Model Composer connects each open input port to an HDL Constant Block. The new Constant
blocks are set to the following default values:

Type: Signed (2’s comp)

Constant value: 0

Number of bits: 16

Binary point: 14

This terminate tool does not do data type checking on the input ports. If an open port requires a
different data type, for example a Boolean data type, you will need to double-click the Constant
block and change the Output Type to Boolean.

To check for data type mismatches, click the Simulink® model canvas, and enter Ctrl-D. Model
Composer will report on all the data type mismatches, if there are any.

Xilinx Waveform Viewer
The Xilinx® Waveform Viewer displays a waveform diagram of selected signals in your Model
Composer design. Waveforms can be displayed in the Waveform Viewer after running a Simulink
simulation. Inputs and outputs of blocks in the HDL Blockset can be displayed in the Waveform
Viewer.

In your design, you can select the signals that will be monitored in the Waveform Viewer. As you
develop and troubleshoot your design, the waveforms for the signals you are monitoring will be
updated in the Waveform Viewer each time you simulate the model.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=211

Figure 162: Example Design in Waveform Viewer

The Xilinx Waveform Viewer used with Model Composer is also used by other tools in the
Vivado® toolset. The Waveform Viewer is used to analyze a design and debug code in the Vivado
simulator and to display data captured by the Integrated Logic Analyzer (ILA) for in-system
debugging.

For information on using the Waveform Viewer to develop and troubleshoot your design, see this
link in the Vivado Design Suite User Guide: Logic Simulation (UG900).

Waveform Viewer Files

The first time you open the Waveform Viewer for your Simulink model, Model Composer creates
a wavedata directory in the directory containing your Simulink model.

Note: You will need write permission for the directory containing your Simulink model.

Data describing the display in the Waveform Viewer is stored in the following files in the
wavedata directory:

• <design_name>.wcfg - This is the waveform configuration file. It contains the names of the
signals you are monitoring in your design and how the waveforms for these signals will appear
in the Waveform Viewer.

• <design_name>.wdb - This is the waveform database file. It contains the data necessary to
draw the waveforms in the Waveform Viewer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 212Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xAnalyzingSimulationWaveforms
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=212

The names of the signals that are being monitored are stored in the Simulink model (SLX file). If
the Simulink model cannot access the data in the wavedata directory (for example, if you moved
the model’s SLX file to a different directory and opened it in the new directory), you can display
the monitored signals by opening the Waveform Viewer and simulating the design. The
waveforms for the monitored signals will then appear in the Waveform Viewer.

Opening the Xilinx Waveform Viewer

Youc can open the Waveform Viewer in either of the following ways:

• Opening from right-click menu:

Right-click in your model and select Xilinx Waveform Viewer.

Figure 163: Xilinx Waveform Viewer

If you open it from the right-click menu, the Waveform Viewer opens with the following
display:

○ If this is the first time you are opening the Waveform Viewer for this design, the Waveform
Viewer opens displaying waveforms for the clock signals in your design, and no other
waveforms. You can then add the signals in your design that you want monitored to the
Waveform Viewer display (see Adding Signals to the Waveform Viewer Display).

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=213

Figure 164: Waveform Viewer Display

○ If you have previously monitored signals in the Waveform Viewer for this design, and have
saved the data, the Waveform Viewer opens displaying the signal names, and waveforms
displayed when you last closed the Waveform Viewer.

Figure 165: Signals in Waveform Viewer

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=214

○ If you have previously monitored signals in the Waveform Viewer for this design, but
cannot access the saved data (for example, if you moved the model's SLX file to a different
directory, and opened it in the new directory), the Waveform Viewer opens displaying the
signal names for the signals monitored when you last saved the model. The Waveform
Viewer will not show the waveforms for the monitored signals until you resimulate the
model.

Figure 166: Waveform Viewer New Signals

○ Opening after simulation:

If you have previously monitored signals in the Waveform Viewer for your design, the
Waveform Viewer will open automatically when you simulate your model.

Adding Signals to the Waveform Viewer Display

Inputs and outputs of blocks in the HDL Blockset can be displayed in the Waveform Viewer. The
data necessary to draw each signal’s waveform is not stored with the design; it is generated by
simulation. You can only display a signal’s waveform after you have added the signal to the
Waveform Viewer and then simulated the model.

To add signals to the display in the Waveform Viewer:

1. With the Waveform Viewer open, select a signal in the Model Composer model.

You can also select multiple signals by using Shift+ click to select additional signals.

Note: For the Gateway In block, only the output signal can be displayed in the Waveform Viewer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=215

2. Right-click one of the selected signals in the System Generator model and select Xilinx Add
to Viewer in the right-click menu.

Note: If you select a signal that is currently displayed in the Waveform Viewer, the Xilinx Add to
Viewer entry will not appear in the right-click menu.

Figure 167: Xilinx Add to Viewer

The signal names of the selected signals appear in the Waveform Viewer.

3. Only the names of the added signals appear in the Waveform Viewer, because the Waveform
Viewer does not have the data to draw the signal’s waveform until you simulate the design.

4. Simulate the model.

Figure 168: Run Button

After the simulation is finished, the waveforms for the added signals are displayed in the
Waveform Viewer.

Deleting Signals From the Waveform Viewer Display

1. In the Waveform Viewer, select the signals to be deleted.

Use Shift+click or Ctrl+click to select multiple signal names (Ctrl+A to select all).

2. Right click one of the selected names and select Delete in the right-click menu.

OR

Press the Delete key.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=216

The waveforms are deleted from the Waveform Viewer. Deleted waveforms are no longer
monitored; if you resimulate the model the deleted waveforms will not appear in the
Waveform Viewer.

Cross Probing Between the Waveform Viewer and the Model

Cross probing helps you correlate the waveforms in the viewer to the wires in the Model
Composer model.

You can cross probe signals between the Waveform Viewer, and the model in the following ways:

• To cross probe a signal from the Waveform Viewer to the Model Composer model, select one
or more signal names in the Waveform Viewer. Use Shift+click or Ctrl+click to select multiple
signal names (Ctrl+A to select all).

The selected signals are highlighted in orange in the Model Composer model.

To unhighlight a signal you have highlighted in the Model Composer model, Ctrl+click the
signal name in the Waveform Viewer. The signal is unhighlighted in the Model Composer
model.

• To cross probe a signal from the Model Composer model to the Waveform Viewer:

1. With the Waveform Viewer open, select a signal in the Model Composer model.

You can also select multiple signals by using Shift+click to select additional signals.

2. Right-click one of the selected signals in the Model Composer model and select Xilinx
Highlight in Viewer in the right-click menu.

Note: If you select a signal that is not currently displayed in the Waveform Viewer, the Xilinx
Highlight in Viewer entry will not appear in the right-click menu.

Figure 169: Xilinx Highlight in Viewer

3. Observe that the signal names of the selected signals are highlighted in the Waveform
Viewer.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=217

Clearing the Waveform Viewer Display

To clear the waveform display, deleting all the waveforms currently displayed in the Waveform
Viewer:

1. Right-click in the Model Composer model.

2. Select Xilinx Clear Waveform Selections in the right-click menu.

All of the signals currently displayed in the Waveform Viewer are deleted from the Waveform
Viewer display, and the Waveform Viewer closes. The deleted waveforms are no longer
monitored and the wavedata directory (which contains data describing the current display in
the Waveform Viewer) is removed from the directory containing your Simulink model.

Figure 170: Xilinx Clear Waveform Selections

To open the Waveform Viewer again, right-click in your model and select Xilinx Waveform
Viewer in the right-click menu. The Waveform Viewer opens displaying waveforms for the clock
signals in your design, and no other waveforms.

Customizing the Display and Analyzing Waveforms

The Waveform Viewer has many tools to customize how your waveforms are displayed and to
analyze the waveforms. For information on using the Waveform Viewer to develop and
troubleshoot your design, see this link in the Vivado Design Suite User Guide: Logic Simulation
(UG900).

Tips for Working in the Waveform Viewer

The following tips will help you with your waveform analysis using the Model Composer model
and the Waveform Viewer:

• Keep the Waveform Viewer open during a Model Composer session. Do not close the
Waveform Viewer between each simulation.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 218Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xAnalyzingSimulationWaveforms
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=218

• If you select a group of signals in the Waveform Viewer, all of the signals in the group will be
cross-probed from the Waveform Viewer to the Model Composer model.

• To add multiple signals in your Model Composer model to the Waveform Viewer display, you
can press and hold the left mouse button and drag the mouse to draw a box around the
signals, selecting them. Then right-click one of the selected signals and select Xilinx Add to
Viewer in the right-click menu. The selected signals will be added to the Waveform Viewer
display.

• When naming an output signal for a block in your Model Composer model, avoid using the
reserved characters shown in the table below. These are reserved characters in VHDL or
Verilog. If your model does contain a signal with a reserved character, its name will be changed
in the Waveform Viewer display according to the following mapping table.

Table 7: Reserved Characters

Reserved Character Mapped To
(#1

) #2

[#3

] #4

. #5

, #6

: #7

\ #8

Closing the Waveform Viewer

To close the Waveform Viewer, select File → Exit. If you have not yet saved the waveform data,
you will be prompted to save the data before the Waveform Viewer closes.

Chapter 2: HDL Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=219

Chapter 3

HLS Library

Introduction
Vitis™ Model Composer provides the HLS blockset in the Xilinx toolbox. This enables you to
transform your algorithmic specifications to production-quality IP implementations using
automatic optimizations and leveraging the high-level synthesis technology of Vitis HLS. Using
the IP integrator in Vivado, you can then integrate the IP into a platform that, for example, may
include a Zynq® device, DDR3 DRAM, and a software stack running on an Arm® processor.

The HLS library in the Xilinx Tool Box provides optimized blocks for use within the Simulink
environment. These include basic functional blocks for expressing algorithms like Math, Linear
Algebra, Logic, and Bit-wise operations and others.

The HLS library contains the following categories of elements.

Table 8: HLS Block Library

Library Description
Logic and Bit Operations Blocks that supports the compound logical operations and

bit-wise operations.

Lookup Tables Block set that performs a one dimensional lookup operation
with an input index.

Math Functions Blocks that implement mathematical functions.

Ports and Subsystems Blocks that allow creation of subsystems and input/output
ports.

Relational Operations Block set to define some kind of relation between two
entities (e.g., Numerical Equality and inequalities).

Signal Attributes Includes block which helps to maintain the compatibility
between input type and output type (e.g., Type casting).

Signal Operations Blocks that support simple modifications to the time
variable of the signal to generate new signals (e.g., Unit
Delay).

Signal Routing Blocks that supports the setup to track signal sources and
destinations (e.g., Bus selector).

Sinks Include blocks that receive physical signal output from
other blocks.

Source Include blocks that generate or import signal data.

Tools Include blocks that controls the implementation/Interface
of the Model.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=220

For information on specific blocks in the Model Composer HLS library, see HLS Blockset.

The HLS block library is compatible with the standard Simulink block library, and these blocks can
be used together to create models that can be simulated in Simulink. However, only certain
Simulink blocks are supported for code generation by Model Composer. The Simulink blocks
compatible with output generation from Model Composer can be found in the HLS block library.

Model Composer also lets you create your own custom blocks from existing C/C++ code for use
in models. Refer to Importing C/C++ Code as Custom Blocks for more information.

Your Model Composer design is bit-accurate with regard to the final implementation in hardware,
though untimed. You can compile the design model into C++ code for synthesis in Vitis HLS,
create HDL blocks, or create packaged IP to be used in Vivado.

To familiarize yourself with the Model Composer HLS library, the Vitis Model Composer Tutorial
(UG1498) includes labs and data to walk you through the tool.

The rest of this document discusses the following topics:

• Creating a Model Composer model using HLS block libraries.

• Importing existing C-code into the Model Composer HLS block library for use in your models.

• Compiling the model for use in downstream design tools.

• Verifying your Model Composer model, C++, and RTL outputs.

Creating a Model Composer Design
As shown in the image below, a Model Composer design with HLS blocks includes the following
elements:

1. Simulink® blocks that determine inputs, and provide source signals. These blocks are used in
simulation of the design, but do not affect the output generated by Model Composer.

2. A top-level subsystem block, as described in Creating a Top-Level Subsystem Module, that
encapsulates the algorithm defined by the Model Composer model. This subsystem module
can contain:

• Blocks from the HLS library to define your algorithm, as listed in the HLS Library.

• Custom imported functions as described in Importing C/C++ Code as Custom Blocks.

• An Interface Spec block that defines the hardware interfaces as described in Defining the
Interface Specification.

3. The Model Composer Hub block that controls throughput of the design, and output
generation through a series of options as described in Adding the Model Composer Hub.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 221Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=221

4. The output signals, or sinks that process the output in Simulink. Again, these blocks are used
during Simulink simulation as described in Simulating and Verifying Your Design, but do not
affect the output generated by Model Composer.

Figure 171: Elements of a Model Composer Design

Creating a New Model
You create a new model by adding blocks from the Library Browser into theSimulink Editor. You
then connect these blocks with signal lines to establish relationships between blocks. The
Simulink Editor manages the connections with smart guides and smart signal routing to control
the appearance of your model as you build it. You can add hierarchy to the model by
encapsulating a group of blocks and signals as a subsystem within a single block. Model
Composer provides a set of predefined blocks that you can combine to create a detailed model of
your application.

In the Simulink start page, select Blank Model to open a new model.

TIP: You can also open an existing Model Composer template if any have been defined. Model templates
are starting points to reuse settings and block configurations. To learn more about templates, see Create a
Template from a Model in the Simulink documentation.

The Simulink start page also lists the recent models that you have opened on the left-hand
column. You can open one of these recent models if you prefer.

The blank model opens, and you will create the Model Composer model by adding blocks,
specifying block parameters, and using signal lines to connect the blocks to each other.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 222Send Feedback

https://www.mathworks.com/help/simulink/ug/create-a-template-from-a-model.html
https://www.mathworks.com/help/simulink/ug/create-a-template-from-a-model.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=222

IMPORTANT! HLS Library only supports one sample time for the model, and does not support multi-time
systems. All HLS Library blocks inherit the sample time from the source block of the model. See What is
Sample Time for more information.

To save the model select File → Save from the main menu. The Save As dialog box is opened,
with a file browser. Navigate to the appropriate folder or location, and enter a name for the
model in the File Name field. Click Save. The model is saved with the file extension .slx.

Model Composer also includes example models based on HLS library which can be accessed
from the Model Composer Examples section of the Vitis Model Composer documentation available
from the Help menu in the tool, or by typing the xmcOpenExample command from the
MATLAB command prompt:

>> xmcOpenExample

This command returns a list of available examples that can be opened. The xmcOpenExample
command copies the example model to a specified target directory, or to a temp directory if no
target is specified, and opens the model to explore the design in Model Composer. The following
shows how to specify an example and target directory:

xmcOpenExample('importing_c_code','C:\Data\importing_code')

TIP: If the specified target directory does not exist, Model Composer will create it.

Adding Blocks to a Model
You can add blocks to the current model by opening the Library Browser and dragging and
dropping the block onto the design canvas of the Simulink Editor. Open the Library Browser by

clicking the button, or by selecting the View → Library Browser command from the main
menu. You will see the standard Simulink library of blocks, as well as the HLS library in the Xilinx
Toolbox.

TIP: You can also open the Library browser by typing the slLibraryBrowser command from the command
prompt.

The HLS blocks are organized into sub-categories based on functionality. The figure below shows
the HLS → Logic and Bit Operations block library in the Library Browser.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 223Send Feedback

https://www.mathworks.com/help/simulink/ug/what-is-sample-time.html
https://www.mathworks.com/help/simulink/ug/what-is-sample-time.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=223

Figure 172: Library Browser

Double-clicking a block in the Library Browser, opens the Block Parameter dialog box displaying
the default values for the various parameters defined on the selected block. While the block is in
the library, you can only view the parameters. To edit the parameters, you must add the block to
the design canvas.

To get additional information about a block you can right-click a block in the Library Browser and
select the Help command. Alternatively, you can double-click the block in the Library Browser
and click the Help button from the block dialog box. The Help browser opens with specific
information for the block.

When you drag and drop the block onto the canvas, the block is added to the model with the
default parameter values defined.

TIP: You can also quickly add blocks to the current model by single-clicking on the design canvas of the
Simulink Editor and typing the name of a block. Simulink displays possible matches from the libraries, and
you can select and add the block of interest.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=224

Simulink models contain both signals and parameters. Signals are represented by the lines
connecting blocks. Parameters are coefficients that define key characteristics and behavior of a
block.

Connecting Blocks
You can connect the output ports on blocks to the input ports of other blocks with signal lines.
Signal lines define the flow of data through the model. Signals can have several attributes:

• Data type: Defines the type of data carried by the signal. Values can range from integer, to
floating point, to fixed point data types. See Working with Data Types for more information.

• Signal dimension: Defines the values as being scalar, vector, or matrices. See Signal
Dimensions and Matrices, Vectors, and Scalars for more information.

• Complexity: Defines a value as being a complex or real number. See Signal Values for more
information. The figure below shows complex numbers propagating through a model.

Figure 173: Complex Signal Values

To add a signal line, position the cursor over an input or output port of a Simulink block. The
cursor changes to a cross hair (+). Left-click and drag the mouse away from the port. While
holding down the mouse button, the connecting line appears as a dotted line as you move across
the design canvas. The dotted line represents a signal that is not completely connected.

Release the mouse button when the cursor is over a second port to be connected. If you start
with an input port, you can stop at an output port, or connect to another signal line; if you start
at an output you can stop at an input. Simulink connects the ports with a signal line and an arrow
indicating the direction of signal flow.

You can connect into an existing line by right-clicking and dragging the mouse. This creates a
branching line connected to the existing signal line at the specified location. The branch line can
connect to an input or output as appropriate to the connected signal.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 225Send Feedback

https://www.mathworks.com/help/simulink/ug/signal-dimensions.html
https://www.mathworks.com/help/simulink/ug/signal-dimensions.html
https://www.mathworks.com/help/comm/ug/matrices-vectors-and-scalars.html
https://www.mathworks.com/help/simulink/ug/signal-values.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=225

TIP: You can also connect blocks by selecting them sequentially while holding the Ctrl key. This connects
the output of the first block into the input of the second block. Keeping the Ctrl key pressed and selecting
another block continues the connection chain.

Simulink updates the model when you Run simulation. You can also update the model using the
Simulation → Update Diagram menu command, or by typing Ctrl+D at any point in the design
process. You will see the Data Types, Signal Dimensions and Sample Times from the source
blocks propagate through the model.

TIP: You can use the Display → Signals and Ports menu command to enable the various data that you
want displayed in your model, such as Signal Dimensions and Port Data Types.

You cannot specify sample times on HLS Library blocks, except for the Constant block from the
Source library of the HLS library. Model Composer infers the sample time from the source blocks
connected at the input of the model, and does not support multiple sample times in the Model
Composer design.

By updating the diagram from time to time, you can see and fix potential design issues as you
develop the model. This approach can make it easier to identify the sources of problems by
limiting the scope to recent updates to the design. The Update Diagram is also faster than
running simulation.

Working with Data Types
Data types supported by HLS library blocks include the following:

Table 9: Model Composer Data Types

Name Description
double Double-precision floating point

single Single-precision floating point

half* Half-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

fixed* Signed and unsigned fixed point

boolean For this data type, Simulink represents real, nonzero
numeric values as TRUE (1)

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=226

IMPORTANT! Data types marked with '*' are specific to Model Composer HLS Library, and are not
naturally supported by Simulink. While Simulink does support fixed point data types, you must have the
Fixed-Point Designer™ product installed and licensed. In addition, the fixed point data type supported by
Vitis Model Composer is not compatible with the fixed point data type supported by Simulink although it
uses a similar notation.

Notice in the preceding table there are some data types that are supported by Model Composer
HLS Library that are not supported by default in Simulink. If you connect blocks from the HLS
library, with fixed or half data types, to Simulink native blocks, you will see an error when
running simulation in Simulink, or when using the Update Diagram command, or pressing Ctrl
+D.

RelationalOperator does not accept signals of data type 'x_sfix16'.
'ConstRE_or_IMpartBug/Relational Operator' only accepts numeric and
enumerated data types.

This error indicates that Simulink could not cast the signal value from the Model Composer fixed
data type to a double precision floating point data type.

In cases of mismatched data types, Model Composer recommends that you use a Data Type
Conversion block to specify the behavior of the model, and indicate the conversion of one data
type to another. The Data Type Conversion block (DTC) is found in the HLS Library under the
Signal Attributes library.

Figure 174: Data Type Conversion Block

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=227

The DTC block lets you specify the Output data type, while the input data type is automatically
determined by the signal connected to the input port. Using the DTC block, you can convert from
single precision floating point to double precision for example, or from double precision to single
precision.

IMPORTANT! You must exercise caution when casting from a higher precision data type to a lower
precision data type, as loss of precision can lead to rounding or truncation and loss of data can occur.

Working with Fixed-Point Data Types

As indicated earlier, Simulink® provides support for fixed-point data types through the Fixed-
Point Designer™ product. However, the format of the fixed data type supported by Model
Composer and Simulink are not compatible.

Figure 175: Fixed-Point Data Type

The format used to display the Model Composer fixed-point data types is as follows: x_[u/
s]fix[wl]_E[n][fl]

Where:

• x_: Is the prefix indicating the Xilinx fixed data type.

• [u/s]: Represents signed or unsigned data.

• fix: Indicates the fixed-point data type.

• [wl] Specifies the word length of the data.

• E: Prefix for the fractional portion of the fixed-point data type. Does not display if the
fractional length is 0.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=228

• n: Displays 'n' if the binary point is to the left of the right-most bit in the word; or displays no
'n' if the binary point is to the right of the right-most bit in the word.

• [fl]: Specifies the fractional length of the fixed-point data type, indicating the position of
the binary point with respect to the right-most bit in the word.

For example, x_sfix16_En6 represents a signed 16-bit fixed-point number, with 6-bits
allocated to the right of the binary point.

Notice the fixed-point data type also lets you specify what happens in the case of data overflow,
or the need to do rounding or truncation. For more information refer to Data Type Conversion.

You must use a DTC block to convert the Model Composer fixed-point data type into the
Simulink fixed-point data type. However, there is no direct conversion between Model Composer
fixed-point and Simulink fixed-point data types, so you can use the following method:

1. Convert Model Composer fixed-point data type to the double data type using the DTC
block from the HLS library in the Library Browser.

2. Convert the double data type to Simulink format fixed-point data type using the Simulink
Data Type Conversion block from the Simulink Signal Attributes library in the Library
Browser.

3. Match the signedness, word length, and fractional length between the two fixed-point data
types.

TIP: Converting between the Model Composer fixed data type and the Simulink fixed data type is not
recommended unless necessary for your design. You can convert from the Model Composer fixed-point
data type to double, as shown in the first step, and this should be sufficient for most applications.

Although handling fixed-point data type in a design is more time consuming, the value of using
fixed-point data types for applications targeted at implementation in an FPGA is worth the
challenge. It is widely accepted that designing in floating point leads to higher power usage for
the design. This is true for FPGAs where floating-point DSP blocks have been hardened onto the
FPGA and users must implement a floating point solution using DSP blocks and additional device
resources. Floating-point implementations require more FPGA resources than an equivalent
fixed-point solution. With this higher resource usage comes higher power consumption and
ultimately increased overall cost of implementing the design. For more information refer to the
white paper Reduce Power and Cost by Converting from Floating Point to Fixed Point (WP491).

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 229Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp491-floating-to-fixed-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=229

Working with Half Data Types

Model Composer also supports a half precision floating point data type, which is 16 bits wide
instead of 32 bits, because it consumes less real estate on the target device when implemented
on the FPGA. This is an important consideration when designing in Model Composer. However,
Simulink does not support the half data type, and this can lead to errors in simulation. The
solution is to use the Model Composer DTC block to convert the half into the single data
type supported by Simulink, for those portions of the design that are not in the Model Composer
sub-module and will not be part of the generated output.

Working with Data Type Expression

Model Composer lets you specify data types as an expression. Currently the following HLS
library blocks support data type expression:

• Constant

• Data Type Conversion

• Gain

• Look-Up Table

• Reinterpret

To specify a data type expression open one of the block types that support it, and edit the data
type and value. The following shows a data type expression being defined for the Constant block.
The Output data type is specified as an expression, and a string is specified to indicate the data
type value, in this case 'uint32'.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=230

Figure 176: Data Type Expression

The data type value can be specified as a string representing any of the supported data types
shown in the Model Composer Data Types table in the Working with Data Types section. The
exception to this rule is for fixed point data types, which are not specified with the fixed string,
but are defined according to the display format discussed under Working with Fixed-Point Data
Types (e.g. 'x_sfix16_En8').

The real benefit of defining a data type as an expression is the ability to programmatically
determine the data type value using a variable from the model. For instance, if you define a
variable from the MATLAB® command line:

>> InputDataType = 'x_ufix8_En7';

You can use the variable in defining the data type expression.

Figure 177: Variable Data Type

You can specify variables from the MATLAB command line, or define variables within the model
using the Tools → Model Explorer menu command, or simply pressing Ctrl+H. From the Model
Explorer you can create, edit, and manage variables that the model or a block uses.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=231

TIP: You can also enable the View → Property Inspector command to display the variables for currently
selected objects.

Managing Overflow

Sometimes the data type definition for a block will not support the incoming data value on a
signal. In these cases, an overflow condition can occur if the value on the signal is too large or
too small to be represented by the data type of the block. The two types of overflow that can
occur are wrap overflow, and saturation overflow:

• Wrap on Overflow: This is the default overflow mechanism, and causes the bit value to wrap
at the overflow point. For instance, when an arithmetic operation such as multiplying two
numbers produces a result larger than the maximum value for the data type, effectively
causing a wrap around.

• Saturate on Overflow: This is an overflow mechanism in which all operations such as addition
and multiplication are limited to a fixed range between the minimum and maximum values
supported by the data type. In essence, the value will reach the maximum or minimum value
and stop.

Wrapping is the default method for handling overflow, as it occurs naturally as the value
overruns the data type. There is no checking required. However, the Saturate on Overflow
option requires some additional logic in order to check the data value against the permitted
maximum or minimum value to prevent wrapping. This additional logic consumes available
resources on the target device.

Saturate on Overflow

Saturate on Integer Overflow

Model Composer currently supports overflow detection of integer data values on signals. As
previously indicated, the default overflow mechanism is to wrap on overflow. Specific blocks in
the standard Simulink library of blocks and in the HLS library have an option to Saturate on
integer overflow. This can be enabled on the Block Parameters dialog box. This parameter
applies only if the output is an integer (int8, int16, int32, uint8, uint16, uint32). Refer to the
Model Composer Block Library for information specific to a block.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=232

Figure 178: Saturate on Integer Overflow

Saturate on integer overflow simply means that when the input value exceeds the range of
values supported by the output, either too great or too small, the value simply sits at the max or
min supported value. The value is saturated, and does not change.

Saturate on Fixed-Point Overflow

For fixed-point data types, as supported on the Data Conversion Block (DTC) for example, the
overflow modes offer more control than the Saturate on integer overflow option, as shown in the
following figure.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=233

Figure 179: Fixed-Point Overflow

A description of the different fixed-point overflow modes is provided below, with a graph to
illustrate the condition.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=234

Table 10: Fixed-Point Overflow Modes

Mode Description Image
Saturation When the input value overflows

the output data type, the
output value reaches saturation
at the min or max value, and
does not change.

Saturation to Zero When the input value overflows
the output data type, the
output value reaches saturation
at the min or max value, and
returns to zero.

Symmetrical
Saturation

Like Saturation to Zero, except
the min and max values are
symmetrical, or equal in size
though opposite in value.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=235

Table 10: Fixed-Point Overflow Modes (cont'd)

Mode Description Image
Wrap around When the input value exceeds

the output data type, the
output value is wrapped from
the maximum value to the
minimum value, or from the
minimum value to the
maximum value, thus cycling
through the range of permitted
values.

Sign-Magnitude
Wrap Around

When the input value exceeds
the output data type, the
output value reaches the
maximum value, and then
begins decreasing to return to
the minimum value. In an
underflow situation, the
minimum value is reached, and
begins increasing to return to
the maximum value.

Configuring Overflow Warnings

In case of either wrap or saturate, you may want to know when overflow occurs. You can define
how Simulink handles each of these overflow conditions in the model by clicking on the Model

Configuration Parameters command () on the tool bar menu, or typing Ctrl-E. In the
Configuration Parameters dialog box, under the Diagnostics → Data Validity tab, you can specify
values for the Wrap on Overflow and Saturate on Overflow fields. Each of these fields can have
one of the following settings:

• none: Simulink takes no special action to report or handle the overflow.

• warning: A message will be displayed in the diagnostic viewer. The next warning for the same
block will be ignored, and simulation will continue.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=236

• error: An error message will be displayed in the diagnostic viewer and the simulation will be
terminated.

TIP: Help for this dialog box can be found under Model Configuration Parameters: Data Validity
Diagnostics.

Creating a Top-Level Subsystem Module
In order to generate output from the Model Composer model the top-level of the Model
Composer model must contain the Model Composer Hub block, as described in Adding the
Model Composer Hub, as well as a subsystem that encapsulates the application design. To
generate output from the subsystem that is instantiated at the top-level of the design, only HLS
Library blocks and a limited set of specific Simulink® blocks can appear in the subsystem. The
HLS Library blocks define the functions to be compiled for the packaged IP or compiled C++
code. The top-level design can contain other blocks and subsystem modules that serve different
purposes, such as simulation, but the primary application must be completely contained within
the specified subsystem.

TIP: The specific Simulink blocks that are supported in the Model Composer subsystem also appear in the
Model Composer block library. Refer to Supported Simulink Blocks for a complete list.

To create a subsystem from within a model, add one or more blocks to the model canvas, select
the blocks, and turn the selected blocks into a subsystem:

1. Drag and drop blocks onto the model canvas in the Simulink Editor, as explained in Adding
Blocks to a Model.

2. Select one or more blocks, and right-click to use the Create Subsystem from Selection
command.

3. Name the subsystem, giving it the same name you want to assign to the generated output
application or IP.

4. Double-click the subsystem to open it in the Simulink Editor, and continue the design.

The Explorer bar and Model Browser in Simulink help you navigate your model:

• The Explorer bar lets you move up and down the hierarchy, or back and forth between
different views in the Simulink Editor.

• The Model Browser provides a view of the Model Hierarchy, and lets you select and open
different levels to quickly move through the hierarchy of the design.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 237Send Feedback

https://www.mathworks.com/help/simulink/gui/diagnostics-pane-data-validity.html
https://www.mathworks.com/help/simulink/gui/diagnostics-pane-data-validity.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=237

Importing C/C++ Code as Custom Blocks
Introduction
Model Composer lets you import C or C++ code to create new blocks that can be added to a
library for use in models along side other HLS Library blocks. This feature lets you build custom
block libraries for use in Model Composer.

TIP: The import function example in the product showcases most of the capabilities of importing C/C++
code using a series of small examples. Type xmcOpenExample('import_function')  in the
MATLAB command window to open the example.

Using the xmcImportFunction Command
Model Composer provides the xmcImportFunction command, for use from the MATLAB
command line, to let you specify functions defined in source and header files to import into
Model Composer, and create Model Composer blocks, or block library. The
xmcImportFunction command uses the following syntax:

xmcImportFunction('libName',{'funcNames'},'hdrFile',{'srcFiles'},
{'srchPaths'},'options')

Where:

• libName: A string that specifies the name of the Model Composer HLS library that the new
block is added to. The library can be new, and will be created, or can be an existing library.

• funcNames: Specifies a list (cell array) of one or more function names defined in the source
or header files to import as a Model Composer block. An empty set, {}, imports all functions
defined in the specified header file (hdrFile). For functions inside namespaces, full
namespace prefix needs to be given. For example, to import the function 'sinf' in
hls_math, the full function name 'hls::sinf' needs to be specified.

• hdrFile: A string that specifies a header file (.h) which contains the function declarations,
or definitions. This should be the full path to the header file if it is not residing inside the
current working directory. For example, to import a function from hls_math.h, you need to
specify the full path '$XILINX_VIVADO/include/hls_math.h'.

IMPORTANT! The function signature must be defined in the header file, and any Model Composer
(XMC) pragmas must be specified as part of the function signature in the header file.

• srcFiles: Specifies a list of one or more source files to search for the function definitions.
When used in a model, the header and source files, together with the main header file of the
model, headerFile, will be compiled into the shared library for simulation, and copied into
the Target Directory specified for output generation in the Model Composer Hub block, as
described in Adding the Model Composer Hub.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=238

• srchPaths: Specifies a list of one or more search paths for header and source files. An
empty set, {}, indicates no search path, in which case the code is looked for in the MATLAB
current folder. Use'$XILINX_VIVADO/include' to include the HLS header files.

In addition, the xmcImportFunction command has the following options, which can follow
the required arguments in any order:

• 'unlock': Unlock an existing library if it is locked. The xmcImportFunction command can
add blocks to an existing library, but it must be unlocked in order to do so.

• 'override': Overwrite an existing block with the same name in the specified library.

TIP: The help for xmcImportFunction  can be accessed from the MATLAB command line, using help
xmcImportFunction, and provides the preceding information.

As an example, the following simple.h header file defines the simple_add function, with two
double-precision floating point inputs and a pointer output. The function simply adds the two
inputs and returns the sum as the output.

void simple_add(const double in1, const double in2, double *out) {
 *out = in1 + in2;
}

To import the simple_add function as a block in a Model Composer HLS library you can enter
the following command at the MATLAB command prompt:

xmcImportFunction('SimpleLib',{'simple_add'},'simple.h',{},{})

Where:

• SimpleLib is the name of the Model Composer HLS library to add the block to.

• simple_add is the function name to import.

• simple.h is the header file to look in.

• No C source files or search paths are specified. In this case, the function definition must be
found in the specified header file, and only the MATLAB current folder will be searched for
the specified files.

TIP: Model composer will give you a warning if you attempt to import a block with the same function
name as a block that is already in the specified library.

When xmcImportFunction completes, the SimpleLib library model will open with the
simple_add block created as shown below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=239

Figure 180: simple_add Block

During simulation, the C/C++ code for the Library blocks will get compiled and a library file will
get created and loaded. The library file will be cached to speed up initializing simulations on
subsequent runs. You can change the source code underlying the library block without the need
to re-import the block, or re-create the library, although the cached library file will be updated if
you change the C/C++ source code.

However, if you change the function signature, or the parameters to the function, then you will
need to rerun the xmcImportFunction command to recreate the block. In this case, you will
also need to use the override option to overwrite the existing block definition in your library.

IMPORTANT! You must rerun the xmcImportFunction  command any time that you change the
interface to an imported function, or the associated XMC pragmas. In this case, you should delete the
block from your design and replace it with the newly generated block from the library. However, you can
change the function content without the need to run xmcImportFunction  again.

After the block symbol has been created, you can double-click on the symbol to see the
parameters of the imported block. You can quickly review the parameters as shown in the
following figure to ensure the function ports have been properly defined.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=240

Figure 181: simple_add Block Parameters

Importing C/C++ into Model Composer
While Model Composer lets you import C or C++ functions to create a library of blocks, it does
have specific requirements for the code to be properly recognized and processed. The function
source can be defined in either a header file (.h), or in a C or C++ source file (.c, .cpp), but the
header file must include the function signature.

You can import functions with function arguments that are real or complex types of scalar,
vectors, or matrices, as well as using all the data types supported by Model Composer HLS
Library, including fixed-point data types. Model Composer also lets you define functions as
templates, with template variables defined by input signals, or as customization parameters to be
specified when the block is added into the model or prior to simulating the model. Using function
templates in your code lets you create a Model Composer block that supports different
applications, and can increase the re-usability of your block library. Refer to Defining Blocks
Using Function Templates for more information.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=241

IMPORTANT! The function signature must be defined in the header file, and any Model Composer (XMC)
pragmas must be specified as part of the function signature in the header file.

The xmcImportFunction command supports C/C++ function using std::complex<T> or
hls::x_complex<T> types. For more details, see the explanation in Using Complex Types.

If the input of an imported function is a 1-D array, the tool can perform some automatic
mappings between the input signal and the function argument. For example, if the function
argument is a[10], then the connected signal in Model Composer can be either a vector of size
10, or a row or column matrix of size 1x10 or 10x1.

However, if all of the inputs and outputs of an imported function are scalar arguments, you can
connect a vector signal, or a matrix signal to the input. In this case, the imported function
processes each value of the vector, or matrix on the input signal as a separate value, and will
combine those values into the vector, or matrix on the output signal. For example, a vector of
size 10 connected to a scalar input, will have each element of the vector processed, and then
returned to a vector of size 10 on the output signal.

You can import functions that do not have any inputs, and instead only generate outputs. This is
known as a source block, and can have an output type of scalar, vector, complex, or matrix. You
can also import source blocks with multiple outputs. The following example function has no input
port, and y is the output:

#include <stdint.h>
#include <ap_fixed.h>

#pragma XMC OUTPORT y
#pragma XMC PARAMETER Limit
template <typename T>
void counter(T &y, int16_t Limit)
{
 static T count = 0;

 count++;

 if (count > Limit)
 count =0;
 y = count;
}

TIP: Because source blocks have no inputs, the SampleTime  parameter is automatically added when the
block is created with xmcImportFunction  command, as shown in the Function declaration in the
following image. The default value is -1 which means the sample time is inherited from the model. You can
also explicitly specify the sample time by customizing the block when it is added to a model, as shown
below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=242

Figure 182: Setting Sample Time for a Source Block

The direction of ports for the function arguments can be determined automatically by the
xmcImportFunction command, or manually specified by pragma with the function signature
in the header file.

• Automatically determining input and output ports:

○ The return value of the function is always defined as an output, unless the return value is
void.

○ A formal function argument declared with the const qualifier is defined as an input.

○ An argument declared with a reference, a pointer type, or an array type without a const
qualifier is defined as an output.

○ Other arguments are defined as inputs by default (e.g., scalar read-by-value).

• Manually defining input and output ports:

○ You can specify which function arguments are defined as inputs and outputs by adding the
INPORT and OUTPORT pragmas into the header file immediately before the function
declaration.

○ #pragma XMC INPORT <parameter_name> [, <parameter_name>...]

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=243

○ #pragma XMC OUTPORT <parameter_name> [, <parameter_name>...]

In the following example in is automatically defined as an input due to the presence of the
const qualifier, and out is defined as an output. The imported block will also have a second
output due to the integer return value of the function.

int func(const int in, int &out);

In the following function in is automatically defined as an input, and out as an output, however,
there is no return value.

void func(const in[512], int out[512]);

In the following example the ports are manually identified using pragmas that have been added
to the source code right before the function declaration. This is the only modification to the
original C++ code needed to import the function into Model Composer. In this example the
pragmas specify which parameter is the input to the block and which parameter is the output of
the block.

#pragma XMC INPORT din
#pragma XMC OUTPORT dout
void fir_sym (ap_fixed<17,3,AP_TRN,AP_WRAP> din[100],
 ap_fixed<17,3,AP_TRN,AP_WRAP> dout[100]);

TIP: ap_fixed  specifies a fixed-point number compatible with Vitis HLS.

Manually adding pragmas to the function signature in the header file to define the input and
output parameters of the function is useful when your code does not use the const qualifier,
and adding the const qualifier can require extensive editing of the source code when there is a
hierarchy of functions. It also makes the designation of the inputs and outputs explicit in the
code, which can make the relationship to the imported block more clear.

Some final things to consider when writing C or C++ code for importing into Model Composer:

• You should develop your source code to be portable between 32 bit and 64 bit architectures.

• Your source code can use Vitis HLS pragmas for resource and performance optimization, and
Model Composer uses those pragmas but does not modify or add to them.

• If your code has static variables, the static variable will be shared across all instances of the
blocks that import that function. If you do not want to share that variable across all instances
you should copy and rename the function with the static variable and import a new library
block using the xmcImportFunction command.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=244

• If you use C (.c) source files to model the library function (as opposed to C++ (.cpp) source
files), the .h header file must include an extern "C" declaration for the downstream tools
(such as Vitis HLS) to work properly. An example of how to declare the extern "C" in the
header files is as follows:

// c_function.h:
#ifdef __cplusplus
extern 'C' {
#endif
void c_function(int in, int &out);
#ifdef __cplusplus
}
#endif

Using Complex Types

C/C++ code for Vitis HLS can use std::complex<T> or hls::x_complex<T> to model
complex signals for xmcImportFunction blocks. However, Vitis HLS does not support streaming
std::complex<T> variables unless <T> is ap_fixed<..> or ap_int<..>. Large array
variables that are non-streaming can use significant hardware resoources.

The code generated by Model Composer uses hls::x_complex for representing complex
signals. If your imported C/C++ block function is modeled with std::complex, when
generating the output code Model Composer will automatically insert hls::x_complex-to-
std::complex adapters to convert the complex types for the block ports.

Importing functions that use std::complex is still supported. However, if the imported
function has non-scalar argument of data type std::complex<T> a warning message will be
issued during code generation that indicates that rewriting the function using hls::x_complex
will improve the quality of results and allows streaming of complex variables.

The C/C++ code must also include the required header file for the complex type declaration. For
the hls::x_complex type, the xmcImportFunction command must also include
‘$XILINX_VIVADO/include’ search path for the hls_x_complex.h header file. For
example, the following imports the complex_mult function, and specifies the needed include
path:

xmcImportFunction('my_lib',{'complex_mult'}, 'complex_mult.h', {},
{'$XILINX_VIVADO/include'});

Example Functions Using Complex Types

#include "hls_x_complex.h"
hls::x_complex<double>
complex_mult(hls::x_complex<double> in1, hls::x_complex<double> in2)
{ return in1 * in2; }

#include <complex>
std::complex<double>
complex_mult2(std::complex<double> in1, std::complex<double> in2)
{ return in1 * in2; }

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=245

#include <complex>
void
complex_mult3(std::complex<double> in1, std::complex<double> in2,
std::complex<double> &out1)
{ out1.real(in1.real() * in2.real() - in1.imag() * in2.imag());
 out1.imag(in1.real() * in2.imag() + in1.imag() * in2.real()); }

Defining Blocks Using Function Templates
IMPORTANT! To use template syntax, your function signature and definition should both be specified in a
header file when running xmcImportFunction.

While it is common to write functions that accept only a predetermined data type, such as
int32, in some cases you may want to create a block that accepts inputs of different sizes, or
supports different data types, or create a block that accepts signals with different fixed-point
lengths and fractional lengths. To do this you can use a function template that lets you create a
block that accepts a variable signal size, data type, or data dimensions.

You can define blocks using function templates, as shown in the following example:

#include <stdint.h>
template <int ROWS, int COLS>
void simple_matrix_add(const int16_t in1[ROWS][COLS],
 const int16_t in2[ROWS][COLS],
 int16_t out[ROWS][COLS]) {
 for (int i = 0; i<ROWS; i++) {
 for (int j = 0; j<COLS; j++) {
 out[i][j] = in1[i][j] + in2[i][j];
 }
 }
}

The example uses the template parameters ROWS and COLS. The actual dimensions of the input
and output arrays, in1[ROWS][COLS] for instance, are determined at simulation time by the
dimensions of the input signals to the block. ROWS and COLS are template parameters used to
define the dimensions of the function arguments, and also used in the body of the function,
i<ROWS for example.

Use the command below to import the function into Model Composer:

xmcImportFunction('SimpleLib',{'simple_matrix_add'},...
'template_example.h',{},{},'unlock')

TIP: In the example above the ellipsis (...) is used to indicate a continuation of the command on the next
line. Refer to Continue Long Statements on Multiple Lines in the MATLAB documentation for more
information.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 246Send Feedback

https://www.mathworks.com/help/matlab/matlab_prog/continue-long-statements-on-multiple-lines.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=246

You can perform simple arithmetic operations using template parameters. For example, the
following code multiplies the ROWS and COLS of the input matrix to define the output, as
shown in the figure below.

#include <stdint.h>
#pragma XMC INPORT in
#pragma XMC OUTPORT out
template<int ROWS,int COLS>
void columnize(const int16_t in[ROWS][COLS], int16_t out[ROWS*COLS]) {
 for (int i = 0; i<ROWS; i++) {
 for (int j = 0; j<COLS; j++) {
 out[i*COLS+j] = in[i][j];
 }
 }
}

Figure 183: Columnize Function

Other simple supported operations include +, -, *, /, %, <<, and >>, using both the template
parameters and integer constants. For example:

template<int M, int N>
void func(const int in[M][N], int out[M*2][M*N]);

template<int ROWS, int COLS>
void func(array[2 * (ROWS + 1) + COLS + 3]);

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=247

You can also define a function template that uses a fixed-point data type of variable word length
and integer length using function templates, as shown in the following example:

#include <stdint.h>
#include <ap_fixed.h>
#pragma XMC OUTPORT out
template <int WordLen, int IntLen>
void fixed_add(const ap_fixed<WordLen,IntLen> in1,
 const ap_fixed<WordLen,IntLen> in2,
 ap_fixed<WordLen+1,IntLen> &out) {
 out = in1+in2;
}

The example above uses the fixed point notations from Vitis HLS, which specifies the word
length and the integer length. In Model Composer, as described in Working with Data Types, you
specify the word length and the fractional length. This requires you to use some care in
connecting fixed point data types in Model Composer to the imported fixed_add block. For
example, in the function above if WordLen is 16 and IntLen is 11, in Model Composer fixed
point data type the word length is 16, and the fractional length is 5. For more information on
fixed-point notation in Vitis HLS, refer to the Vitis High-Level Synthesis User Guide (UG1399).

TIP: As shown in the example above, simple arithmetic operations are also supported in the fixed point
template parameter.

To import the fixed_add function and create a block in Model Composer, use the following
command:

xmcImportFunction('SimpleLib',{'fixed_add'},fixed_example.h',{},...
{'$XILINX_VIVADO/include'})

Function Templates for Data Types

Function templates for data types are functions that can operate with generic data types. This
lets you create library functions that can be adapted to support multiple data types without
needing to replicate the code or block in the Model Composer HLS block library to support each
type. The xmcImportFunction command in Model Composer will create generic library blocks
which the user of the block can connect to signals of any data types supported by the block.

The data type (typename) template parameters are resolved at simulation run time, when the
code and simulation wrapper are generated. The parameters are replaced during simulation by
the actual data types that are specified by the signals connecting to the library block. The
resolved data types can only be the types that Model Composer supports as discussed in
Working with Data Types.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 248Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=248

To import a block that accepts multiple data types, you use a function template. For example:

template <typename T>
T max(T x, T y) {
 return (x > y) ? x : y;
}

Or, in the case of a function with complex function arguments, the example would appear as as
follows:

#include <complex>
template <typename T>
void mult_by_two(std::complex< T > x, std::complex< T > *y)
{
 *Out = In1 * 2;
}

The determination of the type is made by Model Composer during simulation. The typename (or
class) parameters are propagated from input signals on the block, or are customization
parameters that must be defined by the user at simulation run time.

IMPORTANT! The data type for a function or class cannot be propagated from an output.

For example, the following function template specifies the parameter ‘T’ as a customization
parameter. Because it is not associated with either input argument, 'x' or 'y', it must be specified
by the user when the block is added to the model:

template <typename T>
T min(int x, int y) {
 return (x < y) ? x : y;
}

The Block Parameters dialog box for the generated Library Function block has an edit field to
enter the template argument as shown in the following figure.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=249

Figure 184: Library Function Block Parameters

In the template syntax, the data type template parameters for function or class can be specified
with other template parameters. The order of specification is not important. For example:

template <typename T1, int ROWS, int COLS, int W, int I>
T1 func(T1 x[ROW][COLS], ap_fixed<W, I> &y) {
...
}

IMPORTANT! In the example above, notice that the 'T1' template parameter is used to specify both the
function return and the data type of the input 'x'. In this case, because it is a single template parameter,
both arguments will resolve to the same data type that is propagated from the input signal to the block.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=250

SUPPORTED_TYPES/UNSUPPORTED_TYPES Pragma

When defining a data type (typename) template parameter (or class), you can also define the
accepted data types for the variable by using either the SUPPORTED_TYPES or
UNSUPPORTED_TYPES pragma as part of the function signature. This is shown in the following
code example.

#pragma XMC INPORT x
#pragma XMC INPORT y
#pragma XMC SUPPORTED_TYPES T: int8, int16, int32, double, single, half
template <class T>
T max(T x, T y) {
 return (x > y) ? x : y;
}

#pragma XMC UNSUPPORTED_TYPES T: boolean
#pragma XMC INPORT x, y
template <typename T>
T min(T x, T y) {
 return (x < y) ? x : y;
}

Model Composer supports an extensive list of data types as discussed in Working with Data
Types. To specify which of these data types the template parameter supports, you can either
include the list of supported types, or the unsupported types. The SUPPORTED_TYPES and
UNSUPPORTED_TYPES pragmas are simply two opposite views of the same thing:

• SUPPORTED_TYPES: Specifies a template parameter name (param), and the list of data types
that are accepted by that parameter. This implies the exclusion of all types not listed.

#pragma XMC SUPPORTED_TYPES param: type1, type2, ...

• UNSUPPORTED_TYPES: Specifies a template parameter name (param), and the list of data
types that are not accepted by that parameter. This implies the inclusion of all types not listed.

#pragma XMC UNSUPPORTED_TYPES param: type1, type2, ...

With the SUPPORTED_TYPES or UNSUPPORTED_TYPES pragma in place, Model Composer will
check the type of input signal connected to the block to ensure that the data type is supported.
Without the use of one of these pragmas, the data type template parameter will accept any of
the data types supported by Model Composer.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=251

Function Template Specialization and Overloading

Specialization is supported for function templates in the xmcImportFunction command.
Model Composer will create the library block for the generic function template, supporting
multiple data types, but the block will also include any specialized functions to be used when
connected to input signals with matching data types. Both the generic function, and any
specialization functions are compiled into the block DLL. For example:

template <typename T>
T min(T x, T y) {
 return (x < y) ? x : y;
}

template <>
bool min<bool>(bool x, bool y) {
...
}

In this case, Model Composer will call the specialized boolean form of the min function when the
block is connected to boolean signals.

Overloading of a function with the same number of input/output arguments is also supported by
Model Composer. For example, the following defines two forms of the function:

int func(int x);
float func(float x);

You can also overload a function template as shown below:

template <typename T>
int func(int x, T y);

template <typename T>
float func(float x, T y);

TIP: Overloading functions with different numbers of input/output arguments or different argument
dimensions is not supported, and must be defined as separate functions.

Defining Customization Parameters

Template parameters can be used to define the port array sizing and data type, and the
parameters are defined by the input signals on the block. Additional customization parameters
can also be defined, which are not defined by input signals, and thus must be defined by the user
using the Block Parameter dialog box sometime before simulation run time.

There are two methods to define customization parameters for a library function block:

• Using C/C++ function templates.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=252

• Assigning the Model Composer (XMC) PARAMETER pragma to a function argument, defining
it as not connecting to an input or output of the block, but rather as a customization
parameter.

There are pros and cons to both methods, which are discussed below.

Function Templates

The first method, defines a function template that uses template parameters for customization. A
template parameter defines a customization parameter in Model Composer if its value is not
determined by an input signal, or derived by the function as an output. You can use
customization parameters to define the values, data types, or data dimensions of output ports, or
for parameters in use in the function body.

IMPORTANT! The template function signature and function definition must be defined in the C/C++
header file.

The template parameter for the function argument is defined using standard function template
syntax, but the template parameter is not assigned to an input argument in the function
signature. When the block is instantiated into a model, Model Composer identifies template
parameters whose values are not determined by input signals, and lets the user define the values
for those customization parameters. Values can be defined for customization parameters in the
model any time prior to simulation.

For function templates, the customization parameters can only be integer values to define the
size or dimensions of a data type, or can only be scalar variables with definable data types. Model
Composer defines a default value of 0 for integer parameters, and 'int32' for data type, or
typename parameters.

In the function template example below, the template parameters ‘M’ and 'B' define
customization parameters because the parameter values are not inherited from the input signal
to the block. In this case, the parameters need to be customized by the user when the block is
added to the model, or any time before simulation.

template <int M, int B>
double func1(double x) {
 return x * M + B;
}

Customization parameters are displayed in the Block Parameters dialog box for the imported
block as shown for the func1 function below. Double click on a block in the model to open the
Block Parameters dialog box, then enter the value for any editable parameters, such as 'M' and
'B' below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=253

Figure 185: Entering Parameter Values

Optionally, the user can also specify the name of a MATLAB workspace variable in the text field
for the customization parameter, and have the value determined by Model Composer through
the MATLAB variable. For example, the variable param1 is defined in the MATLAB workspace,
and used to define the value for 'M'.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=254

Figure 186: Defining Parameters using Workspace Variables

PARAMETER Pragma

The second method defines function arguments as customization parameters through the use of
the Model Composer PARAMETER pragma.

To declare that a function argument is a customization parameter, you must add the PARAMETER
pragma with the parameter name, or list of names, before the function signature in the header
file. You can specify multiple parameters with one pragma, or have separate pragmas for each, as
shown below.

#pragma XMC PARAMETER <name1>, <name2>
#pragma XMC PARAMETER <name3>
function declaration(<name1>, <name2>, <name3>)

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=255

When a function argument is declared a customization parameter by pragma, the
xmcImportFunction command will not create an input or output port on the block for that
argument. It will be defined for use inside the function body only. When the block is added to a
model, a customization field is added to the Block Parameter dialog box, and the user of the
block can define values for the customization parameters.

Using the PARAMETER pragma on a function argument that is already driven by the input signal
will be flagged as an error or a warning. In this case, the signal input propagation through the
function will have higher precedence than the customization parameter.

While the function templates method only supports scalar and integer type customization
parameters, the PARAMETER pragma supports integer, floating point or fixed point data type for
the parameters. The customization parameters also can be scalar, vector or a two-dimensional
matrix. In addition, while the function template defines default values of 0 for integer types, and
int32 for the data type, the PARAMETER pragma lets you define default value for the
parameters. Model Composers defines default values of 0 for all parameters that do not have
user-defined defaults.

The example below uses the Model Composer PARAMETER pragma to define the customization
parameters 'M' and 'B'.

#pragma XMC PARAMETER M, B
double func2(double x, double M = 1.2, double B = 3) {
return x * M + B;
}

The 'M' and 'B' customization parameters also have default values assigned: M=1.2, B=3. The
default values for the customization parameters are assigned to the arguments in the function
signature, and are displayed in the Block Parameters dialog box when opened for edit, as shown
below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=256

Figure 187: Customization Parameters with Defaults

IMPORTANT! If you define default values for the customization parameters of any argument, the C/C++
language requires that all arguments following that one must also have default values assigned, because
the function can be called without arguments having default values. Therefore, you should add all
customization parameters with default values at the end of the function argument list.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=257

Vector and Matrix Customization Parameters

The PARAMETER pragma method can also be used to specify customization parameters with
vector and matrix dimensions, or values. In the following example the coef vector is defined by
the pragma as a customization parameter:

#pragma XMC PARAMETER coef
#pragma XMC INPORT din
#pragma XMC OUTPORT dout
#pragma XMC SUPPORTS_STREAMING
void FIR(ap_fixed<17, 3> din[100], ap_fixed<17, 3> dout[100],
ap_fixed<16, 2> coef[52]);

The constant array values of the customization parameter are entered in MATLAB expression
format. Note that commas are optional:

• Vector parameter: [val1, val2, val3, ...]

• Matrix parameter (row-major order): [val11, val12, val13, ...; val21, val22,
val23, ...; ...]

Interface Output Types and Sizes

Customization parameters can also be used to directly set the data types and dimension size for
output ports whose values are not determined by inputs to the function. In the function below,
the template variables define the word length and fractional length of the ap_fixed data type
and the array size.

template <typename T1, int N1, int W2, int I2, int N2>
void func(const T1 in[N1], ap_fixed<W2, I2> out[N2]) {
...
}

The template variables 'W2, 'I2'' and 'N2' define customization parameters because the values
must be set by the user rather than determined from the input arguments. However, Model
Composer recognizes that the template variables 'T1' and 'N1' are specified on the input port,
and so the data type (typename) and the size of the input vector are not customization
parameters, but rather get defined by the input signal on the block.

To set the data type for output ports, or arguments used in the body of the function, the
typename specified must be one of the Model Composer supported data types, including the
signed or unsigned fixed data types.

Table 11: Model Composer Supported Data Types

Supported Typenames
'int8'

'uint8'

'int16'

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=258

Table 11: Model Composer Supported Data Types
(cont'd)

Supported Typenames
'uint16'

'int32'

'uint32'

'double'

'single'

'x_half'

'boolean'

'x_sfix<n1>_En<n2>'

'x_ufix<n1>_En<n2>'

In the example function below, while the typename for 'T1' is determined by the input signal,
you can set the typename for 'T2' in the Block Parameters dialog box on the mask, when the
block is added to a model, or before simulation run time:

template <typename T1, int N1, typename T2, int N2>
void func(const T1 in[N1], T2 out[N2]) {
...
}

Pragmas for xmcImportFunction

XMC SUPPORTS_STREAMING

The Model Composer SUPPORTS_STREAMING pragma indicates that the array parameters of a
function support streaming data. This means that each element of the array is accessed once in a
strict sequential order and indicates to Model Composer to optimize the design for streaming
data. There can be no random access to the non-scalar arguments of a function to which the
SUPPORTS_STREAMING pragma is applied.

The following example illustrates the difference between random access and sequential access.
The transform_matrix output array of the create_transform_matrix function is
addressed in a random order. It accesses the last row of the transform_matrix first, followed
by the first and second row. This prevents the block from supporting streaming data.

void create_transform_matrix(const float angle, const float center_x,
 const float center_y, float transform_matrix[3]
[3]) {
 float a = hls::cosf(angle);
 float b = hls::sinf(angle);

 transform_matrix[2][0] = 0;
 transform_matrix[2][1] = 0;
 transform_matrix[2][2] = 0;

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=259

 transform_matrix[0][0] = a;
 transform_matrix[0][1] = b;
 transform_matrix[0][2] = (1-a)*center_x-b*center_y;

 transform_matrix[1][0] = -b;
 transform_matrix[1][1] = a;
 transform_matrix[1][2] = b*center_x +(1-a)*center_y;
}

To change this function to support streaming data, it can be modified as depicted below to
address the transform_matrix output array in a sequential manner:

#pragma XMC SUPPORTS_STREAMING
void create_transform_matrix(const float angle, const float center_x,
 const float center_y, float transform_matrix[3]
[3]) {
 float a = hls::cosf(angle);
 float b = hls::sinf(angle);

 transform_matrix[0][0] = a;
 transform_matrix[0][1] = b;
 transform_matrix[0][2] = (1-a)*center_x-b*center_y;

 transform_matrix[1][0] = -b;
 transform_matrix[1][1] = a;
 transform_matrix[1][2] = b*center_x +(1-a)*center_y;

 transform_matrix[2][0] = 0;
 transform_matrix[2][1] = 0;
 transform_matrix[2][2] = 0;
}

As shown in the preceding example, to specify that an imported function supports streaming,
simply add the SUPPORTS_STREAMING pragma in the C or C++ header file before the function
declaration:

#pragma XMC SUPPORTS_STREAMING

If the function has array arguments that are accessed sequentially, but SUPPORTS_STREAMING
is not specified, then a subsystem using that block will not be implemented in a streaming
architecture. This means the performance of the function will not be optimized.

IMPORTANT! If your function accesses the array arguments in random order, you must not specify the
SUPPORTS_STREAMING pragma or an error will be returned when generating output or verifying your
design.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=260

The following is an example of a function that accesses the array arguments in a strictly
sequential order, supporting the streaming of data. This function flips the rows of an input image
horizontally. The function accesses the input image in a sequential order and buffers two rows of
the input image in a circular buffer. Once two full rows are buffered, the function writes the
buffer content to the function argument in a sequential order. As such, this function supports
streaming, and uses the SUPPORTS_STREAMING pragma to specify it.

#ifndef _MY_FUNCS
#define _MY_FUNCS

#include <stdint.h>

#pragma XMC INPORT in1
#pragma XMC OUTPORT out1
#pragma XMC SUPPORTS_STREAMING
#pragma XMC BUFFER_DEPTH 4+2*WIDTH
// This function reverses each of the rows of the input image.
template<int WIDTH, int HEIGHT>
void
flip(uint8_t in1[HEIGHT][WIDTH],
 uint8_t out1[HEIGHT][WIDTH])
{
#pragma HLS dataflow

 uint8_t buf[2][WIDTH];

 int readBuf = 0;
 int writeBuf = 0;
 for (int row = 0; row < HEIGHT + 2; ++row) {
 for (int col = 0; col < WIDTH; ++col) {
#pragma HLS DEPENDENCE array inter false
#pragma HLS PIPELINE II=1
 if (row < HEIGHT) {
 buf[writeBuf][col] = in1[row][col];
 if (col == WIDTH-1) {
 ++writeBuf;
 writeBuf = (3 == writeBuf) ? 0 : writeBuf;
 }
 }
 if (row > 1) {
 out1[row - 2][col] = buf[readBuf][WIDTH- 1 - col];
 if (col == WIDTH-1) {
 ++readBuf;
 readBuf = (3 == readBuf) ? 0 : readBuf;
 }
 }
 }
 }
}
#endif

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=261

XMC BUFFER_DEPTH

The Model Composer BUFFER_DEPTH pragma provides information for properly sizing the
buffers that connect the blocks in an implementation. These buffers are implemented as FIFOs in
hardware. By default, Model Composer sets the depths of these buffers to 1. However, if your
design has re-convergent paths (two paths converging into the same node) and the processing of
data from the blocks of one path are not in lockstep with the processing of data from the other
path, then a deadlock can occur. To avoid the deadlock the depth of one or more of the buffers
on the paths can be increased to store the data. The following example illustrates this concept.

In the following diagram the Sum block consumes both the output signal of the flip block (red
path), and the output of the Shift Right block (blue path). The flip block has been created
with the xmcImportFunction command, and its source code is shown in the flip function
previously described.

Figure 188: Buffer Depth

From the code for the flip block, you can see that the block needs to read 2 full rows before
producing the first output. If the BUFFER_DEPTH pragma is not specified for the block, Model
Composer sets the buffer sizes to 1 for the signals in the diagram. This results in deadlock,
because the flip block reads 257 pixels from the input FIFO before producing the first output.
However, by default, the parallel blue path feeding the second input of Sum has only enough
storage for 1 pixel.

TIP: Vitis HLS provides some capability to detect deadlocks during C/RTL co-simulation. In case a
deadlock is detected, the tool prints out messages showing which FIFOs are involved in the deadlock, to
help identify FIFOs that may require a BUFFER_DEPTH of more than 1.

To change the default BUFFER_DEPTH, as shown in the flip function, place the pragma in the
header file before the function declaration:

#pragma XMC BUFFER_DEPTH <depth>

Where <depth> specifies the buffer depth, and can be specified as a value or an expression.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=262

By specifying #pragma XMC BUFFER_DEPTH 4+2*WIDTH in the flip function, Model
Composer can determine that there is an imbalance in processing among the re-convergent
paths, and address this imbalance by setting the buffer depth for the second input to the Sum
block (blue path) to match the buffer depth of the flip block.

TIP: Determining the minimal buffer depth may require a bit of trial and error because it also depends on
the timing of the reads and writes into the FIFOs in the RTL code. In the flip  function example, 256 (or
2*WIDTH) was not sufficient BUFFER_DEPTH, but 260 (or 4+2*WIDTH) prevented the deadlock.

XMC THROUGHPUT_FACTOR

The Model Composer THROUGHPUT_FACTOR pragma provides some control over the
throughput of an xmcImportFunction block. You can add the THROUGHPUT_FACTOR pragma
to your function header file, along with the SUPPORTS_STREAMING pragma as shown in the
following example:

#pragma XMC THROUGHPUT_FACTOR TF_param: 1,2,4
#pragma XMC SUPPORTS_STREAMING
template<int ROWS, int COLS, int TF_param>
void DilationWrap(const uint8_t src[ROWS][COLS], uint8_t dst[ROWS][COLS])

The syntax of the pragma as shown in the prior example is:

#pragma XMC THROUGHPUT_FACTOR TF_param: 1,2,4

Where:

• The TF_param must be an int type template parameter, as is in the example above.

• It is optional, though recommended, to specify any specific throughput factors that are
supported by the function. In the example above, 1,2,4 specifies the supported throughput
factors in the pragma, expressed as positive integers, and must include the value 1. If you do
not explicitly specify the throughput factors, the TF_param is assumed to be valid for any
positive throughput factor up to the upper limit of 16 that is supported by Model Composer.

As discussed in Controlling the Throughput of the Implementation, you specify the throughput
factor for the model in the Model Composer Hub block. You can specify a throughput factor for
the Hub block that divides evenly into one of the THROUGHPUT_FACTOR values on the
xmcImportFunction block.

IMPORTANT! If the throughput factor of the Hub block does not match, or does not divide evenly into the
THROUGHPUT_FACTOR  specified by the xmcImportFunction  block, then the throughput is reduced
to 1 for the block function.

Please note the following requirements:

• THROUGHPUT_FACTOR pragma must be used on Template functions.

• THROUGHPUT_FACTOR pragma must be used with SUPPORTS_STREAMING pragma.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=263

• Only one THROUGHPUT_FACTOR pragma can be specified for an xmcImportFunction
block.

• The block function will be called with actual arguments that have cyclic ARRAY_RESHAPE
directives with factor=TF (see example below). For more information on the ARRAY_RESHAPE
pragma, refer to HLS Pragmas in the Vitis Unified Software Platform Documentation (UG1416).

• The read accesses from a non-scalar input argument of the function should be compliant with
the requirements for streaming, and Vitis HLS should be able to combine groups of TF reads
into 1 read of the reshaped array.

• The write accesses into a non-scalar output argument of the function should be compliant
with the requirements for streaming, and Vitis HLS should be able to combine groups of TF
writes into 1 write of the reshaped array.

The following is an example function specifying both SUPPORTS_STREAMING and
THROUGHPUT_FACTOR pragmas:

#include <stdint.h>

#pragma XMC THROUGHPUT_FACTOR TF: 1, 2, 4, 8, 16
#pragma XMC SUPPORTS_STREAMING
template<int TF>
void mac(const int32_t In1[240], const int32_t In2[240], const int32_t
In3[240],
 int32_t Out1 [240])
{
 #pragma HLS ARRAY_RESHAPE variable=In1 cyclic factor=TF
 #pragma HLS ARRAY_RESHAPE variable=In2 cyclic factor=TF
 #pragma HLS ARRAY_RESHAPE variable=In3 cyclic factor=TF
 #pragma HLS ARRAY_RESHAPE variable=Out1 cyclic factor=TF

 for (uint32_t k0 = 0; k0 < 240 / TF; ++k0) {
 #pragma HLS pipeline II=1
 int32_t Product_in2m[TF];
 int32_t Sum_in2m[TF];
 int32_t Product_in1m[TF];
 int32_t Sum_outm[TF];
 for (uint32_t k1 = 0; k1 < TF; ++k1) {
 Product_in2m[k1] = In2[(k0 * TF + k1)];
 }
 for (uint32_t k1 = 0; k1 < TF; ++k1) {
 Sum_in2m[k1] = In3[(k0 * TF + k1)];
 }
 for (uint32_t k1 = 0; k1 < TF; ++k1) {
 Product_in1m[k1] = In1[(k0 * TF + k1)];
 }
 for (uint32_t k1 = 0; k1 < TF; ++k1) {
 int32_t Product_in2s;
 int32_t Sum_in2s;
 int32_t Product_in1s;
 int32_t Product_outs;
 int32_t Sum_outs;
 Product_in2s = Product_in2m[k1];
 Sum_in2s = Sum_in2m[k1];
 Product_in1s = Product_in1m[k1];
 Product_outs = Product_in1s * Product_in2s;
 Sum_outs = Product_outs + Sum_in2s;
 Sum_outm[k1] = Sum_outs;

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 264Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2021.1;d=hls_pragmas.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=264

 }
 for (uint32_t k1 = 0; k1 < TF; ++k1) {
 Out1[(k0 * TF + k1)] = Sum_outm[k1];
 }
 }
}

Adding Your Library to Library Browser
To use the imported blocks in your library, you can simply open the Simulink model of your
library, and copy blocks into a new Model Composer model. However, if you want to see your
library listed in the Library Browser, and be able to drag and drop blocks from the library into new
models, after running the xmcImportFunction command you must prepare your library using
the following process.

1. Enable Library Browser parameter.

2. Save the library.

3. Create slblocks.m script for the library.

4. Add path to MATLAB, or add library to MATLAB path.

5. Refresh Library Browser.

TIP: Setting up the library using this process is only required for newly created libraries, rather than existing
libraries which have already been setup.

To enable the library to be available in the Library Browser, you must turn on the
EnableLBRepository parameter for the library. After importing a block into a new library
using xmcImportFunction, with the library open, you must use the following command from
the MATLAB command line prior to saving your library:

set_param(gcs,'EnableLBRepository','on');

This parameter identifies the library as belonging to the Library Browser. However, that is just the
first step. Save the library by using the File → Save command from the main menu, or by clicking

on the button in the toolbar.

Libraries in the Library Browser also require the presence of a script in the same directory as the
library model, called slblocks.m, that defines the metadata associated with the library. You can
create this script by copying an existing script from another library, or copying it from the
MATLAB installation, or by editing the following text and saving it as slblocks.m:

function blkStruct = slblocks
 % This function adds the library to the Library Browser
 % and caches it in the browser repository

 % Specify the name of the library

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=265

 Browser.Library = 'newlib';
 % Specify a name to display in the library Browser
 Browser.Name = 'New Library';

 blkStruct.Browser = Browser;

Notice the Browser.Library specifies the name of the library model minus the .slx file
extension, and Browser.Name specifies the display name that will appear in Library Browser.

Note: Each library should appear in a separate directory, with the <library>.slx file and the
slblocks.m script for that library.

After creating the library and the slblocks.m script, you need to either add the library location
to the MATLAB path so that MATLAB can find it, or copy the library to a folder that is already on
the MATLAB path. You can type path at the MATLAB command prompt to see the current path
that MATLAB uses. You can also add the library directory to the MATLAB path using the
following commands:

addpath ('library_folder')
savepath

Where:

• 'library_folder'

• savepath is a string that saves the current search path to pathdef.m.

TIP: To remove a folder from the MATLAB path you can use the following command sequence:

rmpath ('library_folder')
savepath

Finally, to view the new library in the Library Browser, from the left side of the Library Browser
window right-click and select the Refresh Library Browser command. This will load the library
into the tool. You should now be able to view the imported blocks and drag and drop them into
your models.

Debugging Imported Blocks
Model Composer provides the ability to debug C/C++ code that has been imported as a block
using the xmcImportFunction command, while simulating the entire design in Simulink®. In
this case, the xmcImportFunctionSettings command can be used to set the debugging
tool.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=266

This feature lets you build the C/C++ function with debug information, and load it into Simulink
for simulation. Once loaded, you can step into the C/C++ code of a specific imported block, and
debug the function. The debugging environment lets you set debug break points in the C/C++
code, step through, and observe the intermediate results to verify the function in the context of
the simulation. Debugging C/C++ code during Simulink simulation provides a natural flow. You
can set desired input stimulus in Simulink, and observe the effect stepping through the code.

The debug flow in Model Composer uses the following steps:

1. Specify the debug tool using the xmcImportFunctionSettings command.

2. Launch the debugging tool.

3. Add a breakpoint in the imported function.

4. Attach to the MATLAB® process.

5. Start Simulink simulation.

6. Debug the imported function during simulation.

Enable Debug Mode

Debugging the C/C++ function requires the simulation model to be built in the debug mode,
instead of being built for release. You will use the xmcImportFunctionSettings command
to configure the build mode prior to launching simulation. To enable the debug build, use the
following command:

xmcImportFunctionSettings('build', 'debug')

Refer to xmcImportFunctionSettings Command Syntax for more information on the command
options. Enabling debug mode in Windows operating system causes Model Composer to return
the following messages in the MATLAB® Command Window:

Imported C/C++ code will be built with MinGW compiler. You can use gdb to
debug your C/C++ code.
MATLAB process ID is 4656.
You can also get the process ID by typing "feature getpid" in the MATLAB
command window.

The information returned above can be used to launch the default debug tool, and connect to the
MATLAB process, as described in the following sections.

TIP: You can restore the release build environment, using the 'release' value of the 'build' option:

xmcImportFunctionSettings('build','release')

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=267

Launch the Debug Tool

After enabling the debug build mode, the xmcImportFunctionSettings command returns a
link to the suggested debugging tool.

A third-party debugger is required for debugging with Model Composer. The default debugger is
GDB for both the Linux and Windows operating systems.

Setting a Breakpoint for the Imported Function

When the debugger is launched, you can set a breakpoint for the C/C++ imported function in the
current model. This will break, or pause the Simulink simulation at the point it enters the
imported function. This lets you perform further debugging actions, such as stepping through the
function, printing variable values, or listing lines of code. Refer to the documentation for your
debugging tool for more information on specific commands, and debugging techniques.

TIP: The following commands are provided for GDB, as it is the default debugger for Model Composer.

Setting a breakpoint uses the function name of the imported function:

(gdb) break <function_name>

Because simulation has not yet started, GDB will respond that no symbol table is loaded, and
indicate that you can use the "file" command to specify break points. This simply means that you
can also specify breakpoints based on the source file for the imported C/C++ function, and line
number, specified as follows:

(gdb) break <file name>:<line num>

For example: break func3_d.h:10

IMPORTANT! Blocks created from function templates, as described in Defining Blocks Using Function
Templates, require the file name and line number to set breakpoints.

Connecting Debug to the MATLAB Process

With the breakpoint established, you can link GDB to the MATLAB® process by using the GDB
attach command, and specifying the process ID (PID) returned by the
xmcImportFunctionSettings command when you set up the debug build mode, as
previously discussed. Use the following command:

(gdb) attach <PID>

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=268

IMPORTANT! After it is attached to GDB, the MATLAB process will be suspended. You must use the
continue  command to have the process resume running after the gdb  prompt is returned:

(gdb) continue

At this point you are ready to start the Simulink® simulation, and begin debugging your design.

xmcImportFunctionSettings Command Syntax

The xmcImportFunctionSettings command sets options for the import function feature in
Model Composer. Options are specified in the form of name/value pairs. The current options
include:

• build: Specifies the build environment for Model Composer. Supported values include:

○ release: The default build mode. Generates the specified output, and lets you perform
simulation.

○ debug: Provides integration into a third-party compiler to let you step through and
observe the imported C/C++ function using standard debug features.

• compiler: Specifies the third-party compiler to use for debugging purposes. The supported
values are:

○ default: Compile with GCC or MinGW compiler for debugging using GDB debugger.
Note that GCC or MinGW, and GDB are included with the standard installation of Model
Composer.

• blocks: Specifies the specific block or blocks that you want to observe during the debugging
process. If the option is not specified, all imported function blocks in the current design are
included for debugging. You can specify one or more blocks using the following command
form:

xmcImportFunctionSettings('blocks', {'block1','block2', ...})

You can also unset the selection of the blocks using the following command:

xmcImportFunctionSettings('blocks', {})

You can use the MATLAB gcb command to get the block path for a specific block. The blocks
must be specified as a list of blocks, even if only one block is specified. For example:

xmcImportFunctionSettings('blocks', {'xmc_optical_flow/Lucas-Kanade'})

TIP: The settings specified by xmcImportFunctionSettings  remain set until you exit Model
Composer, or change the options using xmcImportFunctionSettings.

Note: In earlier versions of Model Composer, there existed a set of Computer Vision libraries which are
removed from 2020.2 release. You can import these functions into Model Composer as a block using the
xmcImportFunction feature. To do this, you need to write a wrapper file around the library function.
Refer to the Model Composer examples, Sobel Edge detection and Color Detection, to understand how to
write a wrapper file and import it as a block into the Model Composer design.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=269

For example: Type, xmcOpenExample('color_detection') in the MATLAB command window. You
can get the latest version of Vision libraries from this Github repository.

Generating Outputs
Introduction

IMPORTANT! To generate output from the Model Composer HLS model, only HLS library blocks and a
limited set of Simulink blocks can be used in the subsystem that is instantiated at the top-level of the
design. The Simulink blocks compatible with output generation in Model Composer can be found in the
HLS blockset. Refer to Supported Simulink Blocks for a complete list.

Model Composer automatically compiles designs into low-level representations. However, a
Model Composer model requires the addition of the Model Composer Hub block to configure
compilation and generate outputs. Model Composer can create three different types of output
from the model, as defined by the Target setting of the Model Composer Hub block:

• IP Catalog

• System Generator

• HLS C++ Code

Adding the Model Composer Hub
The Model Composer Hub block is a member of the Tools blockset within the HLS library. You
can add it to your model just like any other block, by dragging it from the Library Browser onto
the canvas of the Simulink® Editor. The Model Composer Hub block is a virtual block in
Simulink® terms. It does not provide a physical purpose in the design, but rather provides
directives for the compilation and output of the design.

The Model Composer Hub block and the Block Parameters dialog box are shown below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 270Send Feedback

https://github.com/Xilinx/Vitis_Libraries/tree/master/vision
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=270

Figure 189: Model Composer Hub Block

You can see the Block Parameters dialog box of the Model Composer Hub block has three tabs,
with the following options:

• Code Generation tab

○ Code directory: Defines the output folder where the compiled results will be written. The
output generated by Model Composer can include a number of folders and files, which will
all be written into the specified directory. The folder can be specified as an absolute path
(e.g., C:/Data/Code), or a path relative to the current Model Composer model (e.g., ./code).

IMPORTANT! On the Windows operating system, you cannot specify a Target Directory name
with a space in it.

○ Subsystem name: Specifies the name of the Model Composer subsystem located in the
top-level of the model that is required to generate output. Refer to Creating a Top-Level
Subsystem Module for more information. The subsystem should also have an Interface
Specification block as discussed in Defining the Interface Specification. The subsystem
name determines the name of the generated output files (e.g.,
<subsystem_name>.cpp,<subsystem_name>.h).

TIP: The Interface Spec block is not required to generate output, but it is recommended in order to
have full control over the interface specification of the design.

○ Target: Select one of the available output products from Model Composer. These include
AI Engine code, packaged IP to add to the Vivado Design Suite IP catalog, HDL blocks for
use in RTL level block design, and C++ code for use in Vitis HLS.

Note: For information about the AI Engines target, refer to Chapter 4: AI Engine Library.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=271

○ Create and run testbench: When enabled this checkbox causes a simulation testbench to
be created and launched for the output code. The simulation compares the "golden" results
from Simulink with the results obtained from the newly compiled design. Refer to
Simulating and Verifying Your Design for more information.

- Testbench stack size: When Create and execute testbench is enabled, this option
specifies the size, in Megabytes, of the testbench stack frame used during C simulation
(CSIM).

TIP: Occasionally, the default stack frame size of 10 MB allocated for execution of the testbench
may be insufficient to run the test, due to large signals arrays allocated on the stack and deep
nesting of sub-systems. Typically when this happens, the test would fail with a segmentation
fault and an associated error message. In such cases you may increase the size of the stack
frame and re-run the test.

○ Generate: Compiles and writes the output from the Model Composer model.

• Hardware tab

○ Project device: Defines the current target part or board platform for the Model Composer
model.

○ Browse button (…): Displays the Device Chooser dialog box. Refer to Device Chooser
Dialog Box for more information.

○ FPGA Clock Frequency (MHz): Specifies the clock frequency in MHz for the Xilinx device.
This frequency is passed to the downstream tool flow.

○ Throughput Factor: Specifies the data throughput requirement for the application,
effecting the amount of data resources used in implementing the function in hardware.

• Feedback tab

○ Connect: You can provide feedback on the Vitis Model Composer tool, highlight problems
or difficulties, suggest enhancements to the tool, or recommend new blocks for the HLS
library.

When you have specified the target directory, the subsystem module, and the export type, you
are ready to click the Generate and Run button to create the specified output. In addition to
producing the C++ code, Model Composer generates the files needed to verify the code, and the
necessary directives to synthesize the high-level code into RTL.

TIP: If you make any changes to the settings of the Model Composer Hub block, you will need to Apply
those changes prior to clicking Generate.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=272

Controlling the Throughput of the Implementation

Introduction

Throughput of a system is one of its most important design criteria. For example, if you are
designing a system that processes High Definition video frames (1920x1080) at 30 frames per
second, the required throughput of your application would be 62,208,000 pixels per second
(1920x1080x30). If you process one pixel per clock (in hardware terminology this is called an
initiation interval of one, or II=1), your device needs to be clocked at over 62.2 MHz. If your
requirements change, and you need to process a 4K video frame at 60 frames per second, the
required throughput of the application would be 497,664,000 pixels per second
(3840x2160x60), and your device needs to be clocked at over 497 MHz.

However, in practice you may not be able to achieve an initiation interval of one (II=1), therefore
to achieve the desired throughput, you need to clock the device at even higher rates. In other
applications, such as wireless communications, the clock frequencies needed to achieve a desired
throughput could easily surpass the maximum clock frequency allowed for a device.

If you need to increase the throughput of your design, without increasing the clock frequency
that your device is operating at (to operate at a clock frequency below the maximum allowed for
a device, or to curtail power consumption), you can take advantage of the programmable logic
nature of Xilinx FPGAs, and use parallelization techniques to process more samples per clock.
Throughput control in Model Composer allows the user to do exactly that without making
structural changes to their design in Simulink.

Setting Throughput Factor from the Hub block

The Model Composer Hub block provides Throughput Factor to control the throughput of the
generated code, or hardware design. The Throughput Factor specifies how many sample
elements of the inputs are to be processed per clock cycle. By default, the Throughput Factor is
set to 1. You can specify this factor by clicking on the Hardware tab of the Model Composer Hub
block, as shown below:

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=273

Figure 190: Model Composer Hub - Throughput Factor

The Throughput Factor must be between 1 and 16. Specifying a value greater than 1 will create
parallel logic to process the transactions, using more resources from the device, and increasing
the HLS and Vivado Synthesis run time.

Code generation for designs with Throughput Factor > 1 imposes additional restrictions on the
design. In case these restrictions are not met, Model Composer will return an error trying to
explain the violation.

Restrictions on Using Throughput Control

After you set the value of Throughput Factor, and click the Generate button on the Hub, it
triggers the compilation of the subsystem. A Throughput Factor of more than 1 can be achieved
only if the design complies with the following restrictions:

• The Throughput Factor must be between 1 and 16.

• The subsystem must have at least one non-scalar input port.

• All of the non-scalar ports of the subsystem must use either AXI4-Streaming or FIFO
interfaces.

• For any vector signal within the subsystem, but not inside a Window Processing block kernel,
the vector length must be a multiple of the Throughput Factor.

• For any matrix signal within the subsystem, but not inside a Window Processing block kernel,
the number of columns must be a multiple of the Throughput Factor.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=274

• Except for blocks inside a Window Processing block kernel, the subsystem must not include
any of the following blocks:

○ look up

○ matrix multiply, QR inverse

○ transpose, hermitian

○ sum of elements and product of elements with floating point input

○ cumulative sum, reducing min, reducing max

○ if action subsystem

• For blocks created using xmcImportFunction, refer to XMC THROUGHPUT_FACTOR.

In summary, if the specified Throughput Factor is >1, and the design complies with all above
mentioned restrictions, Model Composer can generate models that process samples
concurrently. In cases where the design does not meet these restrictions, Model Composer will
not generate an output model.

Understanding Throughput Control Through an Example

The following section demonstrates the benefits of using the Throughput Control feature with
the Optical flow example design found in the list of examples for Model Composer HLS library.

Figure 191: Optical Flow Example

This design uses the following blocks:

• Data Type Conversion, Subtract, Right Shift, Product

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=275

• Window processing blocks, with Gain, Sum of Elements, and Data Type Conversion.

• An Import Function block with the calculating_roots function.

Figure 192: Window Processing Kernel

All these blocks follow the element-wise application pattern, and comply with the restrictions
previously discussed.

IMPORTANT! Direct use of the Sum of Elements block in subsystems using Throughput Control is
restricted. In this example, the ‘Sum of Elements’ block is used in the Window Processing block but not
directly in the top-level subsystem.

With the default Throughput Factor=1, Model Composer generates the code shown below:

void
Lucas_Kanade(hls::stream< uint8_t >& ImageIn, hls::stream< uint8_t >&
 ImageInDelayed, hls::stream< float >& Vx, hls::stream< float >& Vy)
{
 #pragma HLS INTERFACE axis port=ImageIn
 #pragma HLS INTERFACE axis port=ImageInDelayed
 #pragma HLS INTERFACE axis port=Vx
 #pragma HLS INTERFACE axis port=Vy
 #pragma HLS INTERFACE s_axilite port=return
 #pragma HLS dataflow

The IP reads its inputs, the image and delayed image, over AXI4-Stream. These streams will use a
data width of 8 bits (1 pixel). Similarly pixels of the output image are streamed over an AXI4-
Stream interface of data width 8 bits.

If we set TF=4, we get the code shown below.

void
Lucas_Kanade(hls::stream< xmc::MultiScalar< uint8_t, 4 > >& ImageIn,
 hls::stream< xmc::MultiScalar< uint8_t, 4 > >& ImageInDelayed,
 hls::stream< xmc::MultiScalar< float, 4 > >& Vx,
 hls::stream< xmc::MultiScalar< float, 4 > >& Vy)
{
 #pragma HLS INTERFACE axis port=ImageIn
 #pragma HLS data_pack variable=ImageIn
 #pragma HLS INTERFACE axis port=ImageInDelayed
 #pragma HLS data_pack variable=ImageInDelayed
 #pragma HLS INTERFACE axis port=Vx

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=276

 #pragma HLS data_pack variable=Vx
 #pragma HLS INTERFACE axis port=Vy
 #pragma HLS data_pack variable=Vy
 #pragma HLS INTERFACE s_axilite port=return
 #pragma HLS dataflow

This IP receives 4 pixels of the input image, and 4 pixels of the delayed input image, at the same
time over AXI4-Stream that have data width of 32 bits. Inside the IP the logic has been
duplicated so that 4 pixels are processed in parallel. The IP sends 4 pixels of the output image at
a time over an AXI4-Stream, of data width 32 bits. Note that xmc::MultiScalar<T,N> is a
template struct defined in xmcMultiScalar.h. It is a struct that contains an array of N
elements of type T.

The following table represents the Vitis HLS timing and resource estimates for optical flow
design.

Table 12: Optical Flow Design Timing/Resource Utilization Estimates

Throughput factor = 1 Throughput factor = 4 Throughput factor = 8
Clock Freq 300 MHz 300 MHz 300 MHz

Latency/II 41848/41834 10483/10469 5358/5344

BRAM_18k (Utilization %) 5 2 4

DSP48E (Utilization %) 2 9 19

FF (Utilization %) 8 30 59

LUT (Utilization %) 14 36 88

The second line in the table shows the initiation interval (II). At clock frequency of 300 MHz and
Throughput Factors 4 and 8, the initiation interval of the design is reduced by a factor of
approximately 4 and approximately 8 respectively, when compared with the initiation interval for
Throughput Factor=1. Note that this comes at the cost of increasing resource utilization when
the Throughput Factor increases.

For Throughput factor of one, the II is 41,848. The input to this design is a 200x200 pixel image
frame and the value of II here indicates the number of clocks to process the entire frame. As such
it takes slightly more than the duration of one clock cycle to process one pixel. As the
Throughput Factor increases, the II to process one frame decreases, and the application
processes more than one pixel per clock cycle.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=277

Defining the Interface Specification
Within the Simulink® environment, the inputs and outputs in your design are defined using
"Inport" and "Outport" blocks. However, while moving from the software algorithm to an RTL
implementation in hardware, these same input and output ports must be mapped to ports in the
design interface, using a specific input-output (I/O) protocol, which typically operates with some
real world delay. Part of developing your design is to specify how your design will communicate
with other designs or IP in the system. You do this by specifying the interface to your design and
choosing among a few standard I/O protocols.

Model Composer requires the use of the Interface Specification (Interface Spec) block to define
this I/O protocol.

Interface synthesis is supported only in the top-level subsystem module in the design, which
Model Composer generates C++ code for. In the figure below, the Edge Detection module is the
top-level subsystem module and the Interface Spec block must be instantiated inside that
module.

TIP: Any Interface Spec blocks instantiated in other subsystems modules, or nested subsystem modules are
ignored.

Figure 193: Top-Level Subsystem Module

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=278

The Interface Spec block lets you control what interfaces should be used for the design. The
Interface Spec affects only output code generation; it has no effect on Simulink simulation of
your design. If you do not add an Interface Spec block to the subsystem module, Model
Composer assigns default interfaces that may not be appropriate for the target platform or
device. Therefore, it is recommended that you use the Interface Spec block to define the
requirements of your subsystem module. The default function-level protocol is Handshake to
specify control signals, and AXI4-Lite Slave for the function return. The default I/O protocol is
AXI4-Lite Slave for scalar ports, and AXI4-Stream for non-scalar ports.

The Interface Spec block specifies how RTL ports are created from the function definition during
interface synthesis. The ports in the RTL implementation are derived from the following.

• Any function-level protocol that defines control signals for the module.

• Function input and output arguments, and return values.

• Global variables accessed by the function but defined outside its scope.

Note: If a global variable is accessed, but all read and write operations are local to the subsystem, the
resource is created in the design, and does not require the definition of a port.

Figure 194: Interface Spec Block

The Interface Spec block consists of 3 tabs defining the following information:

• Function Protocol: This is the block-level interface protocol which adds signal ports to the
subsystem telling the IP when to start processing data. It is also used by the IP to indicate
whether it accepts new data, or whether it has completed an operation, or whether it is idle.

• Input Ports: This tab automatically detects the input ports in your subsystem and lets you
specify the interface protocol on those ports.

• Output Ports: This tab automatically detects the output ports on the subsystem module, and
lets you specify the interface protocol.

IMPORTANT! The Interface Spec block has a current limitation of 8 input ports and 8 output ports on
the subsystem module.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=279

The Interface Specification displays and lets you configure the following features or parameters
of the function or I/O port protocol.

Table 13: Function Protocol Tab

Attribute Description
Mode Specifies a block-level protocol to add control signals to the subsystem module.

The supported block-level protocols are:

• AXI4-Lite Slave: Implements the return port as an AXI4-Lite Slave interface,
and adds the block-level control ports defined by the Handshake protocol.
This is the default function protocol.

• Handshake: Defines a set of block-level control ports for the function to
start processing input, and indicate when the design is idle, done, and
ready for new input data.

• No block-level I/O protocol: No control ports are added to the subsystem.

Bundle Only valid with the AXI4-Lite Slave mode. Indicates that multiple ports should be
grouped into the same interface. The bundle is specified by a <name> that
cannot contain spaces or special characters.

Table 14: Input/Output Port Tabs

Attribute Description
Name Displays the port name, which cannot be changed from here.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=280

Table 14: Input/Output Port Tabs (cont'd)

Attribute Description
Mode Specifies the port-level I/O protocols. The supported port-level protocols are:

• Default: Uses AXI4-Lite Slave interface for scalar ports, or AXI4-Stream
interface for non-scalar ports.

• AXI4-Stream: Implements ports as an AXI4-Stream interface for high-speed
streaming data.

• AXI4-Stream (video): Implements ports as an AXI4-Stream interface, with
the additional assignment of Video Format and Video Component
attributes.

• AXI4-Lite Slave: Implements the port as part of an AXI4-Lite Slave interface.
All input or output ports with the same Bundle name are grouped into the
same AXI4-Lite Slave interface.

• FIFO: Implements the port with a standard FIFO interface, combining data
input or output with associated active-low FIFO empty and full control
signals.

Note: The FIFO interface is the most hardware-efficient approach for access to a
memory element that is always sequential, that is, no random access is required.
To read from non-sequential address locations, use the Block RAM interface.

• Constant: The data applied to the input port remains stable during the
function operation, but is not a constant value that can be optimized. This
allows internal optimizations to remove unnecessary registers.

• Valid Port: Implements a data port with an associated valid port to indicate
when the data is valid for reading or writing.

• No protocol: No protocol. Neither the input or output data signals have
associated control ports to indicate when data is read or written.

• Block RAM: Implements array arguments as a standard RAM interface. If you
use the generated IP in Vivado IP integrator, the memory interface appears
as a single port.

Bundle Used in conjunction with the AXI4-Stream (video) interfaces that have more than
1 color component. In this case there should be one port for each color
component, and the ports should specify the same bundle <name> so they will
be grouped into the same AXI4 Stream (video) interface.
Also valid with the AXI4-Lite Slave mode. This parameter explicitly groups all
interface ports with the same bundle <name> into the same AXI4-Lite Slave
interface.

Offset Only valid with the AXI4-Lite Slave mode. This parameter specifies an address
offset associated with the port in the AXI4-Lite Slave address map. The offset is
specified as a non-negative integer, with a default value of 0.

Video Format Only valid with the AXI4-Stream (video) mode. This parameter specifies the color
format for a video stream. Valid formats include:

• YUV 4:2:2: Video format based on brightness (luminance) and color
(chrominance), with reduced color content.

• YUV 4:4:4: Video format based on brightness (luminance) and color
(chrominance), with full color content.

• RGB: Video format based on separate Red, Blue, and Green color signals.

• Mono: Specifies an audio format for your video.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=281

Table 14: Input/Output Port Tabs (cont'd)

Attribute Description
Video Component Only valid with the AXI4-Stream (video) mode. This parameter specifies the color

component for a video format that uses more than one color component. Valid
video components include:

• Y,U, V: Specifies one component of the YUV video format.

• R, G, B: Specifies one component of the RGB video format.

The choice of port-level interface protocol should take into account the following considerations:

• Scalar ports can be implemented using any of the following protocols: Default, AXI4-Lite
Slave, Constant, Valid Port, No protocol.

• Large array or matrix ports should use a streaming protocol such as AXI4-Stream, FIFO, or
AXI4-Stream (video).

• Video signals can be transported over an AXI4-Stream (video) interface. In this case you also
need to specify the video format YUV 4:2:2, YUV 4:4:4, RGB, or Mono. For video formats that
have more than 1 color component, you also need to assign multiple ports to the same signal
bundle, and you need to specify which port carries which color component. All of the ports
that make up the video signal are implemented by a single AXI4-Stream interface that includes
start-of frame and end-of-line sideband signals. For more information refer to AXI4-Stream
Video IP and System Design Guide (UG934).

Generating Packaged IP for Vivado
Model Composer can automatically generate packaged IP for use in Vivado IP catalog. When
Model Composer generates output for the IP catalog, it first writes the C++ code as described in
Generating C++ Code, and then it synthesizes RTL code from the C++ code. This process begins
when you set the Target in the Model Composer Hub block to IP catalog, hit Apply to confirm
any changes, and click Generate.

Model Composer displays a transcript window of the process. When the process has concluded,
the MATLAB® window displays the Synthesis Report for your review, as shown in the figure
below. The Synthesis Report includes details on the estimated performance and resource
utilization of the RTL design synthesized by Model Composer. You can review this report to see
the estimates and review your model.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 282Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_videoip;v=latest;d=ug934_axi_videoIP.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=282

Figure 195: Synthesis Report

When Model Composer has completed synthesizing the RTL, it reports the message Exporting
RTL as a Vivado IP to the transcript window, and launches Vivado to create and package
the IP for the subsystem design.

Model Composer generates the following outputs from the algorithm:

• SystemC (IEEE 1666-2006, version 2.2)

• VHDL (IEEE 1076-2000)

• Verilog (IEEE 1364-2001)

• Report files created during synthesis, C/RTL co-simulation, and IP packaging.

When Model Composer has completed generating the packaged IP, it can be found in the project
directory structure as shown in the following figure. The Edge_Detection_IP folder is the
Code Directory specified by the Model Composer Hub. The Edge_Detection_prj folder is a
project created by the run_hls.tcl script. The solution1 folder is a Vitis HLS solution. For
more information refer to the Vitis High-Level Synthesis User Guide (UG1399). The syn and impl
folders store the results of synthesis and implementation. The ip folder contains the packaged IP
to add to the Vivado Design Suite IP catalog.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 283Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=283

Figure 196: Packaged IP Folder

After Model Composer has generated the packaged IP, the .zip file archive in the
<project_name>/<solution_name>/impl/ip folder can be imported into the Vivado IP
catalog, and used in any Vivado Design Suite design, either as RTL IP, or in the IP integrator.

For Model Composer models that specify AXI4-Lite Slave interfaces through the Interface
Specification block, as discussed in Defining the Interface Specification, a set of software driver
files is also created by Vitis HLS during the IP packaging process. These C driver files can be
included in an SDK C project and used to access the AXI4-Lite Slave slave port. The software
driver files are written to directory <project_name>/<solution_name>/impl/ip/
drivers and are included in the packaged IP.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=284

To add the IP into the Vivado IP catalog, from within the Vivado GUI, select the Tools → Settings
command to open the Settings dialog box. Select the IP → Repository command, and add the
Vitis HLS packaged IP as shown in the following figure.

Figure 197: Setting the IP Repository

After adding the path to the repository, the IP is added to the IP catalog as shown in the
following figure. You can now use the IP in standard RTL designs, or in Vivado IP integrator block
designs. For more information on working with IP and adding to the IP repository refer to the
Vivado Design Suite User Guide: Designing with IP (UG896).

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 285Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=285

Figure 198: IP Catalog

IMPORTANT! If you see the repository added to the IP catalog, but do not see the Vitis HLS packaged IP,
it is possible the target part for the current project is not compatible with the device used when generating
the Model Composer output. You can fix this by changing the part in the current project to the device
specified by the Model Composer model.

Generating Model Composer HDL IP
Model Composer can automatically generate an RTL which can be imported and used along side
other blocks in the HDL library. When Model Composer generates HDL output, it first writes the
C++ code as described in Generating C++ Code, and then it synthesizes RTL code from the C++
code. This process begins when you set the Target in the Model Composer Hub block to System
Generator. This command creates an IP package for HDL library.

Model Composer displays a transcript window of the process. When the process has concluded,
the MATLAB window displays the Synthesis Report for your review, as shown in the figure
below. The Synthesis Report includes details on the estimated performance and resource
utilization of the RTL design synthesized by Model Composer. You can review this report to see
the estimates and review your model.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=286

Figure 199: Synthesis Report

When Model Composer has completed synthesizing the RTL, it reports the message Exporting
RTL as an IP for System Generator for DSP to the transcript window. This process
is handled by a Tcl script, run_hls.tcl, that Model Composer writes to export the HDL IP.

Model Composer generates the following outputs from the algorithm:

• SystemC (IEEE 1666-2006, version 2.2)

• VHDL (IEEE 1076-2000)

• Verilog (IEEE 1364-2001)

• Report files created during synthesis, C/RTL co-simulation, and IP packaging.

When Model Composer has generated the HDL IP, you can find it in the project directory
structure as shown in the following figure. The Edge_Detection_Sysgen folder is the Code
Directory specified by the Model Composer Hub. The Edge_Detection_prj folder is a project
created by the run_hls.tcl script. The solution1 folder is a Vitis HLS solution. For more
information refer to the Vitis High-Level Synthesis User Guide (UG1399). The Solution1.json
file contains the information needed to use the subsystem IP in Model Composer HDL design..

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 287Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=287

Figure 200: System Generator Output

You can import a Model Composer generated HDL IP into a Model Composer HDL model using
the following steps:

1. From within an open Model Compose HDL model, right-click in the canvas of the Simulink
Editor and select the Xilinx BlockAdd command. This opens a menu of HDL Library blocks
that can be added to your model.

2. Scroll down the list in dialog box, or type "HLS" in the Add Block search field to locate the
Vitis HLS block and add it to your model.

3. Double-click on the newly added block to open the Vitis HLS Block Parameter dialog box as
shown below.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=288

Figure 201: Vitis HLS Block

4. Browse to the solution directory of the Vitis HLS project where the Model Composer output
was generated. In the example above, browse to the Lucas_Kanade_prj/solution1
folder and select OK.

The Vitis HLS template block is converted to the Edge Detection IP in the Model Composer HDL
model. You may need to drag the corners of the IP block to expand it as needed for your model.
The block is initially sized to match the Vitis HLS template. The following figure shows the HDL
IP generated from the Model Composer HLS model.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=289

Figure 202: Vitis HLS Block

If any of the function arguments on the Model Composer subsystem module are transformed by
Vitis HLS into a composite port, the signal type information for that port cannot be
determined and included in the HDL IP block. Any design that uses the reshape, mapping, or data
packing optimization on ports must have the port type information manually specified in Model
Composer HDL model for these composite ports. You should know how the composite ports
were originally created and then use slice and reinterpretation blocks in the HDL model
to connect the Vitis HLS block to other blocks in the system.

For example, if three 8-bit in-out ports R, G and B are packed into a 24-bit input port (RGB_in)
and a 24-bit output port (RGB_out) ports. After the IP block has been included in Model
Composer HDL:

• The 24-bit input port (RGB_in) would need to be driven by an HDL block that correctly
groups three 8-bit input signals (R_in, G_in and B_in) into a 24-bit input bus.

• The 24-bit output bus (RGB_out) would need to be correctly split into three 8-bit signals
(R_out, G_out, and B_out).

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=290

TIP: See the Chapter 2: HDL Library documentation for details on using the slice and reinterpretation
blocks to connect to composite type ports.

Generating C++ Code
The following figure shows the HLS C++ Code output by Model Composer from the Generate
command. The C++ code is output either as an intermediate step when generating a packaged IP
for System Generator output, or as a specified output to let you optimize the C++ code using
directives or pragmas in Vitis HLS.

Figure 203: C++ Output Files

The files generated by Model Composer reflect the contents and hierarchy of the subsystem that
was compiled. In this case, the subsystem is the Edge Detection function described in the Model
Composer section of the Vitis Model Composer Tutorial (UG1498). The following figure shows the
contents of the Edge Detection subsystem.

Figure 204: Edge Detection Subsystem

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 291Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=291

The Edge_Detection.cpp file specifies the following include files, which incorporate the code
generated for the various Model Composer blocks used in the subsystem:

#include "Edge_Detection.h"
#include "GradMagnitude.h"
#include "SobelFilter.h"

The following shows the generated code for the Edge Detection subsystem. Notice the pragmas
added to the function to specify the function protocol and the I/O port protocols for the
function signature and return value. The pragmas help direct the solution synthesized by Vitis
HLS, and result in higher performance in the implemented RTL.

Edge_Detection(hls::stream< ap_axiu<16, 1, 1, 1> >& Y,
 hls::stream< ap_axiu<16, 1, 1, 1> >& Y_Out)
{
 #pragma HLS INTERFACE s_axilite port=return
 #pragma HLS INTERFACE axis bundle=image_out port=Y_Out
 #pragma HLS INTERFACE axis bundle=input_vid port=Y
 #pragma HLS dataflow
 uint8_t core_Y[360][640];
 #pragma HLS stream variable=core_Y dim=2 depth=1
 uint8_t core_Cb[360][320];
 #pragma HLS stream variable=core_Cb dim=2 depth=1
 uint8_t core_Cr[360][320];
 #pragma HLS stream variable=core_Cr dim=2 depth=1
 uint8_t core_Y_Out[360][640];
 #pragma HLS stream variable=core_Y_Out dim=2 depth=1
 uint8_t core_Cb_Out[360][320];
 #pragma HLS stream variable=core_Cb_Out dim=2 depth=1
 uint8_t core_Cr_Out[360][320];
 #pragma HLS stream variable=core_Cr_Out dim=2 depth=1
 fourier::AxiVideoStreamAdapter< uint8_t >::readStreamVf0(Y,
 reinterpret_cast< uint8_t* >(core_Y), reinterpret_cast< uint8_t* >(
 core_Cb), reinterpret_cast< uint8_t* >(core_Cr), 360, 640);
 Edge_Detection_core(core_Y, core_Cb, core_Cr, core_Y_Out, core_Cb_Out,
 core_Cr_Out);
 fourier::AxiVideoStreamAdapter< uint8_t >::writeStreamVf0(Y_Out,
 reinterpret_cast< uint8_t* >(core_Y_Out), reinterpret_cast<
uint8_t* >(
 core_Cb_Out), reinterpret_cast< uint8_t* >(core_Cr_Out), 360, 640);
}

Finally, notice the run_hls.tcl file that is generated in the output folder. This is a Tcl script
that can be used to run Vitis HLS on the generated output files to create a project and solution,
synthesize the RTL from the C++ code, and export the design to the Model Composer HDL
model. Each Vitis HLS project holds one set of C/C++ code and can contain multiple solutions.
Each solution can have different constraints and optimization directives. For more information
refer to the Vitis High-Level Synthesis User Guide (UG1399).

You can run the run_hls.tcl script from a Vitis HLS command prompt as follows:

1. Open the Vitis HLS Command Prompt:

• On Windows, use Start → All Programs → Xilinx Design Tools → Vitis HLS 2020.2 → Vitis
HLS → Vitis HLS 2020.2 Command Prompt.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 292Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=292

• On Linux, open a new shell and source the <install_dir>/Vitis_HLS/<version>/
settings64.sh script to configure the shell.

2. From the command prompt, change the directory to the parent folder of the Code Directory
specified on the Model Composer Hub dialog box when you generated the output, as
discussed at Adding the Model Composer Hub. For example:

cd C:/Data

3. From the command prompt, launch the run_hls.tcl script that can be found in C:

vitis_hls -f ./code/run_hls.tcl

Vitis HLS launches to synthesize the RTL from the C++ code, generating a Vitis HLS project, and
solution in the process. You can open the Vitis HLS project by going to the Code directory and
entering the following name with the project name:

vitis_hls -p ./Edge_Detection_proj

This will open the Vitis HLS project in the GUI Mode.

Model Composer Log File
To help you diagnose issues related to code generation, Model Composer generates a log file,
model_composer.log, that is written to the Code Directory specified on the Model Composer
Hub block.

By default, Model Composer generates code for the model using a streaming micro-architecture
in which blocks run concurrently via task pipelining, or dataflow. However, in some cases this
streaming micro-architecture is not achievable, because the model includes an
xmcImportFunction block that does not support streaming for example. In this case, Model
Composer generates code in which the blocks operate sequentially. The Model Composer log file
includes information to help you identify when this condition occurs, and what some possible
causes might be.

The log file also contains information related to which blocks are used in the Model Composer
model.

If Target on the Model Composer Hub block is set to HLS C++ code, and Create and run
testbench is selected, the model_composer.log file will contain the output from running the
C++ verification.

If Target is set to IP Catalog or System Generator, information related to running Vitis HLS is
provided. In these cases, more detailed information can be found in the vitis_hls.log file
which can also be found in the Target directory.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=293

Simulating and Verifying Your Design
Introduction
Verification in Model Composer can be separated into two distinct processes:

• Verification of the algorithm in Simulink® to verify the functional correctness of the design.

• Verification of the Model Composer model, to confirm the equivalence of the simulation
results in Simulink and the C++ and RTL outputs.

In high-level synthesis, running the compiled C program is referred to as C simulation. Executing
the C++ algorithm generated by Model Composer simulates the function and verifies that the
output from the code matches the output from the Simulink simulation to validate that the
algorithm is functionally correct.

In C/RTL co-simulation, Vitis HLS uses the C test bench to simulate the C function prior to
synthesis and to verify the RTL output. The verification process consists of three phases:

1. The C simulation is executed and the inputs to the top-level subsystem are saved as “input
vectors”.

2. The input vectors are used in behavioral simulation of the RTL code for the top-level
subsystem created by Vitis HLS. The outputs from the RTL are saved as “output vectors".

3. The output vectors are applied to the C test bench as output from the top-level subsystem,
to verify the results of the C-simulation match.

Vitis HLS uses this return value for both C simulation and C/RTL co-simulation to determine if
the results are correct.

Simulating in Simulink
Simulink can interactively simulate your model, and view the results on scopes and graphical
displays. The Simulink model defines what data to input at the start of simulation, and defines
what data to capture during simulation.

When defining the model, you define the input and output signals for the model. Input signals
load data into the model for simulation, while output signals allow you to record simulation
results. The kind of data you want to load impacts your choice of signal loading techniques. You
can define input data as constant values, use source blocks, such as the Sine Wave block, import
data from a spreadsheet, or use the output of a previous simulation. Refer to Prepare Model
Inputs and Outputs in the Simulink documentation for more information on preparing for
simulation in Simulink.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 294Send Feedback

https://www.mathworks.com/help/simulink/prepare-model-inputs-and-outputs.html
https://www.mathworks.com/help/simulink/prepare-model-inputs-and-outputs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=294

After the simulation is completed, you can analyze any logged data with MATLAB scripts and
visualization tools like the Simulation Data Inspector within the MathWorks environment.

When you enable the Create and execute testbench checkbox, as discussed in Adding the Model
Composer Hub, Model Composer performs two tasks:

1. Automatically logs the test data, or stimulus, at the input of your design, and the simulation
results as test vectors for later use as "golden" data for comparison during C/C++ and RTL
co-simulation. This file is named signals.stim, and is added to the specified Target
Directory when generating output.

2. Executes the generated test bench and verifies equivalence of the code using C-simulation
and C/RTL co-simulation. This process is compute intensive, and can take considerable time.

IMPORTANT! If the model simulation time in Simulink is long, with significant amounts of data processed,
the test bench execution will take an even longer time. Model Composer will generate an error if the
simulation time becomes infinite.

Managing the HLS Block Cache
Model Composer creates a cache entry when you simulate a model with an imported block
created using xmcImportFunction. When you simulate the model again, unless you make any
changes to the function, or supporting source files, Model Composer will use the cached entry
for the block to initiate the simulation faster. You can manage the simulation cache in Model
Composer using the following command from the MATLAB command prompt:

>> xmcSimCache

The usage for this command is as follows.

Table 15: xmcSimCache Command Usage

Command Description
xmcSimCache('enable') Enable the simulation cache. This is enabled by default.
xmcSimCache('disable') Disable the simulation cache.
xmcSimCache('isEnabled') Returns the state of the simulation cache.
xmcSimCache('setLocation', <dir>) Specify a directory to use for the simulation cache. For

example:

xmcSimCache('setLocation', 'C:/temp')

xmcSimCache('setDefaultLocation') Restore the simulation cache to its default location.
xmcSimCache('getLocation') Return the current location of the simulation cache.
xmcSimCache('clear') Clear the entire simulation cache.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=295

Table 15: xmcSimCache Command Usage (cont'd)

Command Description
xmcSimCache('clear', 'release', <version>) Clear simulation cache entries for the specified release

version. For example:

xmcSimCache('clear', 'release', '2017.4')

xmcSimCache('clear', 'days', <number>) Clear simulation cache entries older than or equal to the
specified number of days. For example:

xmcSimCache('clear', 'days', 30)

xmcSimCache('clear', 'id', <vals>) Clear simulation cache entries by the cache ID. For example:

xmcSimCache('clear', 'id', {'12345678',
'abcdefgh'})

Verifying the C++ Code
When generating the output using the Model Composer Hub block, you also have the ability to
Create and run testbench. When selecting this option, you are enabling the Model Composer
verification flow. This causes Model Composer to generate a few more output files, including a
makefile, the test bench, tb.cpp, and signals.stim as previously discussed. The purpose of
the test bench is to apply input stimuli, generated during Simulink simulation, to the top-level
function of the generated C++ or RTL code and compare that function's output against the
output samples captured in the signals.stim file. Depending on the output generated, the
verification flow runs simulation on the C++ or RTL outputs generated by Model Composer and
looks for the same result as generated by Simulink.

When the Export type on the Model Composer Hub block is HLS C++ code, the verification flow
is as follows:

• The model is simulated in Simulink and the input and outputs are logged into the
signals.stim binary file.

• Model Composer generates the C++ code and a test bench, tb.cpp, which contains a
main() function.

• Model Composer launches simulation.

• It verifies that the output from the generated C++ code matches the output logged from the
Simulink simulation, signals.stim.

• In case of a mismatch, the mismatched output signal name is reported, as well as the actual
and expected values.

• The result is a Pass/Fail returned by Model Composer.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=296

IMPORTANT! During simulation by Model Composer, you may receive the following error message:
Failed to find a XilinxLibrary block connected to input port.  This error
simply means that there is an input in the subsystem that does not connect to a block from the HLS Library
block set. This may be due to the presence of signals that you are simply passing through the subsystem for
signal grouping, or improved readability. The recommended fix for this conditions is to connect the input to
a Gain block from the Xilinx Toolbox->HLS → Math Functions → Math Operations block library, with the
default value of 1, and Output data type same as input checked, as shown in the following figure.

Figure 205: Adding Gain to Unconnected Inputs

Verifying the C/RTL Code
When the Target specified on the Model Composer Hub dialog box is either IP catalog or System
Generator, and the verification flow is enabled, Model Composer uses C/RTL co-simulation to
verify the RTL output. Again, the objective is to verify that the results of the RTL simulation
match the results of the Simulink simulation. In this case, the verification flow is as follows:

• The Model Composer model is simulated in Simulink to capture the test vectors in
signals.stim.

• Model Composer generates the C/C++ code and the C test bench, tb.cpp.

• Model Composer runs the C-synthesis and generates the RTL output.

• Model Composer runs the C/RTL co-simulation. This step ensures the following:

○ That the C++ code generated by Model Composer is correct by comparing with the
Simulink simulation, signals.stim.

○ That the RTL code generated by Model Composer is correct by comparing the output
stimulus from RTL with C/C++ output.

TIP: After verification, Model Composer exports the RTL as an IP for Model Composer HDL model,
or packages the IP for use in Vivado.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=297

• The result is a separate Pass/Fail returned by Model Composer for both the C-simulation and
the C/RTL co-simulation. If the C-simulation fails, the process stops before the C/RTL
simulation is run.

Select Target Device or Board
Device Chooser Dialog Box
Choose the default part or platform board to use for the current project. The device resources
that the design is synthesized against, and placed onto are determined by selecting the target
part or board.

• Parts tab: Lists the available target parts for the current project.

• Boards tab: Lists the available target boards for the current project.

IMPORTANT! The devices and boards that are available are determined at the time the Vitis Model
Composer tool is installed. You can also add uninstalled devices or boards. To learn more refer to Xilinx®

Answer Record 60112.

The selection of target part or boards can be limited or filtered by specifying search patterns in
one or more of the available search fields at the top of the Device Chooser dialog box.

For parts:

• Category: Choose devices according to Military, Automobile, or Commercial grade products.

• Family: Filter devices according to the available device families (such as Virtex, Kintex, or
UltraScale).

• Package: Specify the type of package the device will have.

• Speed: Filter the device by a specific speed grade.

• Temperature: Filter the device by a specific temperature.

For boards:

• Vendor: Choose devices according to the available vendors of platform boards.

• Name: Filter devices according to the available display names.

• Board Rev: Specify the revision level of the board.

The target parts or boards that match the specified filters and/or search string appear in a table
of results in the lower portion of the dialog box.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 298Send Feedback

https://www.xilinx.com/support/answers/60112.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=298

Choose a target part or board for the design, and click OK.

Chapter 3: HLS Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=299

Chapter 4

AI Engine Library

Introduction
Versal™ devices are the industry's first adaptive compute acceleration platform (ACAP),
combining adaptable processing and acceleration engines with programmable logic and
configurable connectivity to enable customized, heterogeneous hardware solutions for a wide
variety of applications in Data Center, Automotive, 5G Wireless, Wired, and Defense. Versal
ACAPs provide transformational features like an integrated silicon host interconnect shell and
Intelligent Engines (AI and DSP), Adaptable Engines, and Scalar Engines, providing superior
performance/watt over conventional FPGAs, CPUs, and GPUs.

Versal devices are built from a library of building blocks dedicated to processing, compute,
acceleration, and connectivity. The following figure shows a top-level view of the Versal ACAP,
that contains three major architectural areas: the Scalar Engines that include the Arm®

processing system, the Adaptable Engines that include the programmable logic, and the
Intelligent Engines that include the AI Engines and DSP Engines. The AI Engine along with
Adaptable Engines (programmable logic) and Scalar Engines (processor subsystem) form a tightly
integrated heterogeneous compute platform.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=300

Figure 206: Xilinx Versal ACAP Overview

Scalar Engines Adaptable Engines Intelligent Engines

Arm
Dual-core
Cortex-R5

Arm
Dual-core

Cortex-A72

Network on Chip

AI Engines

DSP Engines

Custom Memory
Hierarchy

X24255-072120

AI Engines
An AI Engine is an array of very-long instruction word (VLIW) processors with single instruction
multiple data (SIMD) vector units that are highly optimized for compute-intensive applications,
specifically digital signal processing (DSP), 5G wireless applications, and artificial intelligence (AI)
technology such as machine learning (ML). They provide up to five times higher compute density
for vector-based algorithms.

AI Engines provide multiple levels of parallelism including instruction-level and data-level
parallelism:

• Instruction-level parallelism includes two scalar instructions, two vector reads, a single vector
write, and a single vector instruction executed—in total, a six-way VLIW instruction per clock
cycle.

• Data-level parallelism is achieved via vector-level operations where multiple sets of data can
be operated on a per-clock-cycle basis.

Each AI Engine contains both a vector and scalar processor, dedicated program memory, local 32
KB data memory, and access to local memory in any of three neighboring directions (north,
south, east, or west). It also has access to DMA engines and AXI4 interconnect switches to
communicate via streams to other AI Engines or to the programmable logic (PL) or the DMA.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=301

Adaptable and Scalar Engines
Adaptable Engines are a combination of programmable logic blocks and memory, architected for
flexible custom-compute and data movement. Scalar Engines, including Arm Cortex®-A72 and
Cortex®-R5F processors, allow for complex control processing tasks.

Refer to the Versal ACAP AI Engine Architecture Manual (AM009) for specific details on the AI
Engine array and interfaces.

Refer to the Versal Architecture and Product Data Sheet: Overview (DS950) for specific details on
Compute and Acceleration Engines.

AI Engine Kernels
An AI Engine kernel is a C/C++ program written using AI Engine vector data types and
specialized intrinsic calls that target the VLIW vector processor. They are computational
functions running on an AI Engine. These kernels form the fundamental building blocks of an AI
Engine program which consists of dataflow graph specification. The AI Engine kernel code is
compiled using the aiecompiler included in the Vitis™ software platform core development kit.
The aiecompiler compiles the kernels to produce an ELF file that runs on the AI Engine
processors.

AI Engine Graphs
An AI Engine program consists of a dataflow graph specification written in C++. This specification
can be compiled and executed using the aiecompiler. A static dataflow (SDF) graph application
consists of nodes and edges where nodes represent compute kernel functions and edges
represent data connections. Kernels in the application can be compiled to run on the AI Engine or
in the PL region of the device.

Model Composer for AI Engine Development
Model Composer enables the rapid simulation, exploration, and code generation of algorithms
targeted for AI Engines from within the Simulink® environment. You can achieve this by
importing AI Engines kernels and data-flow graphs into Model Composer as blocks and
controlling the behavior of the kernels and graphs by configuring the block GUI parameters.
Simulation results can be visualized by seamlessly connecting Simulink source and sink blocks
with the Model Composer AI Engines blocks. Furthermore, the simulation results can be sent to
the MATLAB® workspace for further analysis.

Refer to Creating an AI Engine Design using Model Composer for more information on importing
AI Engine kernels and graphs as blocks.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 302Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=302

Model Composer provides a set of AI Engine library blocks for use within the Simulink
environment. These include:

• Blocks to import kernels and graphs which can be targeted to the AI Engine portion of Versal
devices.

• Block to import HLS kernels which can be targeted to the PL portion of Versal devices.

• Blocks that support connection between the AI Engine and the Xilinx HDL blockset.

• Configurable AI Engine functions such as FIR filters.

Note: For more information on specific blocks refer to Model Composer AI Engine Block library.

Connecting HLS kernel blocks, HDL library blocks, and AI Engine blocks, allows modeling and
simulation of a heterogeneous platform which can be targeted to both programmable logic and
AI Engines in Versal™ ACAP devices.

In addition to simulation, you can also use the Model Composer Hub to generate dataflow
graphs. For more details on the Model Composer Hub block, specific to AI Engine code
generation, refer to Code Generation.

Model composer allows you to verify the generated dataflow graph code using the AI Engine
simulator. Based on verification requirements, you can choose to verify your algorithm from the
Model Composer Hub block.

The simulation results are compared against the reference design in the Simulink environment.

Note: Refer to Simulation and Code Generation for more details on simulator options and verification.

A typical AI Engine design flow is shown in the following diagram.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=303

Figure 207: Typical AI Engine Design Flow

Simulink/Model
Composer (HLS)/

HDL Blocks

Simulink/Model
Composer (HLS)/

HDL Blocks
AIE Graph

AIE Kernel

Configurable AI
Engine Functions

AI Engine Subsystem
Input
data

Output
data

Dataflow Graph

Verification Environment
AI Engine Simulation

MATLAB® & Simulink®

Graph Code
Generation

X25368-052521

To learn more about the AI Engine flow in Model Composer, refer to the Vitis Model Composer
Tutorial (UG1498).

The remainder of this section discusses the following topics:

• Creating an AI Engine Design using Model Composer

• Simulation and Code Generation

• Verification of AI Engine Code

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 304Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=304

Creating an AI Engine Design using Model
Composer

As previously discussed, AI Engine kernels are functions that form the fundamental building
blocks of the data-flow graph. Model Composer supports generating the AI Engine data-flow
graph by importing the AI Engine kernel or sub-graph. The AI Engine library is available under
Xilinx tool box in the Simulink library browser set as shown in the following figure.

Figure 208: Simulink Library Browser

Preparing the Kernels
Kernels are declared as C/C++ functions that return void and can use special data types for
arguments which are discussed in Data Accessing Mechanisms. The kernels should be defined
each in their own source file. This organization is recommended for reusability and faster
compilation. Furthermore, the kernel source files should include all relevant header files to allow
for independent compilation.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=305

IMPORTANT! It is assumed that your kernel code is already developed. If you try to import bad kernel
code, for example one that causes memory corruption, you may see undesirable outcomes including
MATLAB crashing.

The topics in this section introduce some basics of AI Engine programming which are necessary
to understand the Model Composer AI Engine design flow. Refer to Versal ACAP AI Engine
Programming Environment User Guide (UG1076) for a high-level overview of the kernel and AI
Engine programming models. Some insight is also provided on data access APIs to help you
understand the configuration parameters of the AI Engine kernel blocks available in the library.

Data Accessing Mechanisms

An AI Engine kernel can either consume or produce blocks of data, or, it can access and produce
data streams in a sample-by-sample fashion. The data access APIs for both cases are described in
the following sections.

Window-Based Access

From the kernel perspective, incoming blocks of data is called an input window. Input windows
are defined by the type of data contained within that window. The following example shows a
declaration of an input window carrying complex integers where the real and imaginary parts are
both 16 bits wide.

input_window_cint16 myInputWindow;

From the kernel perspective, outgoing blocks of data is called an output window. Again, these are
defined by type. The following example shows a declaration of an output window carrying 32-bit
integers.

output_window_int32 myOutputWindow;

A kernel reads from its input windows and writes to its output windows. By default, the
synchronization required to wait for an input window of data or provide an empty output
window is performed before entering the kernel. There is no synchronization required within the
kernel to read or write the individual elements of data. In other words, the kernel will not execute
unless there is a full window available.

In some situations, if you are not consuming a windows worth of data on every invocation of a
kernel, or if you are not producing a windows worth of data on every invocation, you can control
the buffer synchronization by configuring the kernel port to be async in the Kernel GUI block
parameters.

It is also possible to have overlap from one block of input to the next. This in general is required
for certain algorithms such as filters. This overlap is referred to as 'Window Margin'. If a Window
margin is specified, the kernel has access to a total number of samples equal to window_size +
margin_size.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 306Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=306

The behavior of the window margin can be demonstrated using the following example.

Figure 209: Simulation

Here, input is a vector of size 18 and this is fed to the kernel block which is configured to have a
window size of 6 with and a window margin of 2, as shown in the previous figure. The kernel
should have access to a total of 8 samples at every invocation. During the first simulation cycle,
two 0's are prepended to the first 6 new values from the input data. For the subsequent
simulation cycles, the kernel receives 8 values which includes 6 new values and 2 values from the
previous cycle.”

Stream-Based Access

Kernels can access data streams in a sample-by-sample fashion using data access APIs. With a
stream-based access model, kernels receive an input stream or an output stream of typed data as
an argument. Each access to these streams is synchronized (i.e., reads stall if the data is not
available in the stream and writes stall if the stream is unable to accept new data). There is also a
direct stream communication channel between one AI Engine and the physically adjacent AI
Engine, called a cascade.

The following example shows a declaration of input and output streams of type cint16.

input_stream_cint16 * myInputStream;
output_stream_cint16 * myOutputStream;

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 307Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=307

Run-Time Parameter Specification

It is possible to modify the behavior of the AI Engine program or data-flow graph based on a
dynamic condition or event using the run-time parameter. The modification could be in the data
being processed, for example a modified mode of operation or a new coefficient table, or it could
be in the control flow of the graph such as conditional execution or dynamically reconfiguring a
graph. Either the kernels or the graphs can be defined to execute with parameters.

If an integer scalar value appears in the formal arguments of a kernel function, then that
parameter becomes a run-time parameter. Run-time parameters are processed as ports alongside
those created by streams and windows. Both scalar and array values can be passed as run-time
parameters.

Consider the following example where a kernel function is defined with run-time parameters.
Here, select is a scalar RTP port and coefficients is a vector RTP with 32 integers.

#ifndef RTP_KERNEL_H
#define RTP_KERNEL_H
void simple_param(input_window_cint16 * in,
 output_window_cint16 *outw,
 int select,
 const int32 (&coefficients)[32]);
#endif

Two types of RTPs are supported:

• Synchronous Parameters (or triggering parameters): The kernel does not execute until the
run-time parameter is written by a controlling processor. Upon a write, the kernel executes
once, reading the new updated value. After completion, it is blocked from executing again
until the parameter is updated. This allows for a different type of execution model from the
normal streaming model, and can be useful for certain updating operations where blocking
synchronization is important.

• Asynchronous Parameters: These parameters can be changed any time by either a controlling
processor such as Arm® , or another AI Engine. They are read each time a kernel is invoked
without any specific synchronization. These types of parameters can be used, for example, to
pass new filter coefficients to a filter kernel that changes infrequently.

Importing AI Engine Code as a Block
Model Composer allows you import the AI Engine kernel from the Model Composer AI Engine
library. This allows you to create a block with an interface that has input and output ports
equivalent to the arguments of an AI Engine kernel function, and also gives the flexibility to
configure the kernel parameters using the block GUI. If you have a data-flow graph instead of an
AI Engine kernel function, then Model Composer also allows you to import it into the Simulink

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=308

environment from where it is possible to seamlessly connect the AI Engine graph block with AI
Engine kernel block to build a complete system. If you have a kernel function targeted at
implementation in adaptable engines (programmable logic), then Model Composer provides an
HLS Kernel block. Coding guidelines for importing HLS kernels are described in Importing HLS
Kernels.

In summary, the entry point for using an AI Engine block set can be a kernel or a data-flow graph
for which Model Composer generates a block with interfaces that match the function arguments
of a kernel or a graph.

Variable-Size Signals

In Simulink, a signal whose size (the number of elements in a dimension) can change during
Simulink simulation is called a variable-size signal. To understand the importance of variable-size
signaling in the context of modeling an AI Engine design in Model Composer, consider a kernel
which outputs even numbers from a set of input numbers.

void even_calc(input_window_int32 * in, output_stream_int32 * out) {
 int32 val,temp;
 for (unsigned i=0; i<4; i++) {
 window_readincr(in,val);
 if(val % 2 == 0) {
 int32 temp = val;
 writeincr(out,temp);
 }
 }
}

Here, the input is a window of type int32 and the output is a stream of similar type. If you try to
model this in Simulink, you will observe that the number of data samples it produces may vary at
each invocation.

Assume the input window size is 4 and the input given to the kernel is [1 -2 3 -4 5 -6 7 8
9 10 12 14 5 7 9 13].

Figure 210: Variable-Size Signals

To understand why the size of the output can vary dynamically, run the simulations in steps.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=309

During the first simulation step, the AI Engine kernel consumes four values (i.e., 1,-2,3,-4) and
outputs two values ([-2,-4]), which are the even numbers in the set [1,-2,3,-4]. In the
second simulation step, the kernel consumes the next set of window inputs (i.e, [5,-6,7 ,8])
the output is [-6,8]. For the third set of inputs [9,10,12,14] , the output at the third
simulation step is [10,12,14]. Similarly for the final set of inputs [5,7,9,13], the output is
empty because there are no even numbers to produce from the fourth input window.

In summary, the output size at the:

• First simulation step is 2.

• Second simulation step is 2.

• Third simulation step is 3.

• Fourth simulation step is 0.

So, the kernel produces data samples of different sizes at every invocation and sometimes it does
not produce any output. To model this behavior in Model Composer, you can use variable-size
signals in Simulink. However, during a simulation, the number of dimensions cannot change. A
variable-size signal always has an associated maximum signal size. In this case, it is 4.

The variable-size signal in Simulink is represented with a thicker signal line unlike the normal
signal as highlighted in the previous figure. You can learn more about variable size signals here:

Importing AI Engine Kernels

Model Composer supports importing C/C++ kernels functions. Function must have void as the
return type. It also supports importing the class member functions as well as the function
templates. Model Composer provides two AI Engine library blocks to import kernel functions of
different types (class-based and non-class-based kernels):

• AIE Kernel

• AIE Class Kernel

as described in the following sections.

Non-Class-Based Kernels

To Import an ordinary C++ function as a block into Model Composer, you need to use an AI
Engine kernel block from the AI Engine Library as shown.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 310Send Feedback

https://www.mathworks.com/help/simulink/ug/variable-size-signal-basics.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=310

Figure 211: AI Engine Kernel

Double-clicking the block symbol displays the parameters of the AI Engine kernel block as shown
in the following figure.

Figure 212: Block Parameters: AI Engine Kernel

The block mask parameters need to be updated in order to import the kernel function as a block.
The following table provides details on the parameters and description for each parameter.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=311

Table 16: AI Engine Kernel: Master Parameters

Parameter Name Parameter
Type Criticality Description

Kernel header file String Mandatory Name of the header file that contains the kernel function
declaration. The string could be just the file name, a relative path
to the file, or an absolute path of the file. Use the Browse button
to navigate to the file.

Kernel function String Mandatory Name of the kernel function for which the block is to be created.
This function should be declared in the kernel header file.

Kernel init function String Optional Name of the initialization function used by the kernel function.

Kernel source file String Mandatory Name of the source file that contains the kernel function
definition. The string could be the file name, a relative path to the
file or an absolute path of the file.

Kernel search paths Vector of
Strings

Optional If the kernel header file or the kernel source file are not found
using the value provided through Kernel header file or Kernel
source file fields, respectively, then the paths provided through
Kernel search paths are used to find the files.
This parameter allows the use of environment variables while
specifying paths for the kernel header file and the kernel source
file. The environment variable can be used in either ${ENV} or
$ENV format.

Preprocessor options Optional Optional preprocessor arguments for downstream compilation
with specific preprocessor options.
The following two preprocessor option formats are accepted and
multiple can be selected: -Dname and Dname=definition
separated by a comma. That is, the optional argument must begin
with -D and if the option definition value is not provided, it is
assumed to be 1.

The block parameter window which appears after double-clicking on the AI Engine kernel block
is same irrespective of whether the kernel is Window type or Stream type. But the function
configuration parameters changes for Window and Stream type. To edit the code in the MATLAB
editor, click Edit (immediately after the browse button).

Importing Window-Based Kernels

As explained in Data Accessing Mechanisms, the size of the input and output data blocks for
window-based access depends on the specified window size. Model Composer supports the
following windows-based input and output data types as interfaces to the AI Engine kernel block.

• input_window_<Type>

• output_window_<Type>

<Type> Complexity Signedness
int8 Real Signed

int16 Real Signed

int32 Real Signed

int64 Real Signed

uint8 Real Unsigned

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=312

<Type> Complexity Signedness
uint16 Real Unsigned

uint32 Real Unsigned

uint64 Real Unsigned

cint16 Complex Signed

cint32 Complex Signed

float Real N/A

cfloat Complex N/A

As an example, to import a simple kernel with a window-based interface, the following
simple.h header file defines the add_kernel function with two input windows and one
output window of type int16.

Simple.h

#ifndef __ADD_KERNEL_H__
#define __ADD_KERNEL_H__

#include <adf.h>
#define NUM_SAMPLES 4
void add_kernel(input_window_int16 * in1,input_window_int16 * in2,
output_window_int16 * outw);

#endif

The kernel (simple.cc) is defined as follows. It processes a sum operation on in1 and in2 and
produces output on outw.

#include "simple.h"
void add_kernel(input_window_int16 * in1,input_window_int16 * in2,
output_window_int16 * outw)
{
 int16 temp1,temp2,temp_out;
 for (unsigned i=0; i<NUM_SAMPLES; i++) {
 window_readincr(in1,temp1);
 window_readincr(in2,temp2);
 temp_out = temp1 + temp2;
 window_writeincr(outw,temp_out);
 }
}

TIP: Although not required, the following recommendations are useful for reusability and faster
compilation.

• Define each kernel in its own source file.

• Organize kernels by creating directories for header files and source files separately.

• Kernel source files should include all relevant header files to allow for independent compilation.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=313

To import the add_kernel function as a block in a Model Composer design, double-click the
AIE Kernel block and update parameters as follows:

• Kernel header file: kernels/include/simple.h

• Kernel function: add_kernel

• Kernel Init function: Leave empty

• Kernel source file: kernels/source/simple.cc

• Kernel search path: Leave empty

• Preprocessor options: Leave empty

When you click the Import button in the block parameters GUI, the tool parses the function
signature in the header file and updates the AI Engine kernel block GUI interface as shown in the
following figure.

Figure 213: AI Engine Kernel (updated)

After the AI Engine kernel block is added to the Simulink editor, input and output ports are not
present. But, after adding the kernel parameters in the GUI, the block is updated with two input
ports and one output port with block name matching the imported kernel function.

After a successful import, the Function tab GUI displays automatically, providing user-editable
configuration parameters. You can quickly review the function definition of the imported kernel
function and the port names with directions.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=314

Figure 214: Function Tab

Appropriate values should be entered in the Function tab for Window size and Window margin
(see the previous figure).

Setting the Window Margin Value

As explained in Data Accessing Mechanisms, window margin is the overlapping of input data
samples. Model Composer accepts, Window margin value in terms of the number of samples.
The values given in the Window margin fields should be multiple of 32 bytes.

For example, if your input data type is int16 which is 2 bytes. The minimum Window margin
value that is accepted is 16 samples (16*2). The other values that are accepted can be 32,48, 64
and so on.

Another example. If your input is of type cint32 which is 8 bytes (real 4 bytes and 4 imaginary
bytes). In this case the minimum window margin value that is accepted is 4. Because, 4 * 8 bytes
gives 32 bytes. The other values that are accepted can be 8, 12, 16, and so on.

The following table provides details on the parameters and description for each parameter.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=315

Table 17: Window Port Parameters

Parameter Name Criticality Description
Window size Mandatory • Window size is required for each port (argument) of the kernel

function.
• The value represents the number of samples (elements).
• The window size must be a positive integer value.
• Window size should be a multiple of 16 bytes.

Window margin Mandatory • Window margin is required for each input port (argument) of the
kernel function.

• The value represents the number of samples (elements).
• The window margin must be a non-negative integer.
• The window margin should be a multiple of 32 bytes.

Synchronicity Mandatory • The Synchronicity value options available are sync and async.

• Port synchronicity is set to sync by default. You can optionally
change it async.

After the successful import of kernel functions, the Import push button label in the General tab
changes to Update enabling further updates of block parameters. You can change the source
code of the kernel function even after importing the block without requiring a re-import.
However, if you change the function signature, or the parameters to the function, then you will
need to click Update in the General tab to apply changes.

Figure 215: General Tab

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=316

Importing Stream-Based Kernels

As explained in Data Accessing Mechanisms, stream-based kernels access data streams in a
sample-by-sample fashion. Model Composer supports the following stream-based input and
output data types as interfaces to the AI Engine kernel block.

• input_stream_<TYPE>

• output_window_<TYPE>

<Type> Complexity Signedness
int8 Real Signed

int16 Real Signed

int32 Real Signed

int64 Real Signed

uint8 Real Unsigned

uint16 Real Unsigned

uint32 Real Unsigned

uint64 Real Unsigned

cint16 Complex Signed

cint32 Complex Signed

float Real N/A

cfloat Complex N/A

As an example, to import a simple kernel with a stream-based interface, the following simple.h
header file declares the simple_comp function with one input stream and one output stream.

#ifndef __COMPLEX_KERNEL_H__
#define __COMPLEX_KERNEL_H__
#include <adf.h>
 void simple_comp(input_stream_cint16 * in, output_stream_cint16 * out);
#endif //__COMPLEX_KERNEL_H__

and the function is defined in simple.cc.

#include "simple.h"
void simple_comp(input_stream_cint16 * in, output_stream_cint16 * out) {
 cint16 c1, c2;

 for (unsigned i=0; i<NUM_SAMPLES; i++) {
 c1 = readincr(in);
 c2.real = c1.real+c1.imag;
 c2.imag = c1.real-c1.imag;
 writeincr(out, c2);
}
}

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=317

Note: See the Versal ACAP AI Engine Programming Environment User Guide (UG1076) for details of the
readincr() and writeincr() APIs.

Although, the function arguments for window-based and stream-based kernels are different, the
procedure for importing the stream-based kernel is the same.

After a successful import, the Function tab GUI displays automatically. You can quickly review
the function definition and ports as shown in the following figure.

Figure 216: Function Tab

The following table provides details on the parameters and a description for each parameter.

Table 18: Stream Port Parameters

Parameter Name Description
Signal size • This parameter represents the size of the output signal and should be set to a value

greater than or equal to the maximum nnumber of samples that are produced during
any invocation of the kernel.

In the General tab, the Import button changes to Update, enabling further updates of block
parameters.

Model Composer also supports cascade stream connections between two AI Engine processors.

An AI Engine kernel can use incoming stream connections as follows:

• Input_stream_acc48

• Input_stream_cacc48

Similarly, a kernel can use the outgoing cascade stream connections as follows:

• output_stream_acc48

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 318Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=318

• output_stream_cacc48

In Model Composer, a cascade stream port is represented as a 48-bit fixed point signal
(x_sfix48) that can be either complex or real.

Consider the following example, where a cascade output stream of one kernel is connected to
the cascade input stream of another kernel.

#ifndef __CASCADE_KERNELS_H__
#define __CASCADE_KERNELS_H__
void f_osacc48(input_window_int32 *i_hi,
 input_window_int16 *i_lo,
 output_stream_acc48 *o1);
#endif

The kernel function f_osacc48 has two input windows: i_hi and i_lo, and one cascade
stream output: o1.

Note: This kernel function includes both window-based ports and stream-based ports.

After importing this kernel function, the AI Engine kernel block is as shown in the following
figure.

Figure 217: AI Engine Kernel after Import

Consider another kernel function f_isacc48, which has one cascade stream input: i1, and two
output windows: o_hi and o_lo.

#ifndef __CASCADE_KERNELS_H__
#define __CASCADE_KERNELS_H__
void f_isacc48(input_stream_acc48 *i1,
 output_window_int32 *o_hi,
 output_window_int16 *o_lo);
#endif

After importing the second kernel function, the AI Engine kernel block is as shown in the
following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=319

Figure 218: AI Engine Kernel (Second Kernel Function)

Now the two kernels can be connected to form a cascade connection using the cascade stream
output of block f_osacc48 and the cascade stream input of block f_isaccc48. This is shown
in the following figure.

Figure 219: Connected Kernels (Cascade Connection)

Importing an AI Engine Kernel with Run-Time Parameters

Model Composer supports importing AI Engine kernels with run-time parameters in kernel
functions alongside window and stream types. The following table lists the scalar data types that
can be passed as run-time parameters.

<Type> Complexity Signedness
int8 Real Signed

int16 Real Signed

int32 Real Signed

int64 Real Signed

uint8 Real Unsigned

uint16 Real Unsigned

uint32 Real Unsigned

uint64 Real Unsigned

cint16 Complex Signed

cint32 Complex Signed

float Real N/A

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=320

<Type> Complexity Signedness
cfloat Complex N/A

Implicit ports are inferred for each parameter (scalar and vector data types) in the function
argument. The following table describes the type of port inferred for each function argument.

Formal Parameter Port Class
T Input

Const T Input

T & Inout

Const T & Input

Const T (&) [..] Input

T (&)[..] Inout

In the following example, the simple_rtp function has two real-time parameters. Notice the
function argument select which is passed by value, and argument weight which is passed by
reference.

#ifndef __RTP_KERNEL_H__
#define __RTP_KERNEL_H__

void simple_rtp(input_window_cint16 * in,output_window_cint16 * outw, int32
&weight, int32 select);

#endif //__RTP_KERNEL_H__

When imported for the above function, the AI Engine kernel block looks as shown in the
following figure. In Model Composer, the inout port appears as the output port on the AI
Engine kernel block.

Because RTPs are used alongside the window and stream ports, the procedure for importing the
kernel function remains the same. When the above kernel function with RTPs are imported, the
AI Engine kernel block looks as shown in the following figure.

Figure 220: AI Engine Kernel (RTPs)

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=321

Notice that the AI Engine kernel block name (simple_rtp) is same as AI Engine kernel function
name.

After a successful import, the Function tab GUI displays automatically. You can quickly review
the function definition and run-time parameter ports as shown.

Figure 221: Function Tab

Port synchronicity is the only parameter that is specific to RTPs. The following table provides
details about the valid synchronicity of the Destination RTP input port with respect to the Source
RTP inout port. The default port synchronicity is set to 'auto'.

Table 19: Valid Synchronicity

Source RTP Inout Port Destination RTP input Port
auto async

sync auto

sync sync

async async

If the source RTP inout port is set to 'auto' then the destination RTP input port should be 'async'.
Similarly for other combinations. Model Composer throws an appropriate error when you try to
use any combination which is not specified in the previous table.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=322

Importing an AI Engine Kernel with Function Template

You may require a generic function that can be used for different datatypes. Using templates, you
can pass a datatype as a parameter and Model Composer supports importing an AI Engine Kernel
with a function template. To do this, use the same AIE Kernel block used earlier to import the
ordinary C++ functions.

As an example to import the kernel function with templates, consider below header file
kernel.h, containing the declaration of a function template. Here, the template has typename
template parameter T, and a non-type (integral) template parameter N.

kernel.h

#ifndef _AIE_TEMP_KERNELS_H_
#define _AIE_TEMP_KERNELS_H_

#include <adf.h>
template<typename T, int N>
void myFunc(input_window<T> *i1,
 output_window<T> *o1
);

#endif // ifndef _AIE_TEMP_KERNELS_H

The definition of the function template is in the source file kernel.cpp as shown below.

kernel.cpp

#include "kernel.h"

template<typename T, int N>
void
myFunc(input_window<T> *i1,
 output_window<T> *o1
)
{
 for(int i = 0;i<8;i++)
 {
 T val = window_readincr(i1);
 val *= N;
 window_writeincr(o1, val);
 }
}

Notice the usage of the non-type template parameter 'N' in the kernel output computation. To
import the template function as a block into Model Composer, double-click the AIE Kernel block
and update the parameters as follows.

• Kernel header file: kernels/include/kernel.h

• Kernel function: myFunc

• Kernel Init function: Leave empty

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=323

• Kernel source file: kernels/source/kernel.cpp

• Kernel search path: Leave empty

• Preprocessor options: Leave empty

When you click the Import button in the block parameters GUI, the Function tab displays
automatically. Enter the values of a template type parameter 'T' and a template non-type
parameter of integral type within the Function Template Parameter section as shown in the
following figure. Double-click the appropriate editable field and enter the values. You can also
review the declaration of the template function in the Function declaration section.

Figure 222: AIE Kernel: Function declaration

The following typenames are supported as type template parameters:

• int8,int16,int32,int64

• uint8,uint16,uint32,uint64

• float, double

• cint16, cint32, cfloat

Scroll down to the Port attributes section in the Function tab and enter appropriate user-editable
configuration parameters as shown.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=324

Figure 223: AIE Kernel: Port attributes

After entering the appropriate values in the Function tab, click Apply. Notice the updated
interface of the AIE kernel block GUI as shown in the following figure.

Figure 224: AIE Kernel: Updated

Template Specialization

For cases where you want to override the default template implementation to handle a particular
type in a different way, Model Composer supports template specialization. Consider the
following example where a function myFunc has one specialized version declared to implement
an int16 datatype along with a generic template function.

kernel.cpp

#ifndef _AIE_CLASS_KERNELS_H_
#define _AIE_CLASS_KERNELS_H_

#include <adf.h>
template<typename T, int N>
void myFunc(input_window<T> *i1,
 output_window<T> *o1
);
template<>
void myFunc<int16,8>(input_window<int16> *i1,
 output_window<int16> *o1);

#endif

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=325

When you try to import the kernel myFunc as a block into Model Composer using the AIE
Template Kernel block, the Function tab in the block GUI parameter looks as shown. If you select
the function variant corresponding to the base template, the Function Template Parameters table
shows the values corresponding to that. If you select the specialization variant instead, the table
shows the values of the template parameters of that specialization. You cannot change these
values.

Figure 225: AIE Template Kernel: Functional declaration Options

Class-Based Kernels

Model Composer supports importing the C++ kernel class to have constructor parameters for
specifying parameter values. You need to use anAI Engine class kernel block from the AI Engine
Library as shown.

Figure 226: AIE Class Kernel

Double-clicking the block symbol displays the parameters of the AI Engine class kernel block as
shown in the following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=326

Figure 227: AIE Class Kernel: Block Parameters

The block mask parameters need to be updated in order to import the kernel function as a block.
The following table provides details on the parameters and description for each parameter.

Parameter
Name

Parameter
Type Criticality Description

Kernel header file String Mandatory Name of the header file that contains the kernel class and
registerKernelClass method declarations The string could be just the
file name, a relative path to the file or an absolute path of the file. Use
the browse button to select the file.
This field does not accept environmental variables.

Kernel class String Mandatory Name of the kernel class which contains member variables and
kernel member function.

Kernel function String Mandatory Name of the kernel member function for which the block is to be
created. This function should be registered using the
registerKernelClass method in kernel header file.

Kernel init function String Optional Name of the initialization function used by the kernel function.

Kernel source file String String Name of the source file that contains the kernel member function
definition and non-default constructor parameter values are
specified.
The string could be the file name, a relative path to the file or an
absolute path of the file.
This field does not accepts environmental variables.

Kernel search
paths

Vector of
Strings

Optional If the kernel header file or the kernel source file are not found using
the value provided through 'Kernel header file' or 'Kernel source file'
fields, respectively, then the paths provided through 'Kernel search
paths' are used to find the files.
This parameter allows use of environment variables while specifying
paths for the kernel header file and the kernel source file. The
environment variable can be used in either ${ENV} or $ENV format.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=327

Parameter
Name

Parameter
Type Criticality Description

Preprocessor
options

Optional Optional preprocessor arguments for downstream compilation with
specific preprocessor options.
The following two preprocessor option formats are accepted and
multiple can be selected: -Dname and -Dname=definition
separated by a comma. That is, the optional argument must begin
with -D and if the the option definition value is not provided, it is
assumed to be 1.

The AI Engine class kernel block supports all the kernel functions that a normal AI Engine kernel
block can support and the block parameter window which appears after double-clicking on the
AI Engine class kernel block is the same irrespective of whether the kernel member function is
Window-based or Stream-based. To edit the header file or source file, you can click the Edit
button (immediately after the browse button).

Kernel Class with Default Constructor

As an example, to import the C++ class kernel with the default constructor, consider the
following simple.h header file that defines the kernel class simple_class with the default
constructor.

simple.h

#include "adf.h"

class simple_class
{
private:
 int16 val;
 int16 numSamples;

public:
 simple_class();

 void mulBytwo(input_window_int16* in, output_window_int16* out);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(simple_class::mulBytwo);
 }
};

RECOMMENDED: It is highly recommended to define the body of the kernel and class constructors
in .cpp  file.

It is necessary to register the kernel function using the registerKernelClass() method.
More than one class kernel can be declared in a header file and each class should contain
separate registerKernelClass() methods. Only one function can be registered per class
and Model Composer can import only functions that are registered using
REGISTER_FUNCTION().

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=328

The Kernel function is defined in simple.cpp as shown below.

simple.cpp

#include "simple.h"

simple_class::Simple_class()
{
 val = 24;
 numSamples = 8;
}

void simple_class::mulBytwo(input_window_int16* in, output_window_int16*
out)
{
 for (int i=0; i<numSamples; i++)
 {
 int16 value = window_readincr(in);
 window_writeincr(out, (in*2)+val);
 }
}

To import the mulBytwo function as a block in a Model Composer design, double click the AIE
class kernel block and update the parameters as follows.

• Kernel header file: kernels/include/simple.h

• Kernel class: simple_class

• Kernel function: mulBytwo

• Kernel Init function: Leave empty

• Kernel source file: kernels/source/simple_kernel.cpp

• Kernel search path: Leave empty

• Preprocessor options: Leave empty

Click the Import button in the block parameters GUI. After successful import, the Function tab
displays. This provides user-editable configuration parameters as shown in the following figure.

Figure 228: AIE Class Kernel: Block Parameters

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=329

After entering the appropriate values in the Function tab, click Apply to see the updated
interface of the AI Engine class kernel block GUI as shown.

Figure 229: AIE Class Kernel after Update

You can quickly review the function declaration of the imported kernel function and the port
names with directions, from the Function tab.

Click the Kernel Class tab to observe the class declaration as shown in the following figure.

Figure 230: Kernel Class Tab: Class Declaration

Class Kernels with Parameterized Constructors

Default constructors do not take any arguments and have no parameters. However, it is possible
to pass arguments to the constructors and Model Composer supports importing the class kernels
with parameterized constructors. Both scalar and vector arguments can be passed to
constructors. You can assign values to these parameters from the Kernel Class tab in the AI
Engine Class Kernel block as shown in the following figure. You can also observe the
parameterized constructor declaration in Kernel Class Constructor Variant section.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=330

Figure 231: Kernel Class: Parameter Values

If you have multiple variants of Kernel Class Constructors, you can choose one of them and pass
values to the constructor arguments accordingly.

Figure 232: Kernel Class: Multiple Values

Constructor with Reference to an Array

Consider the following example that declares the constructor with reference to an array as
argument.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=331

fir.h

class FIR
{
 private:
 int32 (&coeffs)[NUM_COEFFS];
 int32 tapDelayLine[NUM_COEFFS];
 uint32 numSamples;
 public:
 FIR(int32(&coefficients)[NUM_COEFFS], uint32 samples);
 void filter(input_window_int32* in, output_window_int32* out);
 static void registerKernelClass()
 {
 REGISTER_FUNCTION(FIR::filter);
 REGISTER_PARAMETER(coeffs);
 }
};

fir.cpp

#include "fir.h"
FIR::FIR(int32(&coefficients)[NUM_COEFFS], uint32 samples)
: coeffs(coefficients)
{
 for (int i = 0; i < NUM_COEFFS; i++)
 tapDelayLine[i] = 0;
 numSamples = samples;
}
void FIR::filter(input_window_int32* in, output_window_int32* out)
{
 ...
}

Here, member variable coeffs is an int32 (&)[NUM_COEFFS] data type. The constructor
initializer coeffs(coefficients) initializes coeffs to the reference to an array allocated
externally to the class object. To let the aiecompiler know that the coeffs member variable is
intended to be allocated by the compiler, you must use REGISTER_PARAMETER to register an
array reference member variable inside the registerKernelClass() method. The
aiecompiler throws an appropriate error if the constructors with reference to an array are not
registered.

Kernel with Class Templates

You may require a class implementation that remains the same for all classes but the data types
vary. Model Composer supports importing the kernels with class templates using the AIE Class
Kernel block. Consider the following example which declares the class template in kernel.h.

kernel.h

#ifndef _AIE_CLASS_KERNELS_H_
#define _AIE_CLASS_KERNELS_H_
#include <adf.h>

template<typename T, int N>
class MyKernel {

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=332

 int m_count;
public:
 MyKernel();
 void myFunc(input_stream<T> *i1,
 output_stream<T> *o1,
 output_stream<int> *o2);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(MyKernel::myFunc);
 }

};
#endif

In this case, the default constructor initializer m_count(N) initializes m_count with template
parameter N as shown in te following kernel.cpp code.

kernel.cpp

#include "kernel.h"

template<typename T, int N>
MyKernel<T,N>::MyKernel()
 : m_count(N)
{
}

template<typename T, int N>
void
MyKernel<T,N>::myFunc(input_stream<T> *i1,
 output_stream<T> *o1,
 output_stream<int> *o2)
{
 put_ms(0, get_ss(0) * N);
 ++m_count;
 writeincr(o2, m_count);
}

After successfully importing the kernel with class template using the AIE Class Kernel block, the
Function tab displays. Here you can enter appropriate values in the user-editable configuration
parameters. Click Apply to see the updated interface of the AI Engine class block GUI.

Redirect to the Kernel Class tab in the block parameters GUI to review the template class
declaration from the kernel class variant. In the Kernel Class tab, you can enter the value of a
template type parameter 'T' and a template non-type parameter of integral type as shown.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=333

Figure 233: Kernel Class Template

IMPORTANT!

1. Template type parameters can be any valid window, stream, or RTP datatypes.

2. Only a value that has an integral type is supported for template non-type parameters.

3. MATLAB variables can be used to specify non-type template parameters.

Template Specialization

For cases when you need to override the default template implementation to handle a particular
type in a different way, Model Composer supports template specialization. Consider the
following example where a class MyClass has two different interfaces than the generic
MyClass. One specialized version is declared to implement the cint16 datatype and other
version to implement the uint32 datatype.

template_specialization.h

#include <adf.h>
template<typename T,int N>
class MyClass
{
};

template<>
class MyClass<cint16,1> {
 int m_count;
 int16 var_1;
 int16 var_2;
 int16 var_3;
 uint16 var_4;
public:
 MyClass();
 MyClass(int16 q_var1,int16 q_var2,int16 q_var3,uint16 q_var4);
 MyClass(int16 q_var1,int16 q_var2);
 MyClass(int16 q_var1,int16 q_var2,int16 q_var3);

 void func_mem(input_stream<cint16> *i1,

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=334

 output_stream<cint16> *o1,
 output_stream<int> *o2);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(MyClass::func_mem);
 }

};

template<>
class MyClass<uint32,2> {
 int m_count;
 int16 var;
public:
 MyClass(uint32 q_var1);

 void func_mem(input_stream<uint32> *i1,
 output_stream<uint32> *o1,
 output_stream<int> *o2);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(MyClass::func_mem);
 }

};

You can see that two functions are registered separately in two specialized classes. When you try
to import the kernel func_mem as a block into Model Composer using the AIE Class kernel block,
the Kernel Class tab in block GUI parameters looks as shown.

Figure 234: Class Variant

After selecting one of the Kernel Class Variants from the list, the Class Template Parameters
update accordingly. The list of Kernel Class Constructors for the corresponding class variant, is
updated and you can select from the list (see the following figure).

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=335

Figure 235: Kernel Class Constructors

Note: MATLAB variables can be used to specify the values of Kernel Class Constructor Parameters.

Template Partial Specialization

For cases where you write a template that specializes one template parameter and still allows
some parameterization, you can use the template partial specialization. Model Composer allows
you to import the class kernels with partial specialization using the AIE Class Kernel block.
Consider the following example where a class class_a is partially specialized with a non-type
template parameter.

partial_specialization.h

#include <adf.h>
template<typename T,int N>
class class_a
{
};

template<typename T>
class class_a<T,2> {
 int m_count;
 T var;
public:
 class_a(T q_var1);

 void func_mem(input_stream<T> *i1,
 output_stream<T> *o1,
 output_stream<int> *o2);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(class_a::func_mem);
 }

};

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=336

Notice that the function func_mem is registered in registerKernelClass() method. When
you try to import the kernel function as a block into Model Composer using the AIE Class Kernel
block, the Kernel Class tab in block GUI parameters looks as shown.

Figure 236: Block Parameters: AIE Class Kernel

Because the class is partially specialized with a non-type template parameter, you cannot edit the
parameter 'N' from the Kernel Class Template Parameters. However, the value of the template
type parameter can be a modified to any valid datatype.

Kernels with Namespaces

Model Composer supports importing kernels declared in a namespace. For both templatized and
non-templatized kernels you need to qualify the kernel function with the namespace.

Consider the following examples where the non-templatized kernel function is qualified with the
namespace ns1 and templatized kernel function is qualified with the namespace ns2.

Kernel.h

namespace ns1 {
void myFunc_1(input_stream<int32> * restrict i1,
 output_stream<int32> * restrict o1);
} // namespace ns1

templateKernel.h

namespace ns2 {
template<typename T,int size>
void myFunc_2(input_stream<int32> * restrict i1,
 output_stream<int32> * restrict o1);
} // namespace ns2

To import the the above functions using the AIE Kernel and AIE Template Kernel blocks, the
Kernel functio' parameter in the GUI block parameters should be updated as follows:

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=337

• Kernel Function: ns1::myFunc_1 (Non -templatized function)

• Kernel Function: ns2::myFunc _2 (Templatized function)

If you have a class kernel declared in a namespace, then only the kernel class field should be
qualified, and not the kernel function.

For example, consider the following kernel class which is qualified with the namespace ns3.

class_kernel.h

namespace ns3 {
#include "adf.h"

class simple_class
{
private:
 int16 val;
 int16 numSamples;

public:
 simple_class();

 void func_q(input_window_int16* in, output_window_int16* out);

 static void registerKernelClass()
 {
 REGISTER_FUNCTION(simple_class::func_q);
 }
};
} // namespace ns3

To Import the kernel function func_q as a block, the Kernel Class and Kernel function
parameters in the AIE Class Kernel block should be updated as follows:

• Kernel class: ns3::simple_class

• Kernel function: sfunc_q

Specifying Constraints

Constraints are user-defined properties for graph nodes which provide additional information to
the compiler. Model Composer provides a mechanism to specify these constraints from within
the kernel import or graph import blocks in the AI Engine library. During graph code generation,
all these constraints automatically appear inside the graph code. The following figure shows the
Constraints tab of the AIE Kernel block highlighting the Open Constriants Editor button in it.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=338

Figure 237: Constraints

Clicking Open Constraints Editor opens the Model Composer Constraints window. Here you can
specify various constraints such as core utilization factor, kernel location, buffer location, stack/
heap location, and size as shown in the following figure.

Figure 238: Model Composer Constraints

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=339

A similar constraints tab is available for all blocks in the Xilinx Toolbox/AI Engine/User-Defined
Functions library and the constraint editor reflects the constriants available for that particular
block. Adding these constriants will not affect Simulink simulation as they are only used for
generating the graph code and AIE simulation.

When you open the constraints editor from any particular kernel/graph import block, the Model
Composer Constraints window allows you to specify the constraints for that particular kernel.
However, you can switch between all the kernels/graphs available in your design from the drop
down menu and specify the constraints accordingly as shown in the following figure. In this way,
you can avoid opening each kernel/graph block separately to specify constraints.

Figure 239: Model Composer Constraints

The remainder of this section discusses the types of constraints that Model Composer supports.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=340

Core utilization factor (runtime<ratio>)

The core utilization factor ratio is specified as the ratio of the function run time compared to the
cycle budget and must be between 0 and 1. The cycle budget is the number of instruction cycles
a function can take to either consume data from its input or to produce a block of data on its
output.

You can specify the core utilization factor in the Model Composer Constraints editor window as
shown.

Kernel Location

When building large graphs with multiple subgraphs, it is sometimes useful to control the exact
mapping of kernels to AI Engines, either relative to other kernels or in an absolute sense.
Specifying location constraints provides a powerful mechanism to create a robust, scalable, and
predictable mapping of your graph onto the AI Engine array. It also reduces the choices for the
mapper to try, which can considerably speed up the mapper.

The kernel location constraint can be specified from the Model Composer Constraints editor
window as shown.

• By default, the option Specify Kernel Location is deselected. Enable this to specify the
constraint.

You can choose to either:

• Constrain a kernel to be placed on a specified AI Engine tile.

IMPORTANT! MATLAB variables can be used to specify the kernel locations.

Or

• Constrain two kernels to be placed relatively on the same AI Engine. This forces them to be
sequenced in topological order and be able to share memory buffers without synchronization.
As shown, you can select the kernel you want to place relatively on the AI Engine from the
drop down.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=341

• Model Composer also supports specifying two kernels, say k1 and k2. These should not be
mapped to the same AI Engine.

Stack Location

The stack location constraint is used to specify the location of the system memory (stack and
heap) of the AI Engine where the specified kernel is mapped. This provides the mechanism to
constrain the location of the system memory with respect to other buffers used by that kernel.
By default, the option Specify Stack Location is deselected. Enable this to specify the constraint.

You can specify the stack location by pointing to a:

• Specific data memory bank on an AI Engine tile. The bank ID is relative to the tile and can take
values 0,1,2,3.

• Specific data memory address on an AI Engine tile. The offset address is relative to the tile
starting at zero with a maximum value of 32768 (32K).

• Specific data memory address offset. The offset address is between 0 and 32768 (32K) and is
relative to a tile allocated by the compiler.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=342

Model Composer also supports specifying the stack location of the kernel where it should not be
mapped to a particular bank, address, or offset.

Stack Size

This constraint allows you to set the stack size for an individual kernel. By default the option
Specify Stack Size is deselected. Enable this to specify the constraint. The default value is 1024.

Buffer Location

The AI Engine compiler attempts to automatically allocate buffers for windows, lookup tables,
and run-time parameters in the most efficient manner possible. However, you might want to
explicitly control their placement in memory. Similar to the kernels shown previously in this
section, buffers inferred on a kernel port can also be constrained to be mapped to specific tiles,
banks, or even address offsets using location constraints.

• By default, the option Specify Buffer Location is deselected. When you enable this option, the
kernel ports that can be constrained are displayed. Buffer locations are only allowed on
window kernel ports.

• You can click on each individual port and enable constraint as shown in the following figure.

• You can use the Allocation option to specify a single or double buffer constraint on a window
port. By default, a window port is double buffered.

• For a single buffer allocation, you can choose to constrain the buffer location by pointing to a:

○ Specific data memory bank on an AI Engine tile. The bank ID is relative to the tile and can
take values 0,1,2,3.

○ Specific data memory address on an AI Engine tile. The offset address is relative to the tile
starting at zero with a maximum value of 32768 (32K).

○ Specific data memory address offset. The offset address is between 0 and 32768 (32K) and
is relative to a tile allocated by the compiler.

○ Specific buffer location to be on the same bank as that of one or more other port buffers.
This ensures that the buffer can be accessed by other kernel without requiring a DMA.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=343

• You can constrain the location of double buffers attached to a port that are to be placed on a
specific address or a bankid.

IMPORTANT!

The non-collocation constraint (i.e., specifying where the buffer should not be mapped to) is allowed only
for single buffer.

Parameter Location

This constraint allows you to set the location of the parameter array declared within the graph.

By default, the option Specify Parameter Location is deselected. When you enable this option,
the parameters that can be constrained are displayed. You can click on each individual parameter
and constrain the location of a parameter lookup table to be placed on specific address or a
bankid. You can also constrain the parameter location to be on the same tile as that of some
other kernel. This ensures that the buffer, or parameter array can be accessed by the other kernel
without requiring a DMA.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=344

HLS Kernel Frequency

This constraint allows you to specify the clock frequency (in MHz) of the PL Kernel.

Graph Bounding Box

This bounding box constraint specifies a rectangular bounding box for a graph to be placed in AI
Engine tiles, between columns from column_min to column_max and rows from row_min to
row_max. Multiple bounding box location constraints can be set to specify an irregular shape
bounding region.

By default, the Specify Bounding Box option is deselected. Enable this to specify the boundary
location of the graph. Further, you can also enable the Specify Another Bounding Box option to
specify multiple bounding regions.

Graph Stamp Location

The graph stamp location constraint can be used when the same graph has multiple instances
that can be constrained to the same geometry in AI Engine. There are two main advantages of
using this constraint:

• When the same graph is instantiated multiple times, the throughput should be same. Because
of the differences in routing, throughput might not be the exactly identical. However, it will be
much closer when stamping is used.

• The run time required will be significantly less because the AI Engine compiler only solves a
reference graph instead of the entire design.

By default, the Specify Graph Stamp option is deselected. When you enable this, Model
Composer allows you to select the graph from the drop down menu for which the graph (in lhs)
can be stamped.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=345

Note: Applying constraints on Xilinx Toolbox/AI Engine/DSP library blocks is not supported and the
constraint editor does not show DSPlibrary blocks in the drop-down menu.

Importing AI Engine Graphs

As discussed in AI Engine Graphs, a graph is a connection of different compute kernel functions.
Unlike when importing kernels, where a kernel function is imported as a block into Model
Composer, in this case, graph code is imported as a block. To import the graph as block into
Model Composer, you need to select the AI Engine graph block from the AI Engine library (shown
in the following figure).

Figure 240: AI Engine Graph

Model Composer allows to connect the AI Engine graph block with the AI Engine kernel block so
that the whole design can be simulated in the Simulink environment.

IMPORTANT! It is assumed that your kernel code is already developed and that the associated kernels are
properly organized.

The AIE Graph block supports importing the AI Engine graph into Model Composer in two ways:

• Using the header file(*.h)

• Using the source file(*.cpp)

Using the Header File

To import the graph using the header file (.h), double-click the AIE Graph block and select the
Header file (*.h) option in the General tab. Specify the graph header file, class, search path, and
preprocessor options as shown in the following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=346

Figure 241: AI Engine Graph Block Parameters

The following table provides further details including names and descriptions of each parameter.

Table 20: AI Engine Graph Block Parameters

Parameter Name Parameter
Type Criticality Description

Graph Application
file(*.h)

String Mandatory Specify the file(.h), where the application graph class is
defined and the Adaptive Data Flow (ADF) header (adf.h),
kernel function prototypes are included.

Graph Class String Mandatory Specify the name of the graph class.

Graph Search paths Vector of
strings

Mandatory Specify search paths where header files, kernels, and other
include files can be found and included for simulation. The
search path $XILINX_VITIS/adf/include (where
adf.h isdefined) is be included by default and does not
need to be specified.

Preprocessor options Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options. The
following preprocessor option formats are accepted and
multiple can be selected: ‘-Dname’ and ‘-
Dname=definition’. That is, the optional argument must
begin with the '-D' string and if the option definition value
is not provided, it is assumed to be 1.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=347

graph.h

#include <adf.h>
#include "kernels.h"

class Proj: public adf::graph {
private:
 adf::kernel m_kernels[2];

public:
 adf::input_port m_in[2];
 adf::output_port m_out[2];

 Proj() {
 for (int ind = 0; ind < 2; ++ind) {
 m_kernels[ind] = adf::kernel::create(f1);

 adf::runtime<adf::ratio>(m_kernels[ind]) = 0.9;
 adf::connect<adf::stream >(m_in[ind], m_kernels[ind].in[0]);
 adf::connect<adf::stream >(m_kernels[ind].out[0], m_out[ind]);
 }
 adf::source(m_kernels[0]) = "f1.cc";
 adf::source(m_kernels[1]) = "f2.cc";
 }
};

When the GUI parameters are updated, click the Import button. The tool updates the Block
parameters GUI as shown. In the Graph Class tab you can see the RTP column with check boxes.
You can check this ON, only if the port is a Run Time Parameter. If not, you can directly click
Build at the bottom.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=348

Figure 242: Block Parameters GUI

You can see the progress window where the tool generates the graph database. After successful
import the Function Tab in the updated block parameters GUI appears as shown in the following
figures.

Figure 243: Progress Window

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=349

Figure 244: Block Parameters

Parameters such as the Graph Port Name, Data Type etc. are automatically updated from the
graph code. The only user-editable function configuration parameter is the signal size.

Table 21: User Editable Parameter

User-Editable Parameter Criticality Description
Signal size Mandatory This parameter represents the size of

the output signal and should be set to
a value equal to or greater than the
number of samples that are produced
at every invocation of the kernel.

The AI Engine graph block GUI interface with input and output ports is as shown in the following
figure.

Figure 245: AIE Graph Block

In the General tab, the Import button changes to Update, enabling further update of block
parameters.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=350

Figure 246: Update

Using the Source File (*.cpp)

To import the graph using the Source file (.cpp), double-click the AIE Graph block and select the
Source file (*.cpp) option in the General tab. Specify the graph application file (*.cpp), search
paths, and preprocessor options as shown in the following figure.

Figure 247: AI Engine Graph Block Parameters

The following table provides further details including names and descriptions of each parameter.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=351

Table 22: AI Engine Graph Block Parameters

Parameter Name Paramete
r Type Criticality Description

Graph Application file String Mandatory Specify the file(.cpp), where the adf dataflow graph is
instantiated and connected to simulation platform. This file
should contain the main() function, from where the
dataflow graph initializes and runs.

Graph Search paths Vector of
strings

Mandatory Specify search paths where header files, kernels, and other
include files can be found and included for simulation. The
search path $XILINX_VITIS/adf/include (where adf.h
isdefined) is be included by default and does not need to be
specified.

Preprocessor options Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options. The
following preprocessor option formats are accepted and
multiple can be selected: ‘-Dname’ and ‘-
Dname=definition’. That is, the optional argument must
begin with the '-D' string and if the option definition value
is not provided, it is assumed to be 1.

The following example shows the sample graph .cpp file. The graph is connected to the
simulation platform as follows. This file should be pointed to the Graph application file field in the
Block parameters GUI.

graph.cpp

#include "proj.h"

Proj mygraph;
adf::simulation::platform<2,2> platform(
 "data/i.txt",
 "data/i.txt",
 "data/o1.txt",
 "data/o2.txt");
adf::connect<> net1(platform.src[0], mygraph.m_in[0]);
adf::connect<> net2(platform.src[1], mygraph.m_in[1]);
adf::connect<> net3(mygraph.m_out[0], platform.sink[0]);
adf::connect<> net4(mygraph.m_out[1], platform.sink[1]);

int main(void) {
 mygraph.init();
 mygraph.run();
 mygraph.end();
 return 0;
}

When the GUI parameters are updated, click Import. The tool generates the graph database and
after successful import the AI Engine graph block gets updated with input and output ports as
shown in the following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=352

Figure 248: AIE Graph Block

Notice that the AIE Graph block interface generated when importing the header file and the
source file remains the same.

The Function Tab in the AIE Graph block parameters GUI appears similar to the one shown in the
Import graph using the header file. You can update the signal size parameter and click OK to exit
the Block parameters window.

IMPORTANT!

• To connect an AI Engine graph inout port to an AI Engine graph input RTP port, the
synchronocities of both ports must be compatible, otherwise, an appropriate error is reported by
Model Composer.

• If the RTP port's behavior is different from its default behavior, the connection should
appropriately specify it as an async or sync port in graph code.

Setting Signal Size to Avoid Buffer Overflow
The Signal Size field on the AI Engine import block masks only applies to kernels with stream or
cascade outputs. Moreover, it has no implementation significance and it is only meaningful for
simulation purposes in the Simulink environment. This section provides more in-depth
knowledge of what Signal Size is and how to set it.

Start with a very simple kernel with window input and stream output. The kernel code is as
follows:

void win_in_stream_out(input_window_int16 * in1,output_stream_int32 * out) {
 int16 val;
 for (unsigned i=0; i<16; i++) {
 window_readincr(in1,val);
 int32 squaring = val * val;
 writeincr(out,squaring);
 }
}

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=353

Figure 249: AIE Kernel: Window Input/Stream Output

This kernel expects a window of size 16 and at every invocation of this kernel, 16 output samples
are generated. Import this kernel into Simulink using the AIE Kernel block. The mask for the block
is shown in the following figure.

Figure 250: Block Parameters: window_in_stream_out

Regardless of what value you set the signal size to, it does not affect the numerical output. For
this example, you will generally set the signal size to 16 because every invocation of the kernel
produces 16 samples. In this case, the output of this block will be a variable size signal of
maximum size 16 (equal to the signal size) and each output will contain 16 samples. However, if
for example you set the signal size to 32, the output of the block will be a variable size signal
with a maximum size of 32, but each output will only contain 16 samples.

What if you set the signal size to a number smaller than 16, for example to 8? In this case, similar
to the previous cases, the output will be a variable size signal of maximum size of 8. As
mentioned previously, at each invocation of the kernel, the kernel produces 16 samples. Eight of
these samples will be put out by the block. The other eight are stored in an internal buffer in the
block. If you call the kernel too many times, eventually the internal buffer of the block will fill up
and you will see a buffer overflow error as shown in the following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=354

Figure 251: Buffer Overflow Error

This is a trivial example. You may contend that there is no reason to set the signal size to
anything less than 16, and that is correct. Now examine a model with two AI Engine kernels.
Connect the output of the kernel previously created to another AI Engine kernel with window
input and window output. The code for this second kernel is as follows:

void win_in_win_out(input_window_int16 * inw, output_window_int16 * outw)
{
 int16 temp;
 for (unsigned i=0; i<8; i++) {
 window_readincr(inw,temp);
 window_writeincr(outw,temp);
 }
}

Figure 252: Two AIE Kernels

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=355

This kernel requires an input window of size 8 and produces a window size of 8. Now consider
two scenarios. First consider a case in which the first block has the signal size set to 16. As
mentioned previously, with a signal size of 16, the buffer for the first block will not overflow. But
now examine the second block more closely. The second kernel upon receiving 16 samples, will
get invoked twice. Each time, it produces eight samples for a total of 16 samples. However, since
the output window size is 8, the block will produce eight samples and store the other eight in the
internal buffer. Just like before, if we run this model for long enough, the buffer for the second
block will overflow and simulation will stop.

In another scenario, to avoid an overflow, we might set the signal size for the first block to 8. This
will avoid an overflow in the second block. However as mentioned previously, now the buffer for
the first block will overflow. So how can we get out of this situation?

The buffer overflows because we are feeding more data to the blocks than the blocks can
process. If we reduce the rate, the kernels will be able to process any excess data in the buffers
and as such prevent the overflow. Now look into this more carefully.

Assume the simulation has been running for a while and the first block's buffer is not empty. If
we somehow stop feeding data to the first block, every time simulink calls the first block, the
kernel will not be invoked (there is no input data), but because there are samples in the buffer,
the block will continue to produce samples (eight at a time) until the buffer empties out after
which it will produce an empty variable size signal.

This information should help you avoid buffer overflow. Instead of stopping the input as
suggested above, simply reduce the flow of the data into the first block. One way of doing this is
to use a buffer block from Simulink and set the Output buffer size on the block mask to a number
smaller than the size of the input. The following figure depicts the same design shown above but
with a buffer block at its input:

Figure 253: Two AIE Kernels: Buffer Block Input

In this design, because fewer samples are being fed to the first block at any given call to the
block, the buffers will not overflow. Note that the output of this model will be different from the
model without the buffer block because the buffer block produces zero samples at time step
zero.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=356

TIP: If a block with stream output is connected to a block with window input, set the size of the signal size
for the producing block to the same size as the input window for the consuming block.

TIP: To avoid buffer overflow, reduce the rate you feed data to the system using a buffer block.

Simulation and Code Generation
After a high level graphical design is created using the blocks available in the Vitis Model
Composer AI Engine library, it should be simulated interactively in the Simulink environment. This
process ensures the functional correctness of the design using the native Simulink functional
simulator and displays the results on scopes and graphical displays. The compilation and
execution times are generally short at this stage, which helps you to quickly verify the
functionality and iterate over the design until the specification requirements are met. The
functionally verified design can then be used to generate the dataflow graph using the Model
Composer Hub block. The verification of the dataflow graph can be done using various execution
targets which Model Composer supports to simulate your AI Engine application at different levels
of abstraction, accuracy, and speed.

This section discusses following topics in detail:

• Running Simulink Simulation

• Code Generation

• Verifying the generated dataflow graph

Running Simulink Simulation
Simulation involves compiling the design and checking for any design rule violations, then
executing the design to produce the outputs. You can define the inputs of the design using any
Simulink source blocks and the output is analyzed either by logging the data to the workspace, or
by visually viewing the results using a scope, spectrum analyzer, or display block.

Clicking the Simulate model icon in the Simulink simulation tool bar, compiles all the kernels and
graphs in the design. You can monitor the status from the Compilation Status window, which
displays after simulation begins (see the following figure).

Figure 254: Compilation Status

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=357

The Compilation Status window displays only when you are compiling a design for the first time.
When you simulate the model again, unless you make any changes to the imported kernel or
graph, Model Composer will use the cached entry for the block to run the simulation faster. For
example, assume you have three kernels (add2, add3, add4) in your design and you run the
simulation for the first time. In that case, all the three kernels get compiled. When you change
the add3 kernel code and try to simulate again, only the changed add3 kernel gets re-compiled
and the cached entries for add2 and add4 are used for faster simulation.

To manage the simulation cache in Model Composer, use the commands described in Managing
the HLS Block Cache from the MATLAB command prompt.

When simulation is complete, you can review the results by connecting any of the Simulink sink
blocks to appropriate points in your design.

Code Generation
When the design is functionally verified in Simulink, you can generate the dataflow graph from
the design. It is necessary to encapsulate the AI Engine blocks into a subsystem. To understand
more about creating a top-level subsystem, refer to Creating a Top-Level Subsystem Module.

IMPORTANT! To generate output from the AI Engine model, only blocks from the Vitis Model Composer
AI Engine library and a limited set of Simulink blocks can be used in the subsystem that is instantiated at
the top-level of the design. Refer to Connecting Source and Sink Blocks for more details about the blocks
that are supported inside the subsystem.

Model Composer Hub Block for AI Engine Code Generation

Model Composer automatically generates AI Engine code (dataflow graph) from the subsystem
that comprises blocks from the AI Engine Blockset library. However, an AI Engine model in Model
Composer requires the addition of the Model Composer Hub block to configure compilation and
generation of AI Engine output. In addition to the targets available in the Model Composer Hub
block which supports compilation of the design into low-level representations using blocks from
the library, it also supports an AI Engine compilation target.

This section discusses only the graph code generation from Model Composer. For running and
verifying the generated AI Engines code, refer to Verification of AI Engine Code.

The Model Composer Hub block and the block parameters dialog box specific to AI Engine
compilation targets are shown in the following figure.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=358

Figure 255: Model Composer Hub and Parameters

When you add the Model Composer Hub block from the library, the Target is set to AI Engines
by default as shown in the previous figure. For more details about adding the Model Composer
Hub block into the design and associated features, refer to Adding the Model Composer Hub.
The Subsystem name field should be given the top-level subsystem module name.

You can specify a cell array of AI Engine compiler options using the Compiler Options edit
button. This provides a method to control the compiler debug options, execution target options,
file options and so on. For example, if you want to control the debug option log-levels, you could
specify the string {'--log-level=5'} in the Compiler Options field.

When the code directory, subsystem name, and target are specified, click Generate to create the
dataflow graph.

IMPORTANT! You can enable the Create testbench option to log the test data at input and output.
Further, you can enable the Run AIE Simulation option to verify the dataflow graph. For more information,
refer to Verification of AI Engine Code.

Code generation begins when you click Apply to confirm any changes and then click Generate.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=359

Once the code generation process is initiated, the Compilation Status window may display (based
on whether the imported kernel/graph code is pre-compiled or not). If the design was already
compiled during the Simulink simulation phase, you may not see this window. However, Model
Composer displays the progress of code generation in the Progress window.

When Model Composer has completed generating the code, it displays the status message Done
code generation in the Progress window as shown in the following figure.

Figure 256: Done Code Generation

TIP: Model Composer runs the Simulink simulation every time you try to generate the code. You can
choose to either run the simulation manually or click Generate which validates the subsystem by running a
set of DRCs. If the DRC validation fails, then Model Composer returns an appropriate error and the code
generation process stops.

Output Directory

A new directory gets created with the name specified in the code directory field in the
Model Composer Hub block. There are various sub-directories in the code directory but the
src_aie/ directory and the Makefile which are highlighted in figure below, are of interest for
this section. The details about other sub-directories are explained in subsequent topics.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=360

Figure 257: Target Directory

Table 23: File/Directory Descriptions

File/Directory File/Sub-directory Description
src_aie Subsystem_Name.h Header file that specifies the AI Engine dataflow graph

Note: Subsystem_Name is a unique string derived from the top-level
subsystem specified in the Model Composer model.

Subsystem_Name.cpp Test bench to simulate the dataflow graph specified in
Subsystem_Name.h.

Makefile This file contains the aiecompiler options specified from Model
Composer Hub block

Makefile This file contains the commands to compile and simulate the dataflow
graph.
For more details on how to use the Makefile to run simulation from
command line, refer to the section Running Simulation using the
Makefile.

The files generated by Model Composer in the src_aie directory reflect the contents and
hierarchy of the subsystem that gets compiled. In this case, assume the subsystem is
aie_system which is derived from the design in Vitis Model Composer Tutorial (UG1498). The
following figure shows the interconnection of imported kernel functions as blocks, encapsulated
as a subsystem.

Figure 258: Block Interconnection

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 361Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1498-model-composer-sys-gen-user-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=361

The generated code for the subsystem aie_system is as follows.

aie_system.h

#ifndef __XMC_AIE_SYSTEM_H__
#define __XMC_AIE_SYSTEM_H__

#include <adf.h>
#include "kernels/inc/hb_27_2i.h"
#include "kernels/inc/polar_clip.h"
#include "kernels/inc/hb_27_2d.h"

class Aie_system : public adf::graph {
private:
 adf::kernel fir_27t_sym_hb_2i_0;
 adf::kernel polar_clip_0;
 adf::kernel fir_27taps_symm_hb_dec2_0;

public:
 adf::input_port In1;
 adf::output_port Out1;

 Aie_system() {
 // create kernel fir_27t_sym_hb_2i_0
 fir_27t_sym_hb_2i_0 = adf::kernel::create(fir_27t_sym_hb_2i);
 adf::source(fir_27t_sym_hb_2i_0) = "kernels/src/hb_27_2i.cpp";
 adf::runtime<ratio>(fir_27t_sym_hb_2i_0) = 0.9;

 // create kernel polar_clip_0
 polar_clip_0 = adf::kernel::create(polar_clip);
 adf::source(polar_clip_0) = "kernels/src/polar_clip.cpp";
 adf::runtime<ratio>(polar_clip_0) = 0.9;

 // create kernel fir_27taps_symm_hb_dec2_0
 fir_27taps_symm_hb_dec2_0 =
adf::kernel::create(fir_27taps_symm_hb_dec2);
 adf::source(fir_27taps_symm_hb_dec2_0) = "kernels/src/hb_27_2d.cpp";
 adf::runtime<ratio>(fir_27taps_symm_hb_dec2_0) = 0.9;

 // create nets to specify connections
 adf::connect< adf::window<512,64> > net0 (In1,
fir_27t_sym_hb_2i_0.in[0]);
 adf::connect< adf::window<1024>, adf::stream > net1
(fir_27t_sym_hb_2i_0.out[0], polar_clip_0.in[0]);
 adf::connect< adf::stream, adf::window<1024,128> > net2
(polar_clip_0.out[0], fir_27taps_symm_hb_dec2_0.in[0]);
 adf::connect< adf::window<512> > net3
(fir_27taps_symm_hb_dec2_0.out[0], Out1);
 }
};

#endif // __XMC_AIE_SYSTEM_H__

Model composer automatically generates the graph header file aie_system.h which contains
the dataflow graph corresponding to the subsystem name specified in the Model Composer Hub
block. The connection between the AI Engine kernel or graph as well as the configuration
parameters such as window size, window margin and so on, which are specified in the AI Engine
kernel block, are automatically reflected in the generated graph code.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=362

Model Composer also generates the aie_system.cpp file, which is a control program that
connects the dataflow graph with the simulation platform, and the main() function is defined to
initialize, run and end the simulation using the control APIs.

aie_system.cpp

#include "aie_system.h"

// Mapping inputs to PLIO
adf::PLIO *in1 = new adf::PLIO("In1", adf::plio_32_bits, "In1.txt");

// Mapping outputs to PLIO
adf::PLIO *out1 = new adf::PLIO("Out1", adf::plio_32_bits, "Out1.txt");

// instantiate adf dataflow graph
Aie_system mygraph;

// connect dataflow graph to simulation platform
// To generate input and expected_output data files,
// select 'Create and execute testbench' option on the Model Composer Hub
block.
adf::simulation::platform<1,1> platform(in1, out1);
adf::connect<> net1(platform.src[0], mygraph.In1);
adf::connect<> net2(mygraph.Out1, platform.sink[0]);

// initialize and run the dataflow graph
#ifdef __AIESIM__
int main(void) {
 mygraph.init();
 mygraph.run();
 mygraph.end();
 return 0;
}
#endif

Limitations

• AI Engine code cannot be generated if a top-level subsystem's output port is connected to a
synchronous run-time parameter port.

• The value of an input run-time parameter port can only be updated once at the beginning
when running the generated graph.

Stream FIFO Depth Specification

The AI Engine architecture uses streaming data extensively for communicating between two AI
Engines, and for communicating between the AI Engine and the programmable logic (PL). This
raises the potential for a resource deadlock when the data flow graph has reconvergent stream
paths. If the pipeline depth of one path is longer than the other, the producer kernel can stall and
might not be able to push data into the shorter path because of back pressure. At the same time,
the consumer kernel is waiting to receive data on the longer path due to the lack of data. If the
order of data production and consumption between two stream paths is different, a deadlock can
happen even between two kernels that are directly connected with two stream paths.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=363

Model Composer supports adding a FIFO_DEPTH between two AI Engine kernels or between an
AI Engine and the programmable logic(PL) using the AIE Signal Spec block and automatically
generates the graph code with fifo_depth constraint on a connection.

Figure 259: AIE Signal Spec

The AIE Signal Spec block specifies properties of a signal connecting AI Engines and PL kernels.
When you double click the AIE Signal Spec block, notice that the block parameters consists of
two tabs: Connection and PlatformI/O.

Figure 260: Block Parameters: AIE Signal Spec

• Connection: Use this tab to specify FIFO depth

• PlatformI/O: Use this tab to specify platform I/O properties (for more details on this topic,
refer to Platform I/O specification).

From the Connection tab in the AIE Signal Spec block GUI, you can specify the Destination
(Consumer) FIFO depth as well as the Source (Producer) FIFO depth values.

Consider the following example where the AIE Signal Spec blocks are connected in two stream
paths between AI Engine kernel blocks.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=364

Figure 261: AIE Signal Blocks in Two Stream Paths

The FIFO depth values are specified as 0 by default and if either or both of the parameters
Destination FIFO depth or Source FIFO depth have applicable values specified, the
corresponding information is reflected on the block symbol. For example, if values 2,6 and 4,12
are specified as parameters of the two AIE Signal Spec blocks, the GUI will update as shown in
the following figures.

Figure 262: AIE Signal Spec1

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=365

Figure 263: AIE Signal Spec2

Figure 264: Block GUI Updates

The stream FIFO values specified using the AIE Signal Spec block are automatically updated in
the generated graph code (graph.h) with fifo_depth constraints as shown in the following
code.

Snippet of graph.h

// create nets to specify connections
adf::connect< adf::stream > net0 (In1, AIE_Kernel.in[0]);
adf::connect< adf::stream > net1 (AIE_Kernel.out[0], AIE_Kernel1.in[0]);
adf::fifo_depth(net1) = {6, 2};
adf::connect< adf::stream > net2 (AIE_Kernel.out[1], AIE_Kernel1.in[1]);
adf::fifo_depth(net2) = {12, 4};
adf::connect< adf::stream > net3 (AIE_Kernel1.out[0], Out1);

Notice the two values for fifo_depth; the first value assigned to the source side (the producer)
and the second value to the consumer. Using this fifo_depth constraint on a connection is
useful as it creates more buffering in paths with back pressure, and hence avoids any deadlock.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=366

IMPORTANT! The AIE Signal Spec block can only be used in an AI Engine subsystem.

PLIO Attributes

Typically, the AI Engine array runs at a higher clock frequency (between 1 GHz and 1.25 GHz)
than the internal Programmable Logic. Within the AI Engine core the streaming data-width is 32-
bit; whereas between the AI Engine interface tile and PL interface, it is 64-bit by default. To
balance the throughput between AI Engine and internal programmable logic, it is desirable to
pipeline enough data by choosing wider stream data paths for PL blocks. For example, to utilize
an AI Engine array running at 32 bits / 1GHz rate to its full potential, PL blocks may use 64 bits /
500 MHz rate or 128 bits / 250 MHz rate and so on. Such wider (> 32 bits) stream data is
sequentialized automatically into 32-bit streams within the AI Engine interface tile.

Specifying PLIOs in Model Composer designs

Model Composer supports specifying the PLIO width using the AIE Signal Spec block and making
external stream connections that cross the AI Engine to PL boundary.

Figure 265: AIE Signal Spec

The AIE Signal Spec block supports specifying the hardware platform I/O properties at the
boundary of the AI Engine subsystem, along with the FIFO depth information as discussed in
Stream FIFO Depth Specification.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=367

Figure 266: Block Parameters: AIE Signal Spec

From the Platform I/O tab in the AIE Signal Spec block, you can select the available PLIO width
options from the drop-down menu.

Consider following example where an AIE Signal Spec block is connected at the boundary of the
AI Engine subsystem.

Figure 267: AIE Signal Spec Block Connected to AI Engine Subsystem

By default, the PLIO width is set to auto. Other available options are: 32, 64, and 128.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=368

Figure 268: Block Parameters: AIE Signal Spec PLIO Width

After the PLIO width is specified as 64 and 128 for the two AIE Signal Spec blocks in the
example, the GUI updates as follows.

Figure 269: AIE Signal Spec Blocks Updated

The PLIO width specified using the AIE Signal Spec block is automatically updated in the
generated graph code (graph.cpp) with PLIO constraints as shown in the following code.

Note: Adding the PLIO width does not impact the Simulink simulation, only the code generation.

Snippet of graph.cpp

#include "DUT.h"

// Mapping inputs to PLIO
adf::PLIO in1("PL_AIE_IN", adf::plio_64_bits, "PL_AIE_IN.txt");

// Mapping outputs to PLIO
adf::PLIO out1("AIE_PL_OUT", adf::plio_128_bits, "AIE_PL_OUT.txt");

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=369

// instantiate adf dataflow graph
DUT mygraph;

// connect dataflow graph to simulation platform
adf::simulation::platform<1,1> platform(&in1, &out1);

The PLIO attributes are used in a program to read input from a file or write output data to a file.
You can see a simulation platform with one 64-bit PLIO attribute declared for input and one 128-
bit PLIO attribute declared for output.

Data File Layout

When simulating PLIO with data files, the data should be organized to accommodate both the
width of the PL block as well as the data type of the connecting port on the AI Engine block.
Model Composer automatically generates the data file that accommodates to the specified PLIO
width.

For example, a data file representing a 64-bit PL interface to an AI Engine kernel expecting
cint16 should be organized as four columns per row, where each column represents a 16-bit
real or imaginary value.

PLIO Width AIE Kernel Data Type Dat File Layout
64-bit cint16 0 0 0 0

1 1 1 1

2 2 2 2

This data file is in the output code directory.

Specifying PLIO Frequency

The AI Engine always run at 1 GHz and can write (at most) two streams with a 32-bit data width
per cycle. In contrast, an IP implemented in the PL can run at up to 500 MHz, while consuming a
larger bit-width. In order to balance the throughput between the AI Engine and PL, and also
ensure the processes do not create a bottleneck with respect to the total performance, it is
required to match the rates between the two. Model Composer supports specifying the
frequency of PL from Platform I/O tab in AIE Signal Spec block.

You can either adjust the PLIO frequency or the Width to match the rate between the AI Engine
and PL. Consider an example of a 32-bit channel written to each cycle by the AI Engine at 1 GHz.
In order for PL to match the rate of AI Engine, it has to consume twice the data at half the
frequency or four times the data at a quarter of the frequency.

AI Engine PL
Frequency Data per Cycle Frequency Data per Cycle

1 GHz 32 bit 500 MHz 64 bit

256 MHz 128 bit

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=370

Verification of AI Engine Code
The Versal™ ACAP AIE simulator (aiesimulator) models the timing and resources of the AI
Engine array accurately while using transaction-level, approximately timed SystemC models for
NoC, DDR, PL, and PS. This allows accurate performance analysis of your AI Engine. Model
Composer supports verification of the dataflow graph using this AIE simulator.

Model Composer Hub Block for Verification

To verify the AI Engine design, you need to enable the Create testbench option on the Model
Composer Hub and then choose the simulator options available, as shown in the following figure.

Figure 270: Model Composer Hub: Testbench and Simulator Options

Enabling the Create testbench option only logs the test data, or stimulus at the input of your
design, and the simulation results as test vectors for later use as "golden" results. By default, no
simulator is selected and in order to verify the design, you need to select the Run AIE simulation
option.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=371

The Simulation timeout value limits the execution to the specified number of cycles. This is
necessary because of the finite amount of input data - if the timeout value is not specified, the AI
Engine kernels are invoked repeatedly forever (i.e., the graph runs infinitely). To avoid this
situation, specify the timeout value for the AIE Simulation as shown in the following figure.

Figure 271: AIE Simulation: Timeout Value

The default timeout value is set to 50,000 cycles and this value is used to terminate the
simulation after the specified number of clock cycles.

When only the Create testbench option is enabled, and the code is generated, the structure and
contents of the target directory created by Model Composer consists of the following files (not a
comprehensive list) in addition to the list mentioned in Code Generation.

Table 24: Target Directory

Directory/File Sub-directory/File Description
data/ input/ Contains files that capture the input stimuli from Simulink.

reference_output/ Contains files that capture the simulation output from Simulink.

When the simulator option is enabled, the AI Engine code verification advances in three phases:

1. Compiling the AI Engine graph design.

2. Running simulation using the AI Engine simulator.

3. Verifying the simulation results by comparing the output with the golden reference output.

After clicking Generate and Run, you can monitor the compilation, simulation, and verification
progress of the AI Engine graph code from the Progress window (see the following figure).

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=372

Figure 272: Graph Code Progress

After successful compilation and simulation, Model Composer automatically compares the target
output with the golden output and returns the following message in the Progress window (or in
the corresponding simulation log files).

Comparing simulation results ...
Output data file : data/aiesimulator_output/Outl.txt.mod
reference data file : data/reference_output/Outl.txt
Simulation results MATCH.
**
Test PASSED
Verification Complete

Note: In some scenarios, the simulator output produces fewer samples when compared with the golden
output or vice-versa. In such cases, the test result will be still show as 'PASS.' This indicates that the first 'n'
lines from the simulation output matches the first 'n' lines of the golden output and the results are partially
matched. The .diff file in the corresponding simulator output captures any difference with the reference
output.

Table 25: Target Directories

File Name/ Parent
Directory

Filename/Sub-
directory Description

data/ aiesimulator_output/ Contains .txt files that captures the output of the AIE
simulation. In addition to the actual output file, the .diff
file is also generated to capture any difference from the
golden result.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=373

In addition to this, aiecompiler writes various configuration and binary files to the
Work_aiesim directory. For more information on the structure and contents of the directory
specific to the compilation, refer to the Versal ACAP AI Engine Programming Environment User
Guide (UG1076).

When the Run AIE Simulation option is enabled, the features shown in the following figure are
available. You can select one or all options, then click Generate and Run.

Figure 273: Run AIE Simulation

Profiling Statistics and Event Tracing

You can obtain profiling data when you run your AIE simulation. Analyzing this data helps you
gauge the efficiency of the kernels, the stall and active times associated with each AI Engine, and
pinpoint AI Engine kernels whose performance may not be optimal. This also allows you to
collect data on design latency, throughput, and bandwidth. In addition to this, you can do event
trace using a formatted printf statement in the code for printing debug messages. To acheive
this, you should enable the option Collect profiling statistics and enable 'printf' for debugging in
the Model Composer Hub block.

IMPORTANT! Using this option generates a run_summary  file which is written to the
aiesimulator_output  folder.

IMPORTANT! Enabling this option may slightly increase the overall AIE simulation time.

Viewing Results in the Vitis Analyzer

The Vitis™ software platform analyzer is a utility that allows you to view and analyze the reports
generated while building and running the application. It is intended to let you review reports
generated by both the Vitis compiler when the application is built, and the Xilinx Runtime (XRT)
library when the application is run. The Vitis analyzer can be used to view reports from Vitis
integrated design environment (IDE).

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 374Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=374

During the simulation of the AI Engine graph, the aiesimulator writes a summary of the
simulation results called default.aierun_summary. This can be viewed in the Vitis analyzer.
The summary contains a collection of reports and diagrams reflecting the state of the AI Engine
application.

Model Composer integrates the Vitis analyzer utility. This can be invoked by enabling the Collect
Data for Vitis Analyzer option from within the Model Composer Hub block, along with the AIE
Simulation. When the simulation completes, Model Composer automatically reads the
system.wdb file which is generated during the aiesimulator run and invokes the Application
Time line Window in Vitis Analyzer as shown.

Figure 274: Application Timeline

From the report navigator you can view other available reports, such as Summary, Profile, Graph,
Array, and Log.

Note: You can relaunch the Vitis Analyzer by clicking Open Vitis Analyzer as shown in the following figure.
This option can be used to invoke the Vitis Analyzer tool, only when the AIE Simulation has been ran at
least once after enabling the Collect data for Vitis analyzer option.

In Model Composer, you can launch Vitis analyzer from the MATLAB command window using
the following command.

xmcOpenVitisAnalyzer('file')

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=375

When this command is given without a <file> option, Model Composer looks up all
default.aierun_summary and system.wdb files in the current target directory and invokes
the Vitis analyzer to display the results in the summary page.

For more information on the Vitis analyzer, refer to the Using Vitis Analyzer topic in Vitis Unified
Software Platform Documentation (UG1416).

Plotting AIE Simultion Output Data and Calculating Throughput

Model Composer provides the capablity to log the simulation data and visualize the output of an
AI Engine subsystem by integrating the Simulink 'Simulation Data Inspector' feature. It also
calculates the throughput for each output port of the AI Engine subsystem. To achieve this,
enable the option Plot AIE Simulation output and estimate the throughput from the Model
Composer Hub block. When the AIE simulation completes, the tool automatically brings up the
Simulation Data Inspector window reflecting the outputs of the AI Engine subsystem as shown in
the following figure.

Figure 275: Simulation Data Inspector

The Simulation Data Inspector displays available data in the Inspect pane. To plot a signal, select
the check box next to the signal. You can modify the layout and add different visualizations to
analyze the simulation data. You can also get the throughput information for each port from the
Inspect pane. If required, you can re-open the Simulation Data Inspector from the Simulink®

Editor toolbar using the Simulation Data Inspector button.

For more information on using the Simulink Simulation Data Inspector, visit https://
in.mathworks.com/help/simulink/ug/populate-sdi-with-your-data.html.

IMPORTANT! Model Composer can only plot the outputs of the AI Engine subsystem automatically.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 376Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2021.1
https://in.mathworks.com/help/simulink/ug/populate-sdi-with-your-data.html
https://in.mathworks.com/help/simulink/ug/populate-sdi-with-your-data.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=376

Running Simulation using the Makefile

You may want to edit the graph code, for example, to add or modify constraints, or explore the
graph code by editing the kernel configuration parameters (like window size or window margin
etc.), and re-compile. Model Composer generates a Makefile allowing you to easily accomplish
this by running the following command.

make all

This command compiles an AI Engine graph using the default aiecompiler target and runs the
simulation using aiesimulator. It also compares the output of the simulator with the golden
output. This command also launches the Vitis analyzer, based on the option selected in the
Model Composer Hub block.

To do this, you need to source the settings64.csh or settings64.sh from
<MODEL_COMPOSER_INSTALLATION_DIRECTORY>/Model_Composer/<VERSION>

When the code is generated without the Create testbench option checked, the aiesimulator
settings in Makefile are as follows.

Default aie simulator settings

##
####
aiesimulator settings
##
####
AIE_SIM := aiesimulator
AIE_SIM_TIMEOUT := 50000
AIE_OUTPUT_DIR := $(DATA_DIR)/aiesimulator_output
AIESIM_FLAGS := --profile
LAUNCH_VITIS_ANALYZER :=

Observe the Timeout value is 50000 which is default and LAUNCH_VITIS_ANALYZER is not set
to TRUE. To run simulation for different timeout values with the Vitis analyzer enabled, you may
need to manually edit the Makefile as follows.

Modified Settings

AIE_SIM_TIMEOUT := <Value>
LAUNCH_VITIS_ANALYZER := true

When the code is generated with the Create testbench option selected, and and the simulator
option is enabled, then the modifications done in the Model Composer Hub block for Simulation
Timeout and Collect Data for Vitis Analyzer are automatically reflected in the Makefile.

Chapter 4: AI Engine Library

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=377

Chapter 5

Connecting AI Engine and Non-AI
Engine Blocks

AI Engine/Programmable Logic Integration
An AI Engine kernel written using specialized intrinsic and imported into Model Composer can be
used as part of a larger Versal™ ACAP system design. In addition to kernels operating on the AI
Engines, you can specify kernels to run on the programmable logic (PL) region of the device. The
PL kernels can be written using RTL or HLS C/C++ functions. The connection between AI Engine
and the PL block is routed through a physical channel interface tile and conceptually the data
width of the connections are 32 bits, 64 bits or 128 bits.

Model Composer allows connecting an AI Engine kernel to a HLS PL kernel only if the data types
and complexities of these port matches. If the datatypes or complexities of the port of the AI
Engine kernel and the port of the PL kernel do not match, an interface blocks should be used to
reconcile the discrepancy.

This chapter discusses interconnecting HDL blocks or HLS C/C++ functions with AI Engine
kernels:

• Interconnecting AI Engine and HDL Blocks

• Interconnecting AI Engines and HLS Kernels

Interconnecting AI Engine and HDL Blocks
The HDL blockset in the Xilinx® toolbox contains the common DSP building blocks such as
adders, multipliers, and registers. It also includes a set of complex DSP building blocks such as
FFTs, filters and memories. Model Composer automatically compiles designs into low-level
representations (i.e., RTL) which can be targeted to programmable logic. The Versal hardware
allows for connecting AI Engine kernels and PL kernels. However, HDL and AI Engine domains
are incompatible in at least two aspects:

• The HDL domain is cycle accurate, whereas the AI Engine domain is only bit accurate. A
Model Composer HDL design may cause back pressure or may not have a valid output and
these are managed through designs with Tvalid and Tready signals of AXI Stream ports.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=378

• Model Composer accepts only scalar inputs, whereas AI Engine blocks work with variable
sized vector signals.

To account for the above, Model Composer provides interface blocks in the AI Engine library to
connect from AI Engine to HDL blocks and vice-versa.

• AIE to HDL - This block connects AI Engine to HDL blocks using an AXI4-Stream-like
interface.

• HDL to AIE - This block connects HDL to AXI4-Stream blocks using AXI4-Stream-like
interface.

You can find these blocks in Xilinx Toolbox/AI Engines/Interfaces library.

Figure 276: Interface Blocks

As discussed, AIE-HDL and HDL-AIE blocks have Tvalid and Tready ports as depicted in the
previous figure. The gateway from the AI Engine to the HDL domain performs the unbuffer
operation, meaning that the HDL domain will run at a different rate than the AI Engine domain.
For example, if the AI Engine domain is producing 16 samples at every clock, the HDL domain
must run at least 16 times faster to process the data. However, in some cases, the HDL domain
needs to run even faster because the HDL domain, being a cycle accurate domain, may not
consume one sample per clock. For example, if the HDL domain consumes one sample every two
clocks, (initiation interval of 2), for the earlier example, the HDL domain needs to run 32 times
faster than the AI Engine domain.

The following section discusses block parameters of AIE to HDL and HDL to AIE blocks and
includes examples.

AIE to HDL

The AIE to HDL block connects the output of AI Engine block with the input of HDL block. This
block accepts variable size signal from AI Engine blocks along with the 'tready' signal which
indicates the consumer can accept the data. The input data type to this block is inherited from
the input signal.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=379

Figure 277: AIE to HDL

Double-click on the block to display the parameters of the 'AIE to HDL' block as shown in the
following figure:

Figure 278: AIE to HDL Parameters

• Output Data Type: The following table shows the Output data types that are supported by
the AIE to HDL block and the corresponding input data type to the block.

Table 26: Output/Input Data Types

Output Data
Type Input to AIE - HDL Block

int32 int32

uint32 int8, uint8, int16, uint16, uint32, float

sfix64 x_sfix64

ufix64 int8, uint8, int16, uint16, cint16, int32, uint32, cint32, x_ufix64, float, float(c)

ufix128 int8, uint8, int16, uint16, cint16, int32, uint32, cint32, x_sfix64, x_ufix64, float, float(c)

Note: For the ufix128 data type, Simulink Fixed Point Designer toolbox is required.

• Output Sample Time: This parameter depends on the input size to the block and the initiation
interval of the Model Composer HDL design (the number of cycles before the Model
Composer HDL design can consume the next sample).

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=380

HDL to AIE

The HDL to AIE block connects the output of the HDL block with the input of the AI Engine
block. This block accepts tdata which is the primary input for the data and the tvalid signal
that indicates the producer has valid data. Output from the HDL to AIE block is a variable size
signal (data) to AI Engine blocks along with the tready signal which indicates that the block can
accept a transfer. A transfer takes place when both tvalid and tready are asserted.

Figure 279: HDL to AIE

Double-click on the block to display the parameters of the 'HDL to AIE' block as shown in the
following figure:

Figure 280: HDL to AIE Parameters

• Output Data Type: The following table shows the Output data types that are supported by
the HDL to AIE block and the corresponding input data type to the block.

Table 27: Output/Input Data Types

Output Data
Type Input to HDL - AIE Block

int8 uint32, ufix64, ufix128

uint8 uint32, ufix64, ufix128

int16 uint32, ufix64, ufix128

uint16 uint32, ufix64, ufix128

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=381

Table 27: Output/Input Data Types (cont'd)

Output Data
Type Input to HDL - AIE Block

cint16 uint32, ufix64, ufix128

int32 int32, ufix64, ufix128

uint32 uint32, ufix64, ufix128

cint32 ufix64, ufix128

x_sfix64 sfix64

x_ufix64 ufix64, ufix128

float uint32, ufix64, ufix128

float(c) ufix64, ufix128

• Output Sample Time: This parameter depends on the initiation interval of the Model
Composer HDL design and input size to the AI Engine block (the number of cycles before the
AI Engine design can consume the frame).

• Samples per output frame: This determines the number of samples to be queued in buffer
before the block updates the frame.

• Tready Sample time: This should be the same as the Model Composer HDL sample time.

Example: Setting Block Parameters

Consider the following example to understand how to set the block parameters for AIE to HDL
and HDL to AIE blocks.

Figure 281: Example: Setting Block Parameters

You can observe one HDL block, connected between two AI Engine kernel blocks using AIE-HDL
and HDL-AIE blocks as gateways between two domains. The Input to the AIE_kernel_1 block
is a vector of size 128 and the output is a variable size signal of maximum depth 256 and the AIE
to HDL block accepts the variable size signal as input. The Input Sample time is 0.5.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=382

As per the RTL design, it takes the HDL block 19 clock cycles before it can process the next set
of input data. This is called the initiation interval or II for short. Because the simulation of the
HDL blocks are cycle-accurate, the output of the AIE to HDL block should be at least 19 times
faster than its input or a buffer overflow situation may occur. The following figure show the
settings for the block.

Figure 282: AIE to HDL Parameters

Here, the Output Data type parameter can be set to any supported type as mentioned in AIE to
HDL. For this example, it is set to uint32, because the succeeding HDL block accepts uint32.
The Output Sample time should be at least equal to the Input Sample time over 'Initiation
interval(II) of Model Composer HDL design'. This is required to avoid buffer overflow.

Output Sample time = Input Sample time/Initiation Interval of Model Composer
HDL design.

For this example, the Input Sample time = 0.5 and Initiation Interval = 20. So, the output sample
time is '0.5/20'.

The block parameters of HDL- AIE block should be given as follows.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=383

Figure 283: HDL to AIE Parameters

The Output Data Type parameter should be the same as the the input of the succeeding AI
Engine block. The output of this block is a variable size signal. In this example, it is complex
integer of type int16.

The Output Sample Time parameter is correlated with the Samples per output frame and should
be set based on the input sample rate. This is required to make the sample rate to and from the
AI Engine domains have the same rate. In this example, the Output Sample time should be 0.5
with Samples per output frame as 256. If the HDL block produces more samples per frame, say
512, the Output Sample time should be adjusted to 0.25 so that the sample rate matches with
the input to the AIE to HDL block.

The Tready Sample Time value should be given the same value as the Output Sample Time of the
AIE-HDL block.

IMPORTANT! The AIE-HDL and HDL-AIE blocks primarily transfer the data between the functional model
and cycle accurate model. The sample times specified in these blocks have no relationship with the FPGA
clock specified under the 'clocking' tab in the System Generator token. These are functional blocks which
mainly serve the purpose of scalar to vector and vector to scalar conversions.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=384

Interconnecting AI Engines and HLS Kernels

HLS Function versus HLS Kernel

You can import the HLS function into your Model Composer design using the
xmcImportFunction command as described in Importing C/C++ Code as Custom Blocks. You
can simulate the block along with other blocks available in the Model Composer HLS library and
generate HLS code from a system comprised of one or more imported HLS function blocks.
Model Composer can also import HLS kernels. This section describes HLS Kernels and how it is
different from an HLS function.

Behavior of HLS Functions on Blocking Calls

An HLS function first and foremost is a function. It has a predetermined number of inputs and
outputs and every time the function is invoked, it consumes the inputs and produces the
predetermined number of outputs. If an HLS function imported using xmcImportFunction
hangs, (for example, if it has an infinite loop), Simulink will also hang, waiting indefinitely for the
output from the imported block. This is because an imported HLS function using
xmcImportFunction runs on the same thread as Simulink. If the imported functions hangs,
Simulink also hangs.

While a function with an infinite loop is a rather trivial example, as a more practical example,
assume you have an AI Engine kernel producing data and an HLS function consuming the data
(see the following figure).

Figure 284: Data Producer/Consumer

The HLS function may have a blocking call reading the input. Following is a snippet of pseudo
code outlining the HLS function

Pseudo code - Blocking call

void hls_func(hls::stream<ap_axis<64, 0, 0, 0> > & in_sample
 hls::stream<ap_axis<64, 0, 0, 0> > & out_sample) {
 ...
 ap_axis<64, 0, 0, 0> in_sample_x = in_sample.read();
 ...
}

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=385

In the previous code, read() is a blocking call. If there is no data on the stream, this call will
block. The producing AI Engine kernel may or may not produce any output when invoked. As
such, if Simulink calls the HLS Function with no data available from the producing block, the HLS
function will block, and as a result Simulink will hang.

Note: In its current form, xmcImportFunction cannot import a function with a signature that includes
hls::stream. For that, a wrapper is required.

Note: You cannot connect a block created using xmcImportFucntion with an AI Engine block as it does
not accept the variable sized signals produced by AI Engine blocks.

Unlike an imported HLS function, an HLS Kernel block runs on a separate thread. As such, even if
the HLS Kernel blocks (for example when waiting for input from the producing AI Engine block),
Simulink will continue to function. In such cases, the output of the HLS kernel block will be a
variable size signal containing no data.

HLS Kernels are IPs

When you import an HLS function into a design by itself, the HLS function will not operate as an
IP with streaming ports. In Model Composer, you need to use the interface specification block to
designate streaming ports for the design, and then generate the HLS IP. Unlike an HLS function,
an HLS Kernel is a proper HLS IP that can be used in the Vitis™ software platform HLS and be
synthesized directly. The following code snippet highlights the HLS kernel code with streaming
interface.

hls_kernel.cc

void hls_kernel_blk(
 hls::stream<ap_axis<64, 0, 0, 0> > & in_sample1,
 hls::stream<ap_axis<64, 0, 0, 0> > & in_sample2,
 hls::stream<ap_axis<64, 0, 0, 0> > & out0_itr1,
 hls::stream<ap_axis<64, 0, 0, 0> > & out1_itr1
)
{
 #pragma HLS PIPELINE II=1
 #pragma HLS INTERFACE ap_ctrl_none port=return
 #pragma HLS INTERFACE axis register both port=out1_itr1
 #pragma HLS INTERFACE axis register both port=out0_itr1
 #pragma HLS INTERFACE axis register both port=in_sample1
 #pragma HLS INTERFACE axis register both port=in_sample2
 ap_int64 in_samp0 ; // Iteration-1: 2 complex samples concatenated to
64-bit
 ap_int64 in_samp1 ; // Iteration-2: 2 complex samples concatenated to
64-bit
...

In this example, notice the function signature and also the HLS pragmas specifying the interface
on the ports. This function has all the constructs required by the HLS IP.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=386

It is necessary to declare the corresponding kernel function in a specified format in the header
file as follows.

void hls_kernel_blk(
 adf::dir::in hls::stream<ap_axis<64, 0, 0, 0> > &in_sample1,
 adf::dir::in hls::stream<ap_axis<64, 0, 0, 0> > &in_sample2,
 adf::dir::out hls::stream<ap_axis<64, 0, 0, 0> > &out0_itr1,
 adf::dir::out hls::stream<ap_axis<64, 0, 0, 0> > & out1_itr1
);

As shown, it is required to prepend each parameter in the function definition with either
adf::dir::in or adf::dir::out based on the port direction.

Importing HLS Kernels

To import the HLS kernel as a block into Model composer, you need to select it from the AI
Engine library.

Figure 285: HLS Kernel

Double-click the block symbol to display the parameters of the HLS kernel block as shown in the
following figure.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=387

Figure 286: HLS Kernel Parameters

The block mask parameters need to be updated in order to import the HLS kernel as a block. The
following table provides details on the parameters and descriptions for each parameter.

Table 28: Parameters

Parameter
Name

Parameter
Type Criticality Description

Kernel header file String Mandatory The name of the HLS kernel header file that contains the
function declaration. The string could be just the file name,
a relative path to the file, or an absolute path of the file. Use
the Browse button to select the file.
If environment variables are used to specify the header file
path, then an appropriate error is returned.

Kernel function String Mandatory The name of the kernel function in C/C++ for which the HLS
kernel block is to be created.

Kernel source file String Mandatory The name of the source file that contains the kernel function
implementation (definition). The string could be just the file
name, a relative path to the file, or an absolute path of the
file.
If environment variables are used to specify the source file
path, then an appropriate error is returned.
Specifies the search path for source files (.cc, .hpp) from
the MATLAB current folder.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=388

Table 28: Parameters (cont'd)

Parameter
Name

Parameter
Type Criticality Description

Kernel search
paths

Vector of Strings Optional If the kernel header file or the kernel source file is not found
using the value provided through the Kernel header
file or Kernel source file fields respectively, then the
paths provided in Kernel search paths are used to
locate the files.
This parameter allows use of environment variables while
specifying paths for the kernel header file and the kernel
source file. The environment variable can be used in either $
{ENV} or $ENV format.

Preprocessor
options

Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options.
The following two preprocessor option formats will be
accepted (multiple can be selected): -Dname and -
Dname=definition. That is, the optional argument must
begin with the -D string and if the option definition value is
not provided, it is assumed to be 1.

After successful import, the Function tab GUI displays automatically. You can quickly review the
HLS Kernel definition and ports as shown in the following figure.

Figure 287: Kernel Definition and Ports

Interconnect AI Engine and HLS Kernel Blocks

Connections between an output port of an AI Engine kernel and an input port of an HLS kernel
use an AIE to HLS kernel block. Connections between an output port of an HLS kernel and an
input port of an AI Engine kernel use an HLS to AIE kernel block. These blocks reformat the data
to match the data type of the the sink port. In this process no data (information) is lost; and it is
simply adjusting the data type and the number of samples. For example, an interface block can
reformat a signal carrying 64 int8 values to a signal carrying 16 int32 values.

These blocks are availebl in the Xilinx Toolbox/AI Engines/Interfaces library.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=389

AIE to HLS Kernel

The AIE to HLS Kernel block reformats a signal driven by anAI Engine Kernel block or an AI
Engine graph block, so that the resulting signal matches the data type and complexity required by
the input of an HLS kernel block. For example, if the AI Engine kernel output port is of type
cint16 and the HLS kernel is of type ap_axis<64>, you would use an AIE to HLS kernel block
with parameter output type set to ap_axis<64>. This block reads cint16 samples from its
input and then packs pairs of subsequent cint16 samples into ap_axis<64> samples to its
output.

Figure 288: AIE to HLS Kernel Block

Double-click the block symbol to see the parameters of the AIE to HLS kernel block which looks
as follows.

Figure 289: Block Parameters: AIE to HLS

• Output Type: Possible values are: ap_axis<32>, ap_axis<64>, ap_axis<128>, ap_axiu<32>,
ap_axiu<64>, ap_axiu<128>, ap_int<32>, ap_int<64>, ap_uint<32>, ap_uint<64>,int, long
long, unsigned, unsigned long long.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=390

• Output Size: The size of the output port. The output port is a variable sized signal whose
maximum size is specified by the OutputSize parameter. Default Output Size is 1.

HLS Kernel to AIE

The HLS Kernel to AIE block reformats a signal driven by a port of an HLS kernel block, so that
the resulting signal matches the data type and complexity required by an AI Engine kernel or an
input of a AI Engine graph block. For example, if the data type of port of the HLS kernel block is
axiu<128> and the data type of the port of the AI Engine is uint32, the HLS Kernel to AIE
block reformats the input samples by unpacking each axisu<128> sample into four uint32
samples. The output port of this block is a variable-size signal.

Figure 290: HLS Kernel to AIE Block

Double-click the block symbol to see the parameters of the HLS Kernel to AIE block which looks
as follows.

Figure 291: Block Parameters: HLS Kernel to AIE

• Output Type: Possible values are: int8, int16, int32, int64, uint8, uint16, uint32, uint64,
cint16, cint32.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=391

• Output Size: The size of the output port. The output port is a variable-sized signal whose
maximum size is specified by the Output Size parameter. Default size is '1'.

Connecting Source and Sink Blocks
The AI Engine library is compatible with the standard Simulink block library, and these blocks can
be used together to create models that can be simulated in Simulink. However, only certain
blocks which are designed to probe at different points in the design and debug are permitted
inside a subsystem during code generation. Namely, Scope, Display, Spectrum Analyzer, To
Workspace blocks etc. In addition to these, the AI Engine library provides some sink blocks that
can be connected to the variable-size signal output from the AIE Kernel or AIE Graph blocks.

Block Description
To Fixed Size Converts variable-size output to fixed size.

Variable Size Signal to Workspace Logs the variable signal to workspace.

To Fixed Size

The output ports of the AIE Kernel and AIE Graph blocks are variable-sized (vector) signals. There
is a possibility that the kernel does not produce a fixed number of output samples in each
simulation step. Many Simulink blocks do not accept variable-size signals as inputs and so this
limits leveraging Simulink blocks in designs that use the AIE kernel and AIE Graph blocks.

Model Composer provides the To Fixed Size block which takes a variable-sized vector input and
produces a fixed sized vector output.

Figure 292: To Fixed Size

The output vector size is specified by the Output Size parameter. The block copies samples from
the input to the output. Excess samples are discarded. In cases where the input does not have
enough samples, value 0 is used. The optional status output shows the difference between the
number of samples in the input and output. The default value of the Output Size parameter is 1.
This block supports all the data types that are supported by Model Composer and the input can
be real or complex.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=392

Variable Size Signal to Workspace

The output ports of AIE Kernel and AIE Graph blocks are variable-sized signals. Model Composer
provides a Variable Size Signal to Workspace block in the AI Engine library to easily save the
output into a workspace variable in MATLAB. In effect, this block is a mask on top of the
Simulink To Workspace block.

Figure 293: simout

Within the block parameters, the default name for 'Variable name' is set to 'simout'.

Because the Variable Size Signal to Workspace block is using the Simulink To Workspace block,
settings that change the behavior of the To Workspace block will impact the Variable Size Signal
to Workspace block as well. The block settings can be accessed from Model Settings (Ctrl-E).

Figure 294: Configuration Parameters

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=393

You can set the name of the output (default is out) from the settings window and you can also
control whether the To Workspace block outputs the results in a structure called out. Regardless
of whether the checkbox is selected or what name is chosen, this block will work in a similar way
as the To workspace block.

If you toggle the Single simulation output check box from Model Settings, press Ctrl-D to refresh
the text the text on the Variable size signal to workspace block.

IMPORTANT! If there is an error in the simulation, the block creates an empty variable when Single
simulation output is not checked from the Model Settings window. This behavior is consistent with the To
Workspace block.

Connecting the AI Engine block to source blocks that generate or import signal data (Constant,
Signal to Workspace block etc.) is supported.

Chapter 5: Connecting AI Engine and Non-AI Engine Blocks

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=394

Chapter 6

Xilinx Toolbox

Xilinx Toolbox Block Description

AI Engine Blocksets
Table 29: AI Engine

Block Description
AIE to HDL Connect the input port of an HDL block with the output port of an AI Engine

kernel or AI Engine graph block using an AXI4-Stream interface.

HDL to AIE Connect the output ports of HDL blocks to the input ports of AI Engine blocks
using the AXI4-Stream protocol.

AIE to HLS Connect an input port of an HLS kernel block to the output port of an AI Engine
block in cases where the data type or complexity of the ports involved do not
match.

HLS to AIE Connect an input port of an AI Engine Kernel or AI Engine Graph block to an
output port of an HLS Kernel block in cases where the datatype or complexities
of the ports involved does not match.

AIE Signal Spec Specify various properties on signals within, as well as at the boundary of an AI
Engine subsystem.

To Fixed Size Takes a variable size vector as an input and produces a fixed size vector as
output.

Variable Size Signal to Workspace Save variable size signal data from your Simulink® simulation to the MATLAB®

workspace.

AIE Class Kernel Import class-based AI Engine kernels

AIE Graph Import an AI Engine graph.

AIE Kernel Import an AI Engine kernel.

HLS Kernel Import an HLS kernel code with a streaming interface.

FIR Asymmetric Decimation Implements the FIR Asymmetric Decimation filter targeted for AI Engines.

FIR Asymmetric Filter Implements the Single Rate Asymmetric FIR Filter targeted for AI Engines.

FIR Fractional Interpolation Implements the FIR Fractional Asymmetric Interpolation filter targeted for AI
Engines.

FIR Halfband Decimator Implements the FIR Halfband Decimator targeted for AI Engines.

FIR Halfband Interpolator Implements the FIR Halfband Interpolator targeted for AI Engines.

FIR Interpolation Implements the FIR Asymmetric Interpolation filter targeted for AI Engines.

FIR Symmetric Decimation Implements the FIR Symmetric Decimation Filter targeted for AI Engines.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=395

Table 29: AI Engine (cont'd)

Block Description
FIR Symmetric Filter Implements the Single Rate Symmetric FIR Filter targeted for AI Engines.

IFFT Implements the Inverse FFT targeted for AI Engines which use the rounding
method and saturates the output samples on overflow.

FFT Implements the FFT targeted for AI Engines which use rounding method and
saturates the output samples on overflow.

RTP Source Used as a source for the RTP input of an AI Engine block. When the RTP input is a
scalar, the 'RTP Value' parameter should be a row vector. At each time step, the
output is set to one of the elements of the vector starting with the first element.
If an element of the vector is NaN, at the corresponding sampling time, the
output will be an empty variable size signal.

To Variable Size Takes a fixed sized vector input and produces a variable sized vector output. The
maximum size of the output vector is specified by the Output Size parameter. If
there is not enough samples to pack the output, the output will be an empty
variable size signal.

HDL Blocksets
Basic Element Blocks

Table 30: Basic Element Blocks

Library Description
Absolute The Xilinx Absolute block outputs the absolute value of the input.

Accumulator The Xilinx Accumulator block implements an adder or subtractor-based scaling
accumulator.

AddSub The Xilinx AddSub block implements an adder/subtractor. The operation can be
fixed (Addition or Subtraction) or changed dynamically under control of the sub
mode signal.

CMult The Xilinx CMult block implements a gain operator, with output equal to the
product of its input by a constant value. This value can be a MATLAB expression
that evaluates to a constant.

Convert The Xilinx Convert block converts each input sample to a number of a desired
arithmetic type. For example, a number can be converted to a signed (two's
complement), or unsigned value.

Depuncture The Xilinx Depuncture block allows you to insert an arbitrary symbol into your
input data at the location specified by the depuncture code.

Divide The Xilinx Divide block performs both fixed-point and floating-point division with
the a input being the dividend and the b input the divisor. Both inputs must be of
the same data type.

Down Sample The Xilinx Down Sample block reduces the sample rate at the point where the
block is placed in your design.

Exponential This Xilinx Exponential block preforms the exponential operation on the input.
Currently, only the floating-point data type is supported.

Expression The Xilinx Expression block performs a bitwise logical expression.

Mult The Xilinx Mult block implements a multiplier. It computes the product of the
data on its two input ports, producing the result on its output port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=396

Table 30: Basic Element Blocks (cont'd)

Library Description
MultAdd The Xilinx MultAdd block performs both fixed-point and floating-point multiply

and addition with the a and b inputs used for the multiplication and the c input
for addition or subtraction.

Mux The Xilinx Mux block implements a multiplexer. The block has one select input
(type unsigned), and a user-configurable number of data bus inputs, ranging
from 2 to 1024.

Natural Logarithm The Xilinx Natural Logarithm block produces the natural logarithm of the input.

Negate The Xilinx Negate block computes the arithmetic negation of its input.

Parallel to Serial The Parallel to Serial block takes an input word and splits it into N time-
multiplexed output words where N is the ratio of number of input bits to output
bits. The order of the output can be either least significant bit first or most
significant bit first.

Puncture The Xilinx Puncture block removes a set of user-specified bits from the input
words of its data stream.

Reciprocal The Xilinx Reciprocal block performs the reciprocal on the input. Currently, only
the floating-point data type is supported.

Reciprocal SquareRoot The Xilinx Reciprocal SquareRoot block performs the reciprocal squareroot on
the input. Currently, only the floating-point data type is supported.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any regard
for retaining the numerical value represented by the input.

Relational The Xilinx Relational block implements a comparator.

Requantize The Xilinx Requantize block requantizes and scales its input signals.

Scale The Xilinx Scale block scales its input by a power of two. The power can be either
positive or negative. The block has one input and one output. The scale
operation has the effect of moving the binary point without changing the bits in
the container.

Serial to Parallel The Serial to Parallel block takes a series of inputs of any size and creates a single
output of a specified multiple of that size. The input series can be ordered either
with the most significant word first or the least significant word first.

Shift The Xilinx Shift block performs a left or right shift on the input signal. The result
will have the same fixed-point container as that of the input.

Slice The Xilinx Slice block allows you to slice off a sequence of bits from your input
data and create a new data value. This value is presented as the output from the
block. The output data type is unsigned with its binary point at zero.

SquareRoot The Xilinx SquareRoot block performs the square root on the input. Currently,
only the floating-point data type is supported.

Threshold The Xilinx Threshold block tests the sign of the input number. If the input
number is negative, the output of the block is -1; otherwise, the output is 1. The
output is a signed fixed-point integer that is 2 bits long. The block has one input
and one output.

Time Division Demultiplexer The Xilinx Time Division Demultiplexer block accepts input serially and presents it
to multiple outputs at a slower rate.

Time Division Multiplexer The Xilinx Time Division Multiplexer block multiplexes values presented at input
ports into a single faster rate output stream.

Up Sample The Xilinx Up Sample block increases the sample rate at the point where the
block is placed in your design. The output sample period is l/n, where l is the
input sample period, and n is the sampling rate.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=397

DSP Blocks

Table 31: DSP Blocks

Library Description
Digital FIR Filter The Xilinx Digital FIR Filter block allows you to generate highly parameterizable,

area-efficient, high-performance single channel FIR filters.

DSP Macro 1.0 The Xilinx DSP macro block provides a device independent abstraction of the
DSP48E1, DSP48E2, and DSP58 blocks. Using this block instead of using a
technology-specific DSP slice helps makes the design more portable between
Xilinx technologies.

DSP48E The Xilinx DSP48E block is an efficient building block for DSP applications that
use supported devices. The DSP48E combines an 18-bit by 25-bit signed
multiplier with a 48-bit adder and programmable mux to select the adder's
input.

DSP48E1 The Xilinx DSP48E1 block is an efficient building block for DSP applications that
use 7 series devices. Enhancements to the DSP48E1 slice provide improved
flexibility and utilization, improved efficiency of applications, reduced overall
power consumption, and increased maximum frequency. The high performance
allows designers to implement multiple slower operations in a single DSP48E1
slice using time-multiplexing methods.

DSP48E2 The Xilinx DSP48E2 block is an efficient building block for DSP applications that
use UltraScale™ devices. DSP applications use many binary multipliers and
accumulators that are best implemented in dedicated DSP resources.
UltraScale™ devices have many dedicated low-power DSP slices, combining high
speed with small size while retaining system design flexibility.

DSP58 The Xilinx DSP58 block is an efficient building block for DSP applications that use
Versal™ devices. DSP applications use many binary multipliers and accumulators
that are best implemented in dedicated DSP resources. Versal™ devices have
many dedicated low-power DSP slices, combining high speed with small size
while retaining system design flexibility.

DSPCPLX The Xilinx DSPCPLX block is one of the advanced features provided by Versal™
architecture DSP, which is the optimized solution to deal with 18x18 complex
multiplication followed by 58 + 58 accumulation operation.

FFT The Xilinx FFT (Fast Fourier Transform) block takes a block of time domain
waveform data and computes the frequency of the sinusoid signals that make up
the waveform.

Inverse FFT The Xilinx Inverter FFT block performs a fast inverse (or backward) Fourier
transform (IDFT), which undoes the process of Discrete Fourier Transform (DFT).
The Inverter FFT maps the signal back from the frequency domain into the time
domain.

Product The Xilinx Product block implements a scalar or complex multiplier. It computes
the product of the data on its two input channels, producing the result on its
output channel. For complex multiplication the input and output have two
components: real and imaginary.

Sine Wave The Xilinx Sine Wave block generates a sine wave, using simulation time as the
time source.

CIC Compiler 4.0 The Xilinx CIC Compiler provides the ability to design and implement AXI4-
Stream-compliant Cascaded Integrator-Comb (CIC) filters for a variety of Xilinx
FPGA devices.

Complex Multiplier 6.0 The Complex Multiplier block implements AXI4-Stream compliant, high-
performance, optimized complex multipliers for devices based on user-specified
options.

Convolution Encoder 9.0 The Xilinx Convolution Encoder block implements an encoder for
convolutioncodes. Ordinarily used in tandem with a Viterbi decoder, this block
performsforward error correction (FEC) in digital communication systems. This
block adheres to the AMBA AXI4-Stream standard.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=398

Table 31: DSP Blocks (cont'd)

Library Description
CORDIC 6.0 The Xilinx CORDIC block implements a generalized coordinate rotational digital

computer (CORDIC) algorithm and is AXI compliant.

DDS Compiler 6.0 The Xilinx DDS (Direct Digital Synthesizer) Compiler block implements high
performance, optimized Phase Generation, and Phase to Sinusoid circuits with
AXI4-Stream compliant interfaces for supported devices.

Divider Generator 5.1 The Xilinx Divider Generator block creates a circuit for integer division based on
Radix-2 non-restoring division, or High-Radix division with prescaling.

Fast Fourier Transform 9.1 The Xilinx Fast Fourier Transform block implements the Cooley-Tukey FFT
algorithm, a computationally efficient method for calculating the Discrete Fourier
Transform (DFT). In addition, the block provides an AXI4-Stream-compliant
interface.

FIR Compiler 7.2 This Xilinx FIR Compiler block provides users with a way to generate highly
parameterizable, area-efficient, high-performance FIR filters with an AXI4-
Stream-compliant interface.

Interleaver/De-interleaver 8.0 The Xilinx Interleaver Deinterleaver block implements an interleaver or a
deinterleaver using an AXI4-compliant block interface. An interleaver is a device
that rearranges the order of a sequence of input symbols. The term symbol is
used to describe a collection of bits. In some applications, a symbol is a single bit.
In others, a symbol is a bus.

Reed-Solomon Decoder 9.0 The Reed-Solomon (RS) codes are block-based error correcting codes with a wide
range of applications in digital communications and storage.

Reed-Solomon Encoder 9.0 The Reed-Solomon (RS) codes are block-based error correcting codes with a wide
range of applications in digital communications and storage. This block adheres
to the AMBA® AXI4-Stream standard.

Viterbi Decoder 9.1 Data encoded with a convolution encoder can be decoded using the Xilinx Viterbi
decoder block. This block adheres to the AMBA® AXI4-Stream standard.

Interface Blocks

Table 32: Interface Blocks

Library Description
Gateway In The Xilinx Gateway In blocks are the inputs into the Xilinx portion of your

Simulink design. These blocks convert Simulink integer, double, and fixed-point
data types into the Model Composer fixed-point type. Each block defines a top-
level input port or interface in the HDL design generated by Model Composer.

Gateway Out Xilinx Gateway Out blocks are the outputs from the Xilinx portion of your
Simulink design. This block converts the Model Composer fixed-point or floating-
point data type into a Simulink integer, single, double, or fixed-point data type.

Logic and Bit Operation Blocks

Table 33: Logic and Bit Operation Blocks

Library Description
Assert The Xilinx Assert block is used to assert a rate and/or a type on a signal. This

block has no cost in hardware and can be used to resolve rates and/or types in
situations where designer intervention is required.

BitBasher The Xilinx BitBasher block performs slicing, concatenation, and augmentation of
inputs attached to the block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=399

Table 33: Logic and Bit Operation Blocks (cont'd)

Library Description
Concat The Xilinx Concat block performs a concatenation of n bit vectors represented by

unsigned integer numbers, for example, n unsigned numbers with binary points
at position zero.

Inverter The Xilinx Inverter block calculates the bitwise logical complement of a fixed-
point number. The block is implemented as a synthesizable VHDL module.

Logical The Xilinx Logical block performs bitwise logical operations on fixed-point
numbers. Operands are zero padded and sign extended as necessary to make
binary point positions coincide; then the logical operation is performed and the
result is delivered at the output port.

Memory Blocks

Table 34: Memory Blocks

Memory Block Description
Addressable Shift Register The Xilinx Addressable Shift Register block is a variable-length shift register in

which any register in the delay chain can be addressed and driven onto the
output data port.

Delay The Xilinx Delay block implements a fixed delay of L cycles.

Dual Port RAM The Xilinx Dual Port RAM block implements a random access memory (RAM).
Dual ports enable simultaneous access to the memory space at different sample
rates using multiple data widths.

FIFO The Xilinx FIFO block implements an FIFO memory queue.

LFSR The Xilinx LFSR block implements a Linear Feedback Shift Register (LFSR). This
block supports both the Galois and Fibonacci structures using either the XOR or
XNOR gate and allows a re-loadable input to change the current value of the
register at any time. The LFSR output and re-loadable input can be configured as
either serial or parallel ports.

Register The Xilinx Register block models a D flip-flop-based register, having a latency of
one sample period.

ROM The Xilinx ROM block is a single port read-only memory (ROM).

Single Port RAM The Xilinx Single Port RAM block implements a random access memory (RAM)
with one data input and one data output port.

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an AXI-
compatible block interface.

Signal Routing Blocks

Table 35: Signal Routing Blocks

Library Description
Bus Creator This block creates buses from input signals

Bus Selector This block selects signals from incoming buses

From This block accepts inputs from the Goto block

Goto This block passes block inputs to theFrom blocks

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=400

Source Blocks

Table 36: Source Blocks

Library Description
Constant The Xilinx Constant block generates a constant that can be a fixed-point value, a

Boolean value, or a DSP48 instruction. This block is similar to the Simulink
constant block, but can be used to directly drive the inputs on Xilinx blocks.

Counter The Xilinx Counter block implements a free-running or count-limited type of an
up, down, or up/down counter. The counter output can be specified as a signed
or unsigned fixed-point number.

Opmode The Xilinx Opmode block generates a constant that is a DSP48E, DSP48E1, or
DSP48E2 instruction. It is is a 15-bit instruction for DSP48E, a 20-bit instruction for
DSP48E1, and a 22-bit instruction for DSP48E2. The instruction consists of the
opmode, carry-in, carry-in select, alumode, and (for DSP48E1 and DSP48E2) the
inmode bits.

Reset Generator The Xilinx Reset Generator block captures the user's reset signal that is running
at the system samplerate, and produces one or more downsampled reset
signal(s) running at the rates specified on the block.

SSR Blocks

Table 37: SSR Blocks

Library Description
Vector Absolute The Vector Absolute block outputs the absolute value of the input of vector type.

Vector AddSub Fabric The Vector Adder/Subtracter Fabric block supports the Addition/Subtraction
operation forinputs of vector type.

Vector Assert The Vector Assert block asserts a user-defined sample rate and/or type on Vector
inputs.

Vector Concat The Vector Concat block concatenates two or more inputs of type vector. The
output is cast toan unsigned value with the binary point at zero.

Vector Convert The Vector Convert block supports Data Type Conversion feature for vector type
inputs.

Vector Down Sample The Vector Down Sample block down samples input vector data.

Vector Logical The Vector Logical block supports logical operation for vector type inputs.

Vector Mux The Vector Multiplexer block supports the Multiplexing feature for input of
vector types.

Vector Real Mult The Vector Real Multiplier block supports the multiplication feature for vector
type inputs.

Vector Reinterpret The Vector Reinterpret block changes the vector input signal type without
altering the binary representation.

Vector Relational The Vector Relational block implements comparator for vector inputs.

Vector Slice The Vector Slice block extracts a given range of bits from each sample of input
vector and presents it at the output.

Vector Up Sample The Vector Up Sample block up samples input vector data. Inserted values can be
zeros or copies of the most recent input sample.

Vector Complex Mult The Vector Complex Multiplier block supports multiplication of two complex
input vectors.

Vector DDFS The Vector DDFS block generates Real and Imaginary vector output signals of
desired frequency.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=401

Table 37: SSR Blocks (cont'd)

Library Description
Vector FFT The Vector FFT block supports the FFT operation for vector type inputs.

Vector FIR The Vector FIR block supports FIR filtering for vector type inputs.

Scalar2Vector The Scalar2Vector block converts scalar type input to vector type output.

Vector Real Gateway In The Vector Real Gateway In block converts vector inputs of type Simulink®

integer, single,double, and fixed-point to Xilinx® fixed-point or floating-point
data type.

Vector Real Gateway Out The Vector Real Gateway Out block converts Xilinx® fixed-point or floating-point
type vectorinputs into vector outputs of type Simulink® integer, single, double, or
fixed-point.

Vector2Scalar The Vector2Scalar block converts vector type input to scalar type output.

Vector Delay The Vector Delay block supports delay operation on vector type inputs.

Vector Delay Delta The Vector Delay Delta Block delays each vector element differently based on the
given latencyand delay latency values.

Vector Register The Vector Register block supports vector type inputs.

Vector Constant The Vector Constant Block generates vector constant values.

Tools

Table 38: Tools

Library Description
System Generator The System Generator token serves as a control panel for controlling system and

simulation parameters, and it is also used to invoke the code generator for
netlisting. Every Simulink model containing any element from the HDL Blockset
must contain at least one System Generator token. Once a System Generator
token is added to a model, it is possible to specify how code generation and
simulation should be handled.

Clock Enable Probe The Xilinx Clock Enable (CE) Probe provides a mechanism for extracting derived
clock enable signals from Xilinx signals in Model Composer models.

Clock Probe The Xilinx Clock Probe generates a double-precision representation of a clock
signal with a period equal to the Simulink system period.

FDATool The Xilinx FDATool block provides an interface to the FDATool software available
as part of the MATLAB Signal Processing Toolbox.

Indeterminate Probe The output of the Xilinx Indeterminate Probe indicates whether the input data is
indeterminate (MATLAB value NaN). An indeterminate data value corresponds to
a VHDL indeterminate logic data value of 'X'.

Questa The HDL Black Box block provides a way to incorporate existing HDL files into a
model. When the model is simulated, co-simulation can be used to allow black
boxes to participate. The Questa HDL co-simulation block configures and
controls co-simulation for one or several black boxes.

Sample Time The Sample Time block reports the normalized sample period of its input. A
signal's normalized sample period is not equivalent to its Simulink absolute
sample period. In hardware, this block is implemented as a constant.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=402

User-Defined functions

Table 39: User-Defined functions

Library Description
Black Box The HDL Black Box block provides a way to incorporate hardware description

language (HDL) models into Model Composer.

MCode The Xilinx MCode block is a container for executing a user-supplied MATLAB®

function within Simulink. A parameter on the block specifies the M-function
name. The block executes the M-code to calculate block outputs during a
Simulink simulation. The same code is translated in a straightforward way into
equivalent behavioral VHDL/Verilog when hardware is generated.

Vitis HLS The Xilinx Vitis™ HLS block allows the functionality of a Vitis HLS design to be
included in a Model Composer design. The Vitis HLS design can include C, C++,
and System C design sources.

HLS Blocksets

Table 40: Logic and Bit Operations

Block Description
Bit Concat Perform bitwise concatenation of input values into a single output value

Bit Slice Extract a range of bits from a value

Bitwise AND Perform element and bitwise Boolean AND operation on the inputs

Bitwise NOT Perform element and bitwise Boolean NOT operation on the input

Bitwise OR Perform element and bitwise Boolean OR operation on the inputs

Bitwise XOR Perform element and bitwise Boolean XOR operation on the inputs

Logical AND Performs element-wise logical AND operation on inputs

Logical NOT Performs element-wise logical NOT operation on the input

Logical OR Performs element-wise logical OR operation on inputs

Reduction AND Compute bitwise AND of the elements of the input over all dimensions or over a
specified dimension

Reduction OR Compute bitwise OR of the elements of the input over all dimensions or over a
specified dimension

Reduction XOR Compute bitwise XOR of the elements of the input over all dimensions or over a
specified dimension

Shift Left Perform logical shift left of input over a constant number of bit positions
specified by a non-negative integer mask parameter

Shift Right Perform logical shift right of input over a constant number of bit positions
specified by a non-negative integer mask parameter

Table 41: Lookup Tables

Block Description
Lookup Table Perform one-dimensional lookup operation with an input index

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=403

Table 42: Math Functions / Math Operations

Block Description
Abs Compute element-wise absolute value of input signal

atan Compute element-wise inverse tangent of input signal

atan2 Compute element-wise four-quadrant inverse tangent of input signal

Complex to Polar Element-wise conversion of complex input signals into magnitude and radiant
phase angle

Complex to Real-Imag Output real and imaginary parts of complex input signal

Conjugate Apply element-wise complex conjugate operation to the input signal

Cosine Element-wise computation of the cosine function for a given argument

cosh Element-wise computation of the hyperbolic cosine for a given argument

Cumulative Sum Compute the cumulative sum along the specified dimension of the input

Divide Perform element-wise division

Exp Perform an element-wise exponential value of the input

Gain Multiply the input signal with a constant gain factor.

Log Compute element-wise natural logarithm of input

Log10 Compute element wise base 10 logarithm of input

Max Computes the maximum value of an input or element-wise maximum value of
multiple inputs.

Min Computes the minimum value of an input or element-wise minimum value of
multiple inputs.

Modulus Perform element-wise modulus operation on the input signals

Negate Perform element-wise unary minus operation on the input data

Polar to Complex Element-wise conversion of real magnitude and angle representation signals
into a complex signal

Pow Compute the element-wise power function

Product Compute element-wise product of the input signals

Product of Elements Multiply the elements of the input signal

Real-Imag to Complex Convert real and/or imaginary inputs to complex signal

Reciprocal Perform element-wise computation of the reciprocal for a given argument

Reciprocal Sqrt Perform element-wise computation of the reciprocal square root for a given
argument

Remainder Perform element-wise division on the input signal, and the output is the
remainder after the division

Reshape Row-Major Changes the input dimensions in row-major order.

Signum Perform an element-wise signum function (sign extraction)

Sine Element-wise computation of the sine function for the given input

sinh Element-wise computation of the hyperbolic sine for a given argument

Sqrt Element-wise computation of the square root for a given argument

Subtract Perform an element-wise subtraction

Sum Performs element-wise addition of two input signals

Sum of Elements Perform element-wise addition on the input, column-wise, row-wise, or in all-
dimensions

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=404

Table 42: Math Functions / Math Operations (cont'd)

Block Description
Tangent Perform an element-wise computation of the tangent function for the given

argument

Table 43: Math Functions / Matrices and Linear Algebra

Block Description
Hermitian Perform element-wise conjugate transpose operation on the input signal

Matrix Multiply Compute matrix product of two input signals

QR Inverse Compute the inverse of a matrix using QR factorization

Submatrix Select a subset of elements (submatrix) from matrix input

Transpose Perform an element-wise transpose operation on the input signal

Table 44: Ports and Subsystems

Block Description
If Model if-else control flow

In1 Create input port for subsystem or external input

Out1 Create output port for subsystem or external output

Action Port Implement Action subsystems used in if and switch control flow statements

Window Processing Assemble an output matrix by applying the kernel subsystem to submatrices
(windows) of the input matrix in row-major order

Table 45: Relational Operations

Block Description
Equals Perform element-wise equal to relational operation on the inputs

Greater Perform element-wise greater than relational operation on the inputs

Greater Equals Perform element-wise greater than or equal relational operation on the inputs

Lesser Perform element-wise less than relational operation on the inputs

Lesser Equals Perform element-wise less than or equal relational operation on the inputs

Not Equals Perform element-wise not equal to relational operation on the inputs

Table 46: Signal Attributes

Block Description
Data Type Conversion Convert the input to the data type of the output

Reinterpret Element-wise reinterpretation of the input type into a compatible output type
with the same bit width

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=405

Table 47: Signal Operations

Block Description
Delay Delay input signal by specified number of samples

Unit Delay Provides a delay of one sample period

Table 48: Signal Routing

Block Description
Bus Creator Create Signal Bus

Bus Selector Select signals from incoming bus

Conditional Pass through input T when control input satisfies a selected criterion; otherwise,
pass through input F

Demux Separates a vector input into a number of scalar and vector outputs

From Accept input from Goto block

Goto Pass block input to From blocks

Merge Combine multiple signals into single signal

Mux Combines scalar and vector inputs into a larger vector output

Table 49: Sinks

Block Description
Display Show value of input

Scope Display signals generated during simulation

Stop Simulation Stop simulation when input is nonzero

Terminator Terminate unconnected output port

To File Write data to file

To Workspace Write data to workspace

Table 50: Source

Block Description
Constant Generates the constant specified by the Constant Value parameter

Table 51: Tools

Block Description
DocBlock Create text that documents model and save text with model

Interface Spec Specify the RTL interfaces for a subsystem

Model Composer Hub Control implementation of the model

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=406

HDL Blockset
Common Options in Block Parameter Dialog Boxes
Each Xilinx® block has several controls and configurable parameters, seen in its block parameters
dialog box. This dialog box can be accessed by double-clicking on the block. Many of these
parameters are specific to the block. Block-specific parameters are described in the
documentation for the block.

The remaining controls and parameters are common to most blocks. These common controls and
parameters are described below.

Each dialog box contains four buttons: OK, Cancel, Help, and Apply. Apply applies configuration
changes to the block, leaving the box open on the screen. Help displays HTML help for the block.
Cancel closes the box without saving changes. OK applies changes and closes the box.

Precision

The fundamental computational mode in the Xilinx blockset is arbitrary precision fixed-point
arithmetic. Most blocks give you the option of choosing the precision, for example, the number
of bits and binary point position.

By default, the output of Xilinx blocks is full precision; that is, sufficient precision to represent the
result without error. Most blocks have a User-Defined precision option that fixes the number of
total and fractional bits.

Arithmetic Type

In the Type field of the block parameters dialog box, you can choose unsigned or signed (two's
complement) as the data type of the output signal.

Number of Bits

Fixed-point numbers are stored in data types characterized by their word size as specified by
number of bits, binary point, and arithmetic type parameters. The maximum number of bits
supported is 4096.

Binary Point

The binary point is the means by which fixed-point numbers are scaled. The binary point
parameter indicates the number of bits to the right of the binary point (for example, the size of
the fraction) for the output port. The binary point position must be between zero and the
specified number of bits.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=407

Overflow and Quantization

When user-defined precision is selected, errors can result from overflow or quantization.
Overflow errors occur when a value lies outside the representable range. Quantization errors
occur when the number of fractional bits is insufficient to represent the fractional portion of a
value.

The Xilinx fixed-point data type supports several options for user-defined precision. For overflow
the options are to Saturate to the largest positive/smallest negative value, to Wrap (for example,
to discard bits to the left of the most significant representable bit), or to Flag as error (an
overflow as a Simulink® error) during simulation. Flag as error is a simulation only feature. The
hardware generated is the same as when Wrap is selected.

For quantization, the options are to Round to the nearest representable value (or to the value
furthest from zero if there are two equidistant nearest representable values), or to Truncate (for
example, to discard bits to the right of the least significant representable bit).

The following is an image showing the Quantization and Overflow options.

Figure 295: Quantization and Overflow Options

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the MATLAB® round() function. This method rounds
the value to the nearest desired bit away from zero and when there is a value at the midpoint
between two possible rounded values, the one with the larger magnitude is selected. For
example, to round 01.0110 to a Fix_4_2, this yields 01.10, because 01.0110 is exactly between
01.01 and 01.10 and the latter is further from zero.

Round (unbiased: even values) also known as "Convergent Round (toward even)" or "Unbiased
Rounding". Symmetric rounding is biased because it rounds all ambiguous midpoints away from
zero which means the average magnitude of the rounded results is larger than the average
magnitude of the raw results. Convergent rounding removes this by alternating between a
symmetric round toward zero and symmetric round away from zero. That is, midpoints are
rounded toward the nearest even number. For example, to round 01.0110 to a Fix_4_2, this
yields 01.10, because 01.0110 is exactly between 01.01 and 01.10 and the latter is even. To
round 01.1010 to a Fix_4_2, this yields 01.10, because 01.1010 is exactly between 01.10 and
01.11 and the former is even.

It is important to realize that whatever option is selected, the generated HDL model and Simulink
model behave identically.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=408

Latency

Many elements in the Xilinx blockset have a latency option. This defines the number of sample
periods by which the block's output is delayed. One sample period might correspond to multiple
clock cycles in the corresponding FPGA implementation (for example, when the hardware is
over-clocked with respect to the Simulink model). System Generator does not perform extensive
pipelining; additional latency is usually implemented as a shift register on the output of the block.

Provide Synchronous Reset Port

Selecting the Provide Synchronous Reset Port option activates an optional reset (rst) pin on the
block.

When the reset signal is asserted the block goes back to its initial state. Reset signal has
precedence over the optional enable signal available on the block. The reset signal has to run at a
multiple of the block's sample rate. The signal driving the reset port must be Boolean.

Provide Enable Port

Selecting the Provide Enable Port option activates an optional enable (en) pin on the block.
When the enable signal is not asserted the block holds its current state until the enable signal is
asserted again or the reset signal is asserted. Reset signal has precedence over the enable signal.
The enable signal has to run at a multiple of the block 's sample rate. The signal driving the
enable port must be Boolean.

Sample Period

Data streams are processed at a specific sample rate as they flow through Simulink. Typically,
each block detects the input sample rate and produces the correct sample rate on its output.
Xilinx blocks Up Sample and Down Sample provide a means to increase or decrease sample rates.

Specify Explicit Sample Period

If you select Specify explicit sample period rather than the default, you can set the sample
period required for all the block outputs. This is useful when implementing features such as
feedback loops in your design. In a feedback loop, it is not possible for System Generator to
determine a default sample rate, because the loop makes an input sample rate depend on a yet-
to-be-determined output sample rate. System Generator under these circumstances requires you
to supply a hint to establish sample periods throughout a loop.

Use Behavioral HDL (otherwise use core)

When this checkbox is checked, the behavioral HDL generated by the M-code simulation is used
instead of the structural HDL from the cores.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=409

The M-code simulation creates the C simulation and this C simulation creates behavioral HDL.
When this option is selected, it is this behavioral HDL that is used for further synthesis. When
this option is not selected, the structural HDL generated from the cores and HDL templates
(corresponding to each of the blocks in the model) is used instead for synthesis. Cores are
generated for each block in a design once and cached for future netlisting. This capability ensures
the fastest possible netlist generation while guaranteeing that the cores are available for
downstream synthesis and place and route tools.

Use XtremeDSP Slice

This field specifies that if possible, use the XtremeDSP slice (DSP48 type element) in the target
device. Otherwise, CLB logic are used for the multipliers.

Display shortened port names

AXI4-Stream signal names have been shortened (by default) to improve readability on the block.
Name shortening is purely cosmetic and when netlisting occurs, the AXI4-Stream name is used.
For example, a shortened master signal on an AXI4-Stream interface might be data_tvalid. When
you check Display shortened port names, the name becomes m_axis_data_tvalid.

Block Reference Pages
Following is an alphabetic listing of the blocks in the HDL blockset, with descriptions of each of
the blocks.

Absolute

The Xilinx Absolute block outputs the absolute value of the input.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=410

• Precision: This parameter allows you to specify the output precision for fixed-point
arithmetic. Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type:

• Arithmetic type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Quantization:

Refer to the section Overflow and Quantization.

• Overflow: Refer to the section Overflow and Quantization.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Accumulator

The Xilinx® Accumulator block implements an adder or subtractor-based scaling accumulator.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 411Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=411

The block's current input is accumulated with a scaled current stored value. The scale factor is a
block parameter.

Block Interface

The block has an input b and an output q. The output must have the same width as the input
data. The output will have the same arithmetic type and binary point position as the input. The
output q is calculated as follows:

q(n) = q(n-1)xFeedbackScaling + h(n-1)
0 if rst = 1

otherwise{
A subtractor-based accumulator replaces addition of the current input b(n) with subtraction.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Operation: This determines whether the block is adder- or subtractor-based.

• Fixed-Point Output Precision:

• Number of bits: specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Overflow: Refer to the section Overflow and Quantization.

• Feedback scaling: Specifies the feedback scale factor to be one of the following:

1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256.

• Optional Ports:

• Provide synchronous reset port: Activates an optional reset (rst) pin on the block. When
the reset signal is asserted, the block goes back to its initial state. However, when a
floating point accumulator is used, the output will be NAN during reset. The reset signal
has precedence over the optional enable signal available on the block. The reset signal
must run at a multiple of the block's sample rate. The signal driving the reset port must
be Boolean.

• Bypass Option on Reset:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 412Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=412

• Reinitialize with input 'b': When selected, the output of the accumulator is reset to the
data on input port b. When not selected, the output of the accumulator is reset to zero.
This option is available only when the block has a reset port. Using this option has clock
speed implications if the accumulator is in a multirate system. In this case the
accumulator is forced to run at the system rate because the clock enable (CE) signal
driving the accumulator runs at the system rate, and the reset to input operation is a
function of the CE signal.

• Internal Precision tab: Parameters specific to the Internal Precision tab are as follows:

• Floating Point Precision:

• Input MSB Max: The Most Significant Bit of the largest number that can be accepted.

• Output MSB Max: The MSB of the largest result. It can be up to 54 bits greater than the
Input MSB.

• Output LSB Min: The Least Significant Bit of the smallest number that can be accepted.
It is also the LSB of the accumulated result.

• Implementation tab: Parameters specific to the Implementation tab are as follows:

• Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL.
This gives the downstream logic synthesis tool maximum freedom to optimize for
performance or area.

• Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

The Accumulator block always has a latency of 1.

LogiCORE Documentation

LogiCORE IP Accumulator v12.0

Addressable Shift Register

The Xilinx Addressable Shift Register block is a variable-length shift register in which any register
in the delay chain can be addressed and driven onto the output data port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 413Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/c_accum/v12_0/pg119-c-accum.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=413

The block operation is most easily thought of as a chain of registers, where each register output
drives an input to a multiplexer, as shown below. The multiplexer select line is driven by the
address port (addr). The output data port is shown below as q.

Figure 296: Output Data Port

The Addressable Shift Register has a maximum depth of 1024 and a minimum depth of 2. The
address input port, therefore, can be between 1 and 10 bits (inclusive). The data input port width
must be between 1 and 255 bits (inclusive) when this block is implemented with the Xilinx
LogiCORE (for example, when Use behavioral HDL (otherwise use core) is unchecked).

In hardware, the address port is asynchronous relative to the output port. In the block S-function,
the address port is therefore given priority over the input data port, for example, on each
successive cycle, the addressed data value is read from the register and driven to the output
before the shift operation occurs. This order is needed in the Simulink® software model to
guarantee one clock cycle of latency between the data port and the first register of the delay
chain. (If the shift operation were to come first, followed by the read, then there would be no
delay, and the hardware would be incorrect.)

Block Interface

The block interface (inputs and outputs as seen on the Addressable Shift Register icon) are as
follows:

d data input

addr address

en enable signal (optional)

q data output

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=414

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.d.

• Basic tab: Parameters specific to this block are as follows:

• Infer maximum latency (depth) using address port width: You can choose to allow the
block to automatically determine the depth or maximum latency of the shift-register-based
on the bit-width of the address port.

• Maximum latency (depth): In the case that the maximum latency is not inferred (previous
option), the maximum latency can be set explicitly.

• Initial value vector: Specifies the initial register values. When the vector is longer than the
shift register depth, the vector's trailing elements are discarded. When the shift register is
deeper than the vector length, the shift register's trailing registers are initialized to zero.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

• Implementation tab: Parameters specific to this block are as follows:

• Optimization: You can choose to optimize for Resource (minimum area) or for Speed
(maximum performance).

LogiCORE Documentation

LogiCORE IP RAM-based Shift Register v12.0

LogiCORE IP Floating-Point Operator v7.1

AddSub

The Xilinx AddSub block implements an adder/subtractor. The operation can be fixed (Addition
or Subtraction) or changed dynamically under control of the sub mode signal.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 415Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/c_shift_ram/v12_0/pg122-c-shift-ram.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=415

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic tab are as follows:

• Operation: Specifies the block operation to be Addition, Subtraction, or Addition/
Subtraction. When Addition/Subtraction is selected, the block operation is determined by
the sub input port, which must be driven by a Boolean signal. When the sub input is 1, the
block performs subtraction. Otherwise, it performs addition.

• Provide carry-in port: When selected, allows access to the carry-in port, cin.

• Provide carry-out port: When selected, allows access to the carry-out port, cout. The
carry-out port is available only when User defined precision is selected, the inputs and
output are unsigned, and the number of output integer bits equals x, where x = max
(integer bits a, integer bits b).

• Latency: The Latency value defines the number of sample periods by which the block's
output is delayed. One sample period might correspond to multiple clock cycles in the
corresponding FPGA implementation (for example, when the hardware is over-clocked with
respect to the Simulink model). Model Composer will not perform extensive pipelining
unless you select the Pipeline for maximum performance option (on the Implementation
tab, described below); additional latency is usually implemented as a shift register on the
output of the block.

• Output tab:

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type:

• Arithmetic Type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed -point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=416

• Binary point: Position of the binary point in the fixed-point output.

• Quantization: Refer to the section Overflow and Quantization.

• Overflow: Refer to the section Overflow and Quantization.

• Implementation tab:

Parameters specific to the Implementation tab are as follows:

• Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL.
This gives the downstream logic synthesis tool maximum freedom to optimize for
performance or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

• Core Parameters:

• Pipeline for maximum performance:

The XILINX LogiCORE can be internally pipelined to optimize for speed instead of area.
Selecting this option puts all user defined latency into the core until the maximum
allowable latency is reached. If the Pipeline for maximum performance option is not
selected and latency is greater than zero, a single output register is put in the core and
additional latency is added on the output of the core.

The Pipeline for maximum performance option adds the pipeline registers throughout the
block, so that the latency is distributed, instead of adding it only at the end. This helps to
meet tight timing constraints in the design.

• Implement using: Core logic can be implemented in Fabric, or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Adder/Subtractor v12.0

LogiCORE IP Floating-Point Operator v7.1

Assert

The Xilinx Assert block is used to assert a rate and/or a type on a signal. This block has no cost in
hardware and can be used to resolve rates and/or types in situations where designer intervention
is required.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 417Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/addsub/v12_0/pg120-c-addsub.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=417

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to this block are as follows:

• Type:

• Assert type: Specifies whether or not the block will assert that the type at its input is the
same as the type specified. If the types are not the same, an error message is reported. This
block is listed in the following Xilinx Blockset libraries: Floating-Point and Index.

• Specify type: Specifies whether or not the type to assert is provided from a signal
connected to an input port named type or whether it is specified Explicitly from
parameters in the Assert block dialog box.

• Output Type: Specifies the data type of the output. Can be Boolean, Fixed-point, or
Floating-point.

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: This block is listed in the following: Activates the field below so you can
specify the Exponent width and the Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Rate:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=418

• Assert rate: specifies whether or not the block will assert that the rate at its input is the
same as the rate specified. If the rates are not the same, an error message is reported.

• Specify rate: Specifies whether or not the initial rate to assert is provided from a signal
connected to an input port named rate, or whether it is specified Explicitly from the
Sample rate parameter in the Assert block dialog box.

• Provide output port: Specifies whether or not the block will feature an output port. The type
and/or rate of the signal presented on the output port is the type and/or rate specified for
assertion.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

The Output type parameter in this block uses the same description as the Arithmetic Type
described in the topic Common Options in Block Parameter Dialog Boxes.

The Assert block does not use a Xilinx LogiCORE™ and does not use resources when
implemented in hardware.

Using the Assert block to Resolve Rates and Types

In cases where the simulation engine cannot resolve rates or types, the Assert block can be used
to force a particular type or rate. In general this might be necessary when using components that
use feedback and act as a signal source. For example, the circuit below requires an Assert block
to force the rate and type of an SRL16. In this case, you can use an Assert block to 'seed' the rate
which is then propagated back to the SRL16 input through the SRL16 and back to the Assert
block. The design below fails with the following message when the Assert block is not used.

The data types could not be established for the feedback paths through this block. You might
need to add Assert blocks to instruct the system how to resolve types.

Figure 297: Addressable Shift Register

To resolve this error, an Assert block is introduced in the feedback path as shown below:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=419

Figure 298: Addressable Shift Register with Assert Block

In the example, the Assert block is required to resolve the type, but the rate could have been
determined by assigning a rate to the constant clock. The decision whether to use Constant
blocks or Assert blocks to force rates is arbitrary and can be determined on a case by case basis.

Model Composer now resolves rates and types deterministically, however in some cases, the use
of Assert blocks might be necessary for some Model Compsoer HDL components, even if they
are resolvable. These blocks might include Black Box components and certain IP blocks.

AXI FIFO

The Xilinx AXI FIFO block implements a FIFO memory queue with an AXI-compatible block
interface.

Block Interface

• Write Channel:

• tready: Indicates that the slave can accept a transfer in the current cycle.

• tvalid: Indicates that the master is driving a valid transfer. A transfer takes place when both
tvalid and tready are asserted.

• tdata: The primary input data channel.

• Read Channel:

• tdata: The primary output for the data.

• tready: Indicates that the slave can accept a transfer in the current cycle.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=420

• tvaild: Indicates that the slave is accepting a valid transfer. A transfer takes place when
both tvalid and tready are asserted.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Data Port Parameters:

• FIFO depth: Specifies the number of words that can be stored. Range 16-128K.

• Actual FIFO depth: A report field that indicates the actual FIFO depth. The actual depth
of the FIFO depends on its implementation and the features that influence its
implementation.

• Optional Ports:

• TDATA: The primary payload that is used to provide the data that is passing across the
interface. The width of the data payload is an integer number of bytes.

• TDEST: Provides routing information for the data stream.

• TSTRB: The byte qualifier that indicates whether the content of the associated byte of
TDATA is processed as a data byte or a position byte. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

• STROBE[0] = 1b, DATA[7:0] is valid

• STROBE[7] = 0b, DATA[63:56] is not valid

• TREADY: Indicates that the slave can accept a transfer in the current cycle.

• TID: The data stream identifier that indicates different streams of data.

• TUSER: The user-defined sideband information that can be transmitted alongside the
data stream.

• TKEEP: The byte qualifier that indicates whether the content of the associated byte of
TDATA is processed as part of the data stream. Associated bytes that have the TKEEP
byte qualifier de-asserted are null bytes and can be removed from the data stream. For a
64-bit DATA, bit 0 corresponds to the least significant byte on DATA, and bit 7
corresponds to the most significant byte. For example:

• KEEP[0] = 1b, DATA[7:0] is a NULL byte

• KEEP [7] = 0b, DATA[63:56] is not a NULL byte

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=421

• TLAST: Indicates the boundary of a packet.

• arestn: Adds arestn (global reset) port to the block.

• Data Threshold Parameters:

• Provide FIFO occupancy DATA counts: Adds data_count port to the block. This port
indicates the number of words written into the FIFO. The count is guaranteed to never
under-report the number of words in the FIFO, to ensure the user never overflows the
FIFO. The exception to this behavior is when a write operation occurs at the rising edge
of write clock; that write operation will only be reflected on WR_DATA_COUNT at the
next rising clock edge. D = log2(FIFO depth)+1

• Implementation tab: FIFO Options

• FIFO implementation type: Specifies how the FIFO is implemented in the FPGA. Possible
options are: Common Clock block RAM and Common Clock Distributed RAM. The
XPM_FIFO_AXIS macro will be inferred or implemented when the design is compiled. For
information on the XPM_FIFO_AXIS Xilinx Parameterized Macro (XPM), refer to UltraScale
Architecture Libraries Guide (UG974).

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

BitBasher

The Xilinx BitBasher block performs slicing, concatenation and augmentation of inputs attached
to the block.

The operation to be performed is described using Verilog syntax which is detailed in this
document. The block can have up to four output ports. The number of output ports is equal to
the number of expressions. The block does not cost anything in hardware.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 422Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=422

• BitBasher Expression: Bitwise manipulation expression based on Verilog Syntax. Multiple
expressions (limited to a maximum of 4) can be specified using new line as a separator
between expressions.

• Output Type tab:

• Output: This refers to the port on which the data type is specified.

• Output type: Arithmetic type to be forced onto the corresponding output.

• Binary Point: Binary point location to be forced onto the corresponding output.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Supported Verilog Constructs

The BitBasher block only supports a subset of Verilog expression constructs that perform bitwise
manipulations including slice, concatenation, and repeat operators. All specified expressions must
adhere to the following template expression:

output_var = {bitbasher_expr}

bitbasher_expr: A slice, concat or repeat expression based on Verilog syntax or simply an input
port identifier.

output_var: The output port identifier. An output port with the name output_var will appear on
the block and will hold the result of the wire expression bitbasher_expr.

Concat

output_var = {bitbasher_expr1, bitbasher_expr2, bitbasher_expr3}

The concat syntax is supported as shown above. Each of bitbasher_exprN could either be an
expression or simply an input port identifier.

The following are some examples of this construct:

a1 = {b,c,d,e,f,g}
a2 = {e}
a3 = {b,{f,c,d},e}

Slice

output_var = {port_identifier[bound1:bound2]}(1)
output_var = {port_identifier[bitN]}(2)

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=423

port_identifier: The input port from which the bits are extracted.

bound1, bound2: Non-negative integers that lie between 0 and (bit-width of port_identifier – 1)

bitN: Non-negative integers that lie between 0 and (bit-width of port_identifier – 1)

As shown above, there are two schemes to extract bits from the input ports. If a range of
consecutive bits need to be extracted, then the expression of the following form should be used.

output_var = {port_identifier[bound1:bound2]}�(1)

If only one bit is to be extracted, then the alternative form should be used.

output_var = {port_identifier[bitN]}�(2)

The following are some examples of this construct:

a1 = {b[7:3]}

a1 holds bits 7 through 3 of input b in the same order in which they appear in bit b (for example,
if b is 110110110 then a1 is 10110).

a2 = {b[3:7]}

a2 holds bits 7 through 3 of input b in the reverse order in which they appear in bit b (for
example, if b is 110100110 then a2 is 00101).

a3 = {b[5]}

a3 holds bit 5 of input b.

a4 = {b[7:5],c[3:9],{d,e}}

The above expression makes use of a combination of slice and concat constructs.Bits 7 through 5
of input b, bits 3 through 9 of input c and all the bits of d and e are concatenated.

Repeat

output_var = {N{bitbasher_expr}}

N: A positive integer that represents the repeat factor in the expression

The following are some examples of this construct:

a1 = {4{b[7:3]}}

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=424

The above expression is equivalent to a1 = {b[7:3], b[7:3], b[7:3], b[7:3]}

a2 = {b[7:3],2{c,d}}

The above expression is equivalent to a2 = {b[7:3],c,d,c,d}

Constants

Binary Constant: N'bbin_const

Octal Constant: N'ooctal_const

Decimal Constant: N'doctal_const

Hexadecimal Constant: N'hoctal_const

N: A positive integer that represents the number of bits that are used to represent the constant

bin_const: A legal binary number string made up of 0 and 1

octal_const: A legal octal number string made up of 0, 1, 2, 3, 4, 5, 6 and 7

decimal_const: A legal decimal number string made up of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

hexadecimal_const: A legal binary number string made up of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e
and f

A constant can only be used to augment expressions already derived from input ports. In other
words, a BitBasher block cannot be used to simply source constant like the Constant block.

The following examples make use of this construct:

a1 = {4'b1100, e}

if e were 110110110 then a1 would be 1100110110110.

a1 = {4'hb, e}

if e were 110110110 then a1 would be 1101110110110.

a1 = {4'o10, e}

if e were 110110110 then a1 would be 1000110110110.

Limitations

• Does not support masked parameterization on the bitbasher expressions.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=425

• An expression cannot contain only constants, that is, each expression must include at least
one input port.

Black Box

The System Generator Black Box block provides a way to incorporate hardware description
language (HDL) models into Model Composer.

The block is used to specify both the simulation behavior in Simulink and the implementation
files to be used during code generation with Model Composer. A black box's ports produce and
consume the same sorts of signals as other HDL blocks. When a black box is translated into
hardware, the associated HDL entity is automatically incorporated and wired to other blocks in
the resulting design.

The black box can be used to incorporate either VHDL or Verilog into a Simulink model. Black
box HDL can be co-simulated with Simulink using the Model Composer interface to the Vivado®

simulator.

In addition to incorporating HDL into a Model Composer model, the black box can be used to
define the implementation associated with an external simulation model.

Requirements on HDL for Black Boxes

Every HDL component associated with a black box must adhere to the following Model
Composer requirements and conventions:

• The entity name must not collide with any entity name that is reserved by Model Composer
(e.g., xlfir, xlregister).

• Bi-directional ports are supported in HDL black boxes; however they will not be displayed in
the Model Composer as ports, they will only appear in the generated HDL after netlisting.

• For a Verilog Black Box, the module and port names must be lower case, and follow standard
Verilog naming conventions.

• For a VHDL Black Box, the supported port data types are std_logic and std_logic_vector.

• Top level ports should be ordered most significant bit down to least significant bit, as in
std_logic_vector(7 downto 0), and not std_logic_vector(0 to 7).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=426

• Top level ports with signed binary types in Verilog RTL are not supported (for example,
18'sb1010). Only unsigned binary types are supported.

• Clock and clock enable ports must be named according to the conventions described below.

• Any port that is a clock or clock enable must be of type std_logic. (For Verilog black boxes,
such ports must be non-vector inputs, e.g., input clk.)

• Clock and clock enable ports on a black box are not treated like other ports. When a black box
is translated into hardware, Model Composer drives the clock and clock enable ports with
signals whose rates can be specified according to the block's configuration and the sample
rates that drive it in Simulink.

• Falling-edge triggered output data cannot be used.

IMPORTANT! Model Composer does not import .dcp  files as an IP for blackbox flows.

To understand how clocks work for black boxes, it helps to understand how Model Composer
handles Timing and Clocking. In general. To produce multiple rates in hardware, Model Composer
uses a single clock along with multiple clock enables, one enable for each rate. The enables
activate different portions of hardware at the appropriate times. Each clock enable rate is related
to a corresponding sample period in Simulink. Every HDL block that requires a clock has at least
one clock and clock enable port in its HDL counterpart. Blocks having multiple rates have
additional clock and clock enable ports.

Clocks for black boxes work like those for other HDL blocks. The black box HDL must have a
separate clock and clock enable port for each associated sample rate in Simulink. Clock and clock
enable ports in black box HDL should be expressed as follows:

• Clock and clock enables must appear as pairs (for example, for every clock, there is a
corresponding clock enable, and vice-versa). Although a black box can have more than one
clock port, a single clock source is used to drive each clock port. Only the clock enable rates
differ.

• Each clock name (respectively, clock enable name) must contain the substring clk (resp., ce).

• The name of a clock enable must be the same as that for the corresponding clock, but with ce
substituted for clk. For example, if the clock is named src_clk_1, then the clock enable must be
named src_ce_1.

Clock and clock enable ports are not visible on the black box block icon. A work around is
required to make the top-level HDL clock enable port visible in Model Composer; the work
around is to add a separate enable port to the top-level HDL and AND this signal with the actual
clock enable signal.

The Black Box Configuration Wizard

The Configuration Wizard is a tool that makes it easy to associate a Verilog or VHDL component
to a black box. The wizard is invoked whenever a black box is added to a model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=427

IMPORTANT! To use the wizard, copy the .v or .vhd file that defines the HDL component for a black box
into the directory that contains the model.

When a new black box is added to a model, the Configuration Wizard opens automatically. An
example is shown in the figure below.

Figure 299: Black Box Configuration Wizard Example

From this wizard choose the HDL file that should be associated to the black box, then press the
Open button. The wizard generates a configuration M-function (described below) for the black
box, and associates the function with the block. The configuration M-function produced by the
wizard can usually be used without change, but occasionally the function must be tailored by
hand. Whether the configuration M-function needs to be modified depends on how complex the
HDL is.

The Black Box Configuration M-Function

A black box must describe its interface (e.g., ports and generics) and its implementation to Model
Composer. It does this through the definition of a MATLAB M-function (or p-function) called the
block's configuration. The name of this function must be specified in the block parameter dialog
box under the Block Configuration parameter.

The configuration M-function does the following:

• It specifies the top-level entity name of the HDL component that should be associated with
the black box.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=428

• It selects the language (for example, VHDL or Verilog).

• It describes ports, including type, direction, bit width, binary point position, name, and sample
rate. Ports can be static or dynamic. Static ports do not change; dynamic ports change in
response to changes in the design. For example, a dynamic port might vary its width and type
to suit the signal that drives it.

• It defines any necessary port type and data rate checking.

• It defines any generics required by the black box HDL.

• It specifies the black box HDL and other files (e.g., EDIF) that are associated with the block.

• It defines the clocks and clock enables for the block (see the following topic on clock
conventions).

• It declares whether the HDL has any combinational feed-through paths.

Model Composer provides an object-based interface for configuring black boxes consisting of
two types of objects: BlockDescriptors, used to define entity characteristics, and
PortDescriptors, used to define port characteristics. This interface is used to provide Model
Composer information in the configuration M-function for black box about the block's interface,
simulation model, and implementation.

If the HDL for a black box has at least one combinational path (for example, a direct feed-through
from an input to an output port), the block must be tagged as combinational in its configuration
M-function using the tagAsCombinational method. A black box can be a mixture (for example,
some paths can be combinational while others are not).

IMPORTANT! It is essential that a block containing a combinational path be tagged as such. Doing so
allows Model Composer to identify such blocks to the Simulink simulator. If this is not done, simulation
results are incorrect.

The configuration M-function for a black box is invoked several times when a model is compiled.
The function typically includes code that depends on the block's input ports. For example,
sometimes it is necessary to set the data type and/or rate of an output port based on the
attributes on an input port. It is sometimes also necessary to check the type and rate on an input
port. At certain times when the function is invoked, Simulink might not yet know enough for
such code to be executed.

To avoid the problems that arise when information is not yet known (in particular, exceptions),
BlockDescriptor members inputTypesKnown and inputRatesKnown can be used. These are used to
determine if Simulink is able, at the moment, to provide information about the input port types
and rates respectively. The following code illustrates this point.

if (this_block.inputTypesKnown)
% set dynamic output port types
 % set generics that depend on input port types
 % check types of input ports
end

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=429

If all input rates are known, this code sets types for dynamic output ports, sets generics that
depend on input port types, and verifies input port types are appropriate. Avoid the mistake of
including code in these conditional blocks (e.g., a variable definition) that is needed by code
outside of the conditional block.

Note that the code shown above uses an object named this_block. Every black box configuration
M-function automatically makes this_block available through an input argument. In MATLAB,
this_block is the object that represents the black box, and is used inside the configuration M-
function to test and configure the black box. Every this_block object is an instance of the
SysgenBlockDescriptor MATLAB class. The methods that can be applied to this_block are specified
in Appendix A. A good way to generate example configuration M-function is to run the
Configuration Wizard (described below) on simple VHDL entities.

Sample Periods

The output ports, clocks, and clock enables on a black box must be assigned sample periods in
the configuration M-function. If these periods are dynamic, or the black box needs to check
rates, then the function must obtain the input port sample periods. Sample periods in the black
box are expressed as integer multiples of the system rate as specified by the Simulink System
Period field on the System Generator token. For example, if the Simulink System Period is 1/8, and
a black box input port runs at the system rate (for example, at 1/8), then the configuration M-
function sees 1 reported as the port's rate. Likewise, if the Simulink System Period is specified as
pi, and an output port should run four times as fast as the system rate (for example, at 4*pi), then
the configuration M-function should set the rate on the output port to 4. The appropriate rate
for constant ports is Inf.

As an example of how to set the output rate on each output port, consider the following code
segment:

block.outport(1).setRate(theInputRate);
block.outport(2).setRate(theInputRate*5);
block.outport(3).setRate(theInputRate*5);

The first line sets the first output port to the same rate as the input port. The next two lines set
the output rate to 5 times the rate of the input.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab : Parameters specific to the Basic tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=430

• Block Configuration M-Function: Specifies the name of the configuration M-function that
is associated to the black box. Ordinarily the file containing the function is stored in the
directory containing the model, but it can be stored anywhere on the MATLAB path. Note
that MATLAB limits all function names (including those for configuration M-functions) to
63 characters. Do not include the file extension (".m" or ".p") in the edit box.

• Simulation Mode: Tells the mode (Inactive, Vivado Simulator, or External co-simulator) to
use for simulation. When the mode is Inactive, the black box ignores all input data and
writes zeroes to its output ports. Usually for this mode the black box should be coupled,
using a Configurable Subsystem.

Model Composer uses Configurable Subsystems to allow two paths to be identified – one for
producing simulation results, and the other for producing hardware. This approach gives the best
simulation speed, but requires that a simulation model be constructed. When the mode is Vivado
Simulator or External co-simulator, simulation results for the black box are produced using co-
simulation on the HDL associated with the black box. When the mode is External co-simulator, it
is necessary to add a Questa HDL co-simulation block to the design, and to specify the name of
the Questa block in the field labeled HDL Co-Simulator To Use. An example is shown below:

Figure 300: Use of Configurable Subsystems Example

Model Composer supports the Questa simulator from Mentor Graphics®, Inc. for HDL co-
simulation. For co-simulation of Verilog black boxes, a mixed mode license is required. This is
necessary because the portion of the design that Model Composer writes is VHDL.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=431

Note: When you use the Questa simulator, the DefaultRadix used is Binary.

Usually the co-simulator block for a black box is stored in the same Subsystem that contains the
black box, but it is possible to store the block elsewhere. The path to a co-simulation block can
be absolute, or can be relative to the Subsystem containing the black box (e.g., "../Questa"). When
simulating, each co-simulator block uses one license. To avoid running out of licenses, several
black boxes can share the same co-simulation block. Model Composer automatically generates
and uses the additional VHDL needed to allow multiple blocks to be combined into a single
Questa simulation.

Data Type Translation for HDL Co-Simulation

During co-simulation, ports in Model Composer drive ports in the HDL simulator, and vice-versa.
Types of signals in the tools are not identical, and must be translated. The rules used for
translation are the following.

• A signal in Model Composer can be Boolean, unsigned or signed fixed point. Fixed-point
signals can have indeterminate values, but Boolean signals cannot. If the signal's value is
indeterminate in Model Composer, then all bits of the HDL signal become 'X', otherwise the
bits become 0's and 1's that represent the signal's value.

• To bring HDL signals back into Model Composer, standard logic types are translated into
Booleans and fixed-point values as instructed by the black box configuration M-function.
When there is a width mismatch, an error is reported. Indeterminate signals of all varieties
(weak high, weak low, etc.) are translated to Model Composer indeterminates. Any signal that
is partially indeterminate in HDL simulation (e.g., a bit vector in which only the topmost bit is
indeterminate) becomes entirely indeterminate in Model Composer.

• HDL to Model Composer translations can be tailored by adding a custom simulation-only top-
level wrapper to the VHDL component. Such a wrapper might, for example, translate every
weak low signal to 0 or every indeterminate signal to 0 or 1 before it is returned to Model
Composer.

Example

The following is an example VHDL entity that can be associated to a HDL black box.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity word_parity_block is
 generic (width : integer := 8);
port (din : in std_logic_vector(width-1 downto 0);
 parity : out std_logic);
end word_parity_block;
architecture behavior of word_parity_block is
begin
 WORD_PARITY_Process : process (din)
 variable partial_parity : std_logic := '0';
 begin
 partial_parity := '0';
 XOR_BIT_LOOP: for N in din'range loop

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=432

 partial_parity := partial_parity xor din(N);
 end loop; -- N
 parity <= partial_parity after 1 ns ;
 end process WORD_PARITY_Process;
end behavior;

The following is an example configuration M-function. It makes the VHDL shown above available
inside a HDL black box.

function word_parity_block_config(this_block)
this_block.setTopLevelLanguage('VHDL');
 this_block.setEntityName('word_parity_block');
 this_block.tagAsCombinational;
 this_block.addSimulinkInport('din');
 this_block.addSimulinkOutport('parity');
 parity = this_block.port('parity');
 parity.setWidth(1);
 parity.useHDLVector(false);
 % -----------------------------
 if (this_block.inputTypesKnown)
 this_block.addGeneric('width',
 this_block.port('din').width);
 end % if(inputTypesKnown)
 % -----------------------------
 % -----------------------------
 if (this_block.inputRatesKnown)
 din = this_block.port('din');
 parity.setRate(din.rate);
 end % if(inputRatesKnown)
 % -----------------------------
 this_block.addFile('word_parity_block.vhd');
 return;

CIC Compiler 4.0

The Xilinx CIC Compiler provides the ability to design and implement AXI4-Stream-compliant
Cascaded Integrator-Comb (CIC) filters for a variety of Xilinx FPGA devices.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=433

CIC filters, also known as Hogenauer filters, are multi-rate filters often used for implementing
large sample rate changes in digital systems. They are typically employed in applications that
have a large excess sample rate. That is, the system sample rate is much larger than the
bandwidth occupied by the processed signal as in digital down converters (DDCs) and digital up
converters (DUCs). Implementations of CIC filters have structures that use only adders,
subtractors, and delay elements. These structures make CIC filters appealing for their hardware-
efficient implementations of multi-rate filtering.

Sample Rates and the CIC Compiler Block

The CIC Compiler block must always run at the system rate because the CIC Compiler block has
a programmable rate change option and Simulink® cannot inherently support it. You should use
the "ready" output signal to indicate to downstream blocks when a new sample is available at the
output of the CIC Compiler block.

The CIC will downsample the data, but the sample rate will remain at the clock rate. If you look at
the output of the CIC Compiler block, you will see each output data repeated R times for a rate
change of R while the data_tvalid signal pulses once every R cycles. The downstream blocks
can be clocked at lower-than-system rates without any problems as long as the clock is never
slower than the rate change R.

There are several different ways this can be handled. You can leave the entire design running at
the system rate then use registers with enables, or enables on other blocks to capture data at the
correct time. Or alternatively, you can use a downsample block corresponding to the lowest rate
change R, then again use enable signals to handle the cases when there are larger rate changes.

If there are not many required rate changes, you can use MUX blocks and use a different
downsample block for each different rate change. This might be the case if the downstream
blocks are different depending on the rate change, basically creating different paths for each rate.
Using enables as described above will probably be the most efficient method.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=434

If you are not using the CIC Compiler block in a programmable mode, you can place an up/down
sample block after the CIC Compiler to correctly pass on the sample rate to downstream blocks
that will inherit the rate and build the proper CE circuitry to automatically enable those
downstream blocks at the new rate.

Block Parameters

• Filter Specification tab: Parameters specific to the Filter Specification tab are as follows.

• Filter Specification:

• Filter Type: The CIC core supports both interpolation and decimation architectures.
When the filter type is selected as decimator the input sample stream is down-sampled
by the factor R. When an interpolator is selected the input sample is up-sampled by R.

• Number of Stages: Number of integrator and comb stages. If N stages are specified,
there are N integrators and N comb stages in the filter. The valid range for this
parameter is 3 to 6.

• Differential Delay: Number of unit delays employed in each comb filter in the comb
section of either a decimator or interpolator. The valid range of this parameter is 1 or 2.

• Number of Channels: Number of channels to support in implementation. The valid range
of this parameter is 1 to 16.

• Sample Rate Change Specification:

• Sample Rate Changes: Option to select between Fixed or Programmable.

• Fixed or Initial Rate(ir): Specifies initial or fixed sample rate change value for the CIC.
The valid range for this parameter is 4 to 8192.

• Minimum Rate: The minimum rate change value for programmable rate change. The
valid range for this parameter is 4 to fixed rate (ir).

• Maximum Rate: The maximum rate change value for programmable rate change. The
valid range for this parameter is fixed rate (ir) to 8192.

• Hardware Oversampling Specification:

• Select format: Choose Maximum_Possible, Sample_Period, or Hardware Oversampling
Rate. Selects which method is used to specify the hardware oversampling rate. This
value directly affects the level of parallelism of the block implementation and resources
used. When “Maximum Possible” is selected, the block uses the maximum oversampling
given the sample period of the signal connected to the Data field of the
s_axis_data_tdata port. When you select “Hardware Oversampling Rate”, you can specify
the oversampling rate. When “Sample Period” is selected, the block clock is connected
to the system clock and the value specified for the Sample Period parameter sets the
input sample rate the block supports. The Sample Period parameter also determines the
hardware oversampling rate of the block. When “Sample Period” is selected, the block is
forced to use the s_axis_data_tvalid control port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=435

• Sample period: Integer number of clock cycles between input samples. When the
multiple channels have been specified, this value should be the integer number of clock
cycles between the time division multiplexed input sample data stream.

• Hardware Oversampling Rate: Enter the hardware oversampling rate if you select
Hardware_Oversampling_Rate as the format.

• Implementation tab:

• Numerical Precision:

• Quantization: Can be specified as Full_Precision or Truncation.

Note: Truncation occurs at the output stage only.

• Output Data Width: Can be specified up to 48 bits for the Truncation option above.

• Optional:

• Use Xtreme DSP slice: This field specifies that if possible, use the XtremeDSP slice
(DSP48 type element) in the target device.

• Use Streaming Interface: Specifies whether or not to use a streaming interface for
multiple channel implementations.

• Control Options:

• ACLKEN: Specifies if the block has a clock enable port (the equivalent of selecting the
Has ACLKEN option in the CORE Generator GUI).

• ARESERTn: Specifies that the block has a reset port. Active-Low synchronous clear. A
minimum ARESETn pulse of two cycles is required.

• Has TREADY: Specifies if the block has a TREADY port for the Data Output Channel
(the equivalent of selecting the Has_DOUT_TREADY option in the CORE Generator
GUI).

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP CIC Compiler 4.0

Clock Enable Probe

The Xilinx Clock Enable (CE) Probe provides a mechanism for extracting derived clock enable
signals from Xilinx signals in Model Composer models.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 436Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cic_compiler/v4_0/pg140-cic-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=436

The probe accepts any Xilinx signal type as input, and produces a Bool output signal. The Bool
output can be used at any point in the design where Bools are acceptable. The probe output is a
cyclical pulse that mimics the behavior of an ideal clock enable signal used in the hardware
implementation of a multirate circuit. The frequency of the pulse is derived from the input
signal's sample period. The enable pulse is asserted at the end of the input signal's sample period
for the duration of one Simulink® system period. For signals with a sample period equal to the
Simulink system period, the block's output is always one.

Shown below is an example model with an attached analysis scope that demonstrates the usage
and behavior of the Clock Enable Probe. The Simulink system sample period for the model is
specified in the System Generator token as 1.0 seconds. In addition to the Simulink system
period, the model has three other sample periods defined by the Down Sample blocks. Clock
Enable Probes are placed after each Down Sample block and extract the derived clock enable
signal. The probe outputs are run to output gateways and then to the scope for analysis. Also
included in the model is CLK probe that produces a Double representation of the hardware
system clock. The scope output shows the output from the four Clock Enable probes in addition
to the CLK probe output.

Figure 301: Example Model with Attached Analysis Scope

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=437

Figure 302: Analysis Scope Output

Options

• Use clock enable signal without Multi-Cycle path constraints: Used to disable multi-cycle
path constraints on the generated signal from the Clock Enable Probe block. This is typically
applied when the signal bring generated is used as separate timing signal that is not clock-
enable related.

Clock Probe

The Xilinx Clock Probe generates a double-precision representation of a clock signal with a
period equal to the Simulink® system period.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 438Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=438

The output clock signal has a 50/50 duty cycle with the clock asserted at the start of the
Simulink sample period. The Clock Probe's double output is useful only for analysis, and cannot
be translated into hardware.

There are no parameters for this block.

CMult

The Xilinx CMult block implements a gain operator, with output equal to the product of its input
by a constant value. This value can be a MATLAB® expression that evaluates to a constant.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Constant Type:

• Fixed-point: Use fixed-point data type.

• Floating-point: Use floating-point data type. Can be a constant or an expression. If the
constant cannot be expressed exactly in the specified fixed-point type, its value is
rounded and saturated as needed.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the constant, where bit
zero is the least significant bit.

• Binary point: Position of the binary point.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=439

• Floating-point Precision:

• Single: Specifies single precision (32 bits)

• Double: Specifies double precision (64 bits)

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Output tab:

• Precision: This parameter allows you to specify the output precision for fixed-point
arithmetic. Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type:

• Arithmetic type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Quantization:

Refer to the section Overflow and Quantization.

• Overflow:

Refer to the section Overflow and Quantization.

• Implementation tab:

Parameters specific to the Implementation tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=440

• Use behavioral HDL description (otherwise use core): When selected, Model Composer
uses behavioral HDL, otherwise it uses the Xilinx LogiCORE™ Multiplier. When this option
is not selected (false) Model Composer internally uses the behavioral HDL model for
simulation if any of the following conditions are true:

• The constant value is 0 (or is truncated to 0).

• The constant value is less than 0 and its bit width is 1.

• The bit width of the constant or the input is less than 1 or is greater than 64.

• The bit width of the input data is 1 and its data type is xlFix.

• Core Parameters:

• Implement using: Specifies whether to use distributed RAM or block RAM.

• Test for optimum pipelining: Checks if the Latency provided is at least equal to the
optimum pipeline length supported for the given configuration of the block. Latency
values that pass this test imply that the core produced is optimized for speed.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Multiplier v12.0

LogiCORE IP Floating-Point Operator v7.1

Complex Multiplier 6.0

The Complex Multiplier block implements AXI4-Stream compliant, high-performance, optimized
complex multipliers for devices based on user-specified options.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 441Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=441

The two multiplicand inputs and optional rounding bit are input on independent AXI4-Stream
channels as slave interfaces and the resulting product output using an AXI4-Stream master
interface.

Within each channel, operands, and the results are represented in signed two’s complement
format. The operand widths. and the result width are parameterizable.

Block Parameters

• Page 1 tab:

Parameters specific to the Basic tab are:

• Channel A Options:

• Has TLAST: Adds a tlast input port to the A channel of the block.

• Has TUSER: Adds a tuser input port to the A channel of the block.

• TUSER Width: User defined, maximum Limit range (1, 256).

• Channel B Options:

• Has TLAST: Adds a tlast input port to the B channel of the block.

• Has TUSER: Adds a tuser input port to the B channel of the block.

• TUSER Width: User defined. maximum Limit range (1, 256).

• Multiplier Construction Options:

• Use_Mults: Use embedded multipliers/XtremeDSP slices.

• Use_LUTs: Use LUTs in the fabric to construct multipliers.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=442

• Optimization Goal: Only available if Use_Mults is selected.

• Resources: Uses the 3-real-multiplier structure. However, a 4-real-multiplier structure is
used when the 3- l- multiplier structure uses more multiplier resources.

• Performance: Always uses the 4-real multiplier structure to allow the best frequency
performance to be achieved.

• Flow Control Options:

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel
does block the execution of an operation if data is received on another input channel.

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another
input channel.

• Page 2 tab:

• Output Product Range:

Select the output bit width. The values are automatically set to provide the full-precision
product when the A and B operand widths are set. The output is sign-extended if required.

The natural output width for complex multiplication is (APortWidth + BPortWidth + 1).
When the Output Width is set to be less than this, the most significant bits of the result are
those output; the remaining bits will either be truncated or rounded according to Output
Rounding option selected. That is to say, the output MSB is now fixed at (APortWidth +
BPortWidth). For details please refer to the document LogiCORE IP Complex Multiplier
v6.0 Product Guide.

• Output Rounding: If rounding is required, the Output LSB must be greater than zero.

• Truncate: Truncate the output.

• Random_Rounding: When this option is selected, a ctrl_tvalid and ctrl_tdata input port
is added to the block. Bit 0 if ctrl_tdata input determines the particular type if rounding
for the operation. For details, refer to the Rounding section of the document LogiCORE
IP Complex Multiplier v6.0 Product Guide.

• Channel CTRL Options: The following options are activated when Random Rounding is
selected.

• Has TLAST: Adds a ctrl_tlast input port to the block.

• Has TUSER: Adds a ctrl_user input port to the block.

• TUSER Width: Specifies the bit width of the ctrl_tuser input port.

• Output TLAST Behavior: Determines the behavior of the dout_tlast output port.

• Null: Output is null.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 443Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=443

• Pass_A_TLAST: Pass the value of the a_tlast input port to the dout_tlast output port.

• Pass B_TLAST: Pass the value of the b_tlast input port to the dout_tlast output port.

• Pass CTRL_TLAST: Pass the value of the ctrl_tlast input port to the dout_tlast output
port.

• OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

• AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

• Core Latency:

• Latency Configuration:

• Automatic: Block latency is automatically determined by Model Composer by
pipelining the underlying LogiCORE™ for maximum performance.

• Manual: You can adjust the block latency specifying the minimum block latency.

• Minimum Latency: Entry field for manually specifying the minimum block latency.

• Control Signals:

• ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

• ARESETn: Active-Low synchronous clear input that always takes priority over ACLKEN.
A minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the core, but the response to the
pulse is not in the cycle immediately following.

• Advanced tab: Block Icon Display

• Display shortened port names: On by default. For example, when unchecked, dout_tvalid
becomes m_axis_dout_tvalid.

LogiCORE Documentation

LogiCORE IP Complex Multiplier v6.0

Concat

The Xilinx Concat block performs a concatenation of n bit vectors represented by unsigned
integer numbers, for example, n unsigned numbers with binary points at position zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 444Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=444

The Xilinx Reinterpret block provides capabilities that can extend the functionality of the Concat
block.

Block Interface

The block has n input ports, where n is some value between 2 and 1024, inclusively, and one
output port. The first and last input ports are labeled hi and low, respectively. Input ports
between these two ports are not labeled. The input to the hi port will occupy the most significant
bits of the output and the input to the lo port will occupy the least significant bits of the output.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to this block are as follows:

• Number of Inputs: specifies number of inputs, between 2 and 1024, inclusively, to
concatenate together.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

The Concat block does not use a Xilinx LogiCORE.

Constant

The Xilinx Constant block generates a constant that can be a fixed-point value, or a Boolean
value. This block is similar to the Simulink® constant block, but can be used to directly drive the
inputs on HDL blocks.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=445

DSP48 Instruction Mode

The constant block, when set to create a DSP48 instruction, is useful for generating DSP48
control sequences. The the figure below shows an example. The example implements a 35x35-bit
multiplier using a sequence of four instructions in a DSP48 block. The constant blocks supply the
desired instructions to a multiplexer that selects each instruction in the desired sequence.

Figure 303: Example of Constant Block Creating a DSP48 Instruction

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Constant Value:

Specifies the value of the constant. When changed, the new value appears on the block icon.
If the constant data type is specified as fixed-point and cannot be expressed exactly in the
specified fixed-point type, its value is rounded and saturated as needed. A positive value is
implemented as an unsigned number, a negative value as signed.

• Output Type: Specifies the data type of the output. Can be Boolean, Fixed-point, or Floating-
point.

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp), Unsigned, or DSP48 instruction as the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Floating-point Precision:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=446

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits)

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specifies the exponent width.

• Fraction width: Specifies the fraction width.

• Sample Period:

• Sampled Constant: Allows a sample period to be associated with the constant output
and inherited by blocks that the constant block drives. (This is useful mainly because the
blocks eventually target hardware and the Simulink sample periods are used to establish
hardware clock periods.)

• DSP48 tab:

• DSP48 Instruction: The use of this block for DSP48 instructions is deprecated. Please use
the Opmode block.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Convert

The Xilinx Convert block converts each input sample to a number of a desired arithmetic type.
For example, a number can be converted to a signed (two's complement) or unsigned value.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic Tab are as follows.

• Output Type: Specify the output data type.

• Boolean

• Fixed-point

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 447Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=447

• Floating-point

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point, where bit zero is the least
significant bit.

• Binary point: Specifies the bit location of the binary point.

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Quantization:

Quantization errors occur when the number of fractional bits is insufficient to represent
the fractional portion of a value. The options are to Truncate (for example, to discard bits
to the right of the least significant representable bit), or to Round(unbiased: +/- inf) or
Round (unbiased: even values).

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the MATLABround() function. This method
rounds the value to the nearest desired bit away from zero and when there is a value at the
midpoint between two possible rounded values, the one with the larger magnitude is
selected. For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is
exactly between 01.01 and 01.10 and the latter is further from zero.

Round (unbiased: even values) also known as "Convergent Round (toward even)" or
"Unbiased Rounding". Symmetric rounding is biased because it rounds all ambiguous
midpoints away from zero which means the average magnitude of the rounded results is
larger than the average magnitude of the raw results. Convergent rounding removes this by
alternating between a symmetric round toward zero and symmetric round away from zero.
That is, midpoints are rounded toward the nearest even number. For example, to round
01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly between 01.01 and 01.10
and the latter is even. To round 01.1010 to a Fix_4_2, this yields 01.10, since 01.1010 is
exactly between 01.10 and 01.11 and the former is even.

• Overflow:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=448

Overflow errors occur when a value lies outside the representable range. For overflow the
options are to Saturate to the largest positive/smallest negative value, to Wrap (for
example, to discard bits to the left of the most significant representable bit), or to Flag as
error (an overflow as a Simulink error) during simulation. Flag as error is a simulation only
feature. The hardware generated is the same as when Wrap is selected.

• Optional Ports:

Provide enable port activates an optional enable (en) pin on the block. When the enable
signal is not asserted the block holds its current state until the enable signal is asserted
again or the reset signal is asserted.

• Latency:

The Latency value defines the number of sample periods by which the block's output is
delayed. One sample period might correspond to multiple clock cycles in the corresponding
FPGA implementation (for example, when the hardware is over-clocked with respect to the
Simulink® model). System Generator will not perform extensive pipelining unless you select
the Pipeline for maximum performance option (described below); additional latency is
usually implemented as a shift register on the output of the block.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

• Performance Parameters:

Pipeline for maximum performance: The XILINX LogiCORE can be internally pipelined to
optimize for speed instead of area. Selecting this option puts all user defined latency into
the core until the maximum allowable latency is reached. If the Pipeline for maximum
performance option is not selected and latency is greater than zero, a single output register
is put in the core and additional latency is added on the output of the core.

The Pipeline for maximum performance option adds the pipeline registers throughout the
block, so that the latency is distributed, instead of adding it only at the end. This helps to
meet tight timing constraints in the design.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Convolution Encoder 9.0

The Xilinx® Convolution Encoder block implements an encoder for convolution codes. Ordinarily
used in tandem with a Viterbi decoder, this block performs forward error correction (FEC) in
digital communication systems. This block adheres to the AMBA® AXI4-Stream standard.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 449Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=449

Values are encoded using a linear feed forward shift register which computes modulo-two sums
over a sliding window of input data, as shown in the figure below. The length of the shift register
is specified by the constraint length. The convolution codes specify which bits in the data
window contribute to the modulo-two sum. Resetting the block will set the shift register to zero.
The encoder rate is the ratio of input to output bit length; thus, for example a rate 1/2 encoder
outputs two bits for each input bit. Similarly, a rate 1/ 3 encoder outputs three bits for each input
bit.

Figure 304: Linear Feed Forward Shift Register

I-1I-1 I-1 I-1 I-1 I-1 I-1 I-1

+

+

convolution_code0 = 110101111
convolution_code1 = 100011101

data_in

data_out_v(0)

data_out_v(1)
X23237-091919

Block Parameters

The following figure shows the block parameters dialog box.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=450

Figure 305: Block Parametere Dialog Box

• page_0 tab:

Parameters specific to the page_0 tab are as follows.

• Data Rates and Puncturing:

• Punctured: Determines whether the block is punctured.

• Dual Output: Specifies a dual-channel punctured block.

• Input Rate: Punctured: Only the input rate can be modified. Its value can range from 2
to 12, resulting in a rate n/m encoder where n is the input rate and n<m<2n.

• Output Rate: Not Punctured: Only the output rate can be modified. Its value can be
integer values from 2 to 7, resulting in a rate 1/2 or rate 1/7 encoder, respectively

• Puncture Code0 and Code1: The two puncture pattern codes are used to remove bits
from the encoded data prior to output. The length of each puncture code must be equal
to the puncture input rate, and the total number of bits set to 1 in the two codes must
equal the puncture output rate (m) for the codes to be valid. A 0 in any position
indicates that the output bit from the encoder is not transmitted. See the associated
LogiCORE™ data sheet for an example.

• Optional Pins:

• Tready: Adds a tready pin to the block. Indicates that the slave can accept a transfer in
the current cycle.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 451Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=451

• Aclken: Adds a aclken pin to the block. This signal carries the clock enable and must be
of type Bool.

• Aresetn: Adds a aresetn pin to the block. This signal resets the block and must be of
type Bool. The signal must be asserted for at least 2 clock cycles, however, it does not
have to be asserted before the decoder can start decoding. If this pin is not selected,
Model Composer ties this pin to inactive (high) on the core.

• page_1 tab: Parameters specific to the page_1 tab are as follows.

• Radix:

• Convolution code radix: Select Binary, Octal, or Decimal.

• Convolution:

• Constraint length: Constraint Length: Equals n+1, where n is the length of the constraint
register in the encoder.

• Convolution code: Array of binary convolution codes. Output rate is derived from the
array length. Between 2 and 7 (inclusive) codes can be entered.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Convolution Encoder 9.0

CORDIC 6.0

The Xilinx CORDIC block implements a generalized coordinate rotational digital computer
(CORDIC) algorithm and is AXI compliant.

The CORDIC core implements the following equation types:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 452Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/convolution/v9_0/pg026_convolution.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=452

• Rotate

• Translate

• Sin_and_Cos

• Sinh_and_Cosh

• Arc_Tan

• Arc_Tanh

• Square_Root

Two architectural configurations are available for the CORDIC core:

• A word serial implementation with multiple-cycle throughput, but occupying a small silicon
area.

• A fully parallel configuration with single-cycle data throughput at the expense of silicon area.

A coarse rotation is performed to rotate the input sample from the full circle into the first
quadrant. (The coarse rotation stage is required as the CORDIC algorithm is only valid over the
first quadrant). An inverse coarse rotation stage rotates the output sample into the correct
quadrant.

The CORDIC algorithm introduces a scale factor to the amplitude of the result, and the CORDIC
core provides the option of automatically compensating for the CORDIC scale factor.

Changes from CORDIC 4.0 to CORDIC 6.0

AXI compliant

• The CORDIC 6.0 block is AXI compliant.

Ports Renamed

• en to aclken

• rst to aresetn

• rdy maps to dout_tready. cartesian_tready and phase_tready are automatically added when
their respective channels are added.

• x_in to cartesian_tdata_real

• y_in to cartesian_tdata_imag

• phase_in to phase_tdata_phase

• x_out to dout_tdata_real

• y_out to dout_tdata_imag

• phase_out to dout_tdata_phase

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 453Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=453

Port Changes

• The data output ports are not optional in CORDIC 6.0. The data output ports are selected
based on the Function selected.

• A fully parallel configuration with single-cycle data throughput at the expense. There are
separate tuser, tlast, and tready ports for the Cartesian and Phase input channels.

• The dout_tlast output port can be configured to provide tlast from the Cartesian input
channel, from the Phase input channel, or the AND and or the OR of all tlasts.

Optimization

• When you select Blocking mode for the AXI behavior, you can then select whether the core is
configured for minimum Resources or maximum Performance.

Displaying Port Names on the Block Icon

• You can select Display shortened port names to trim the length of the AXI port names on the
block icon.

Block Parameters

• Page 1 tab:

• Functional selection:

• Rotate: When selected, the input vector, (real, imag), is rotated by the input angle using
the CORDIC algorithm. This generates the scaled output vector, Zi * (real’, imag’).

• Translate: When selected, the input vector (real, imag) is rotated using the CORDIC
algorithm until the imag component is zero. This generates the scaled output magnitude,
Zi * Mag(real, imag), and the output phase, Atan(imag/real).

• Sin_and_Cos: When selected, the unit vector is rotated, using the CORDIC algorithm, by
input angle. This generates the output vector (Cos(), Sin()).

• Sinh_and_Cosh: When selected, the CORDIC algorithm is used to move the vector (1,0)
through hyperbolic angle p along the hyperbolic curve. The hyperbolic angle represents
the log of the area under the vector (real, imag) and is unrelated to a trigonometric
angle. This generates the output vector (Cosh(p), Sinh(p)).

• Arc_Tan: When selected, the input vector (real, imag) is rotated (using the CORDIC
algorithm) until the imag component is zero. This generates the output angle,
Atan(imag/real).

• Arc_Tanh: When selected, the CORDIC algorithm is used to move the input vector (real,
imag) along the hyperbolic curve until the imag component reaches zero. This generates
the hyperbolic “angle,” Atanh(imag/real). The hyperbolic angle represents the log of the
area under the vector (real, imag) and is unrelated to a trigonometric angle.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 454Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=454

• Square_Root: When selected a simplified CORDIC algorithm is used to calculate the
positive square root of the input.

• Architectural configuration: Configuration:

• Word_Serial: Select for a hardware result with a small area.

• Parallel: Select for a hardware result with high throughput.

• Pipelining mode:

• No_Pipelining: The CORDIC core is implemented without pipelining.

• Optimal: The CORDIC core is implemented with as many stages of pipelining as possible
without using any additional LUTs.

• Maximum: The CORDIC core is implemented with a pipeline after every shift-add sub
stage.

• Data format:

• SignedFraction: Default setting. The real and imag inputs and outputs are expressed as
fixed-point 2’s complement numbers with an integer width of 2-bits.

• UnsignedFraction: Available only for Square Root functional configuration. The real and
imag inputs and outputs are expressed as unsigned fixed-point numbers with an integer
width of 1-bit.

• UnsignedInteger: Available only for Square Root functional configuration. The real and
imag inputs and outputs are expressed as unsigned integers.

• Phase format:

• Radians: The phase is expressed as a fixed-point 2’s complement number with an
integer width of 3-bits, in radian units.

• Scaled_Radians: The phase is expressed as fixed-point 2’s complement number with an
integer width of 3-bits, with pi-radian units. One scaled-radian equals Pi * 1 radians.

• Input/Output Options:

• Input width: Controls the width of the input ports cartesian_tdata_real,
cartesian_tdata_imag, and phase_tdata_phase. The Input width range 8 to 48 bits.

• Output width: Controls the width of the output ports dout_tdata_real,
dout_tdata_imag, and dout_tdata_phase. The Output width range 8 to 48 bits.

• Round mode:

• Truncate: The real, imag, and phase outputs are truncated.

• Round_Pos_Inf: The real, imag, and phase outputs are rounded (1/2 rounded up).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 455Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=455

• Round_Pos_Neg_Inf: The real, imag, and phase outputs are rounded (1/2 rounded up,
-1/2 rounded down).

• Nearest_Even: The real, imag, and phase outputs are rounded toward the nearest even
number (1/2 rounded down and 3/2 is rounded up).

• Page 2 tab:

• Advanced Configuration Parameters:

• Iterations: Controls the number of internal add-sub iterations to perform. When set to
zero, the number of iterations performed is determined automatically based on the
required accuracy of the output.

• Precision: Configures the internal precision of the add-sub iterations. When set to zero,
internal precision is determined automatically based on the required accuracy of the
output and the number of internal iterations.

• Compensation scaling: Controls the compensation scaling module used to compensate
for CORDIC magnitude scaling. CORDIC magnitude scaling affects the Vector Rotation
and Vector Translation functional configurations, and does not affect the SinCos,
SinhCosh, ArcTan, ArcTanh and Square Root functional configurations. For the latter
configurations, compensation scaling is set to No Scale Compensation.

• Coarse rotation:

Controls the instantiation of the coarse rotation module. Instantiation of the coarse
rotation module is the default for the following functional configurations: Vector
rotation, Vector translation, Sin and Cos, and Arc Tan. If Coarse Rotation is turned off for
these functions then the input/output range is limited to the first quadrant (-Pi/4 to +
Pi/4).

Coarse rotation is not required for the Sinh and Cosh, Arctanh, and Square Root
configurations. The standard CORDIC algorithm operates over the first quadrant. Coarse
Rotation extends the CORDIC operational range to the full circle by rotating the input
sample into the first quadrant and inverse rotating the output sample back into the
appropriate quadrant.

• Optional ports:

• Standard:

• aclken: When this signal is not asserted, the block holds its current state until the
signal is asserted again or the aresetn signal is asserted. The aresetn signal has
precedence over this clock enable signal. This signal has to run at a multiple of the
blocks sample rate. The signal driving this port must be Boolean.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=456

• aresetn: When this signal is asserted, the block goes back to its initial state. This reset
signal has precedence over the optional aclken signal available on the block. The
reset signal has to run at a multiple of the block's sample rate. The signal driving this
port must be Boolean.

• tready: Adds dout_tready port if Blocking mode is activated.

• Cartesian:

• tlast: Adds a tlast input port to the Cartesian input channel.

• tuser: Adds a tuser input port to the Cartesian input channel.

• tuser width: Specifies the bit width of the Cartesian tuser input port.

• Phase:

• tlast: Adds a tlast input port to the Phase input channel.

• tuser: Adds a tuser input port to the Phase input channel.

• tuser width: Specifies the bit width of the Phase tuser input port.

• Tlast behavior:

• Null: Data output port.

• Pass_Cartesian_TLAST: Data output port.

• Pass_Phase_TLAST: Data output port.

• OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

• AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports

• Flow control:

• AXI behavior:

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one
input channel does not block the execution of an operation if data is received on
another input channel.

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input
channel does block the execution of an operation if data is received on another input
channel.

• Optimization: When NonBlocking mode is selected, the following optimization options
are activated:

• Resources: Core is configured for minimum resources.

• Performance: Core is configured for maximum performance.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 457Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=457

• Implementation tab:

• Block Icon Display:

• Display shortened port names: This option is ON by default. When unselected, the full
AXI name of each port is displayed on the block icon.

LogiCORE Documentation

LogiCORE IP CORDIC v6.0

Counter

The Xilinx Counter block implements a free-running or count-limited type of an up, down, or up/
down counter. The counter output can be specified as a signed or unsigned fixed-point number.

Free-running counters are the least expensive in FPGA hardware. The free-running up, down, or
up/down counter can also be configured to load the output of the counter with a value on the
input din port by selecting the Provide Load Pin option in the block's parameters.

out(n) =
(out(n-1)+Step)mod2N

InitialValue
otherwise{ if n=0

The output for a free-running up counter is calculated as follows:

out(n) =
(out(n-1)+Step)mod2N

InitialValue
if load(n-1)=1
otherwise

{ din(n-1)
if n=0

Here N denotes the number of bits in the counter. The free-running down counter calculations
replace addition with subtraction.

For the free-running up/down counter, the counter performs addition when input up port is 1or
subtraction when the input up port is 0.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 458Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=458

A count-limited counter is implemented by combining a free-running counter with a comparator.
Count limited counters are limited to only 64 bits of output precision. Count limited types of a
counter can be configured to step between the initial and ending values, provided the step value
evenly divides the difference between the initial and ending values.

The output for a count limited up counter is calculated as follows:

out(n) =
(out(n-1)+Step)mod2N
InitialValue

otherwise{
if n=0 or out(n-1)=CountLimit

The count-limited down counter calculation replaces addition with subtraction. For the count
limited up/down counter, the counter performs addition when input up port is 1 or subtraction
when input up port is 0.

The output for a free-running up counter with load capability is calculated as follows:

out(n) =
(out(n-1)+CountByValue)mod2N

StartCount
if rst(n) = 0 and load (n) =1
otherwise

{ din
if n=0 or rst(n)=1

Here N denotes the number of bits in the counter. The down counter calculations replace
addition by subtraction.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Counter type: Specifies the counter to be a count-limited or free-running counter.

• Count to value: Sspecifies the ending value, the number at which the count-limited counter
resets. A value of Inf denotes the largest representable output in the specified precision.
This cannot be the same as the initial value.

• Count direction: Specifies the direction of the count (up or down) or provides an optional
input port up (when up/down is selected) for specifying the direction of the counter.

• Initial value: Specifies the initial value to be the output of the counter.

• Step: Specifies the increment or decrement value.

• Output type: Specifies the block output to be either Signed or Unsigned.

• Number of bits: Specifies the number of bits in the block output.

• Binary point: Specifies the location of the binary point in the block output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 459Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=459

• Provide load port: When checked, the block operates as a free-running load counter with
explicit load and din port. The load capability is available only for the free-running counter.

• Provide Synchronous reset port: Activates an optional reset (rst) pin on the block. When
the reset signal is asserted the block goes back to its initial state. Reset signal has
precedence over the optional enable signal available on the block. The reset signal has to
run at a multiple of the block's sample rate. The signal driving the reset port must be
Boolean..

• Implementation tab:

Parameters specific to the Implementation tab are as follows.

• Implementation Details:

• Use behavioral HDL (otherwise use core): The block is implemented using behavioral
HDL. This gives the downstream logic synthesis tool maximum freedom to optimize for
performance or area.Core Parameters

• Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48
is available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Binary Counter v12.0

DDS Compiler 6.0

The Xilinx DDS (Direct Digital Synthesizer) Compiler block implements high performance,
optimized Phase Generation and Phase to Sinusoid circuits with AXI4-Stream compliant
interfaces for supported devices.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 460Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/c_counter_binary/v12_0/pg121-c-counter-binary.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=460

The core sources sinusoidal waveforms for use in many applications. A DDS consists of a Phase
Generator and a SIN/COS Lookup Table (phase to sinusoid conversion). These parts are available
individually or combined using this core.

Architecture Overview

To understand the DDS Compiler, it is necessary to know how the block is implemented in FPGA
hardware. The following is a block diagram of the DDS Compiler core. The core consist of two
main parts, a Phase Generator part and a SIN/COS LUT part. These parts can be used
independently or together with an optional dither generator to create a DDS capability. A time-
division multi-channel capability is supported with independently configurable phase increment
and offset parameters.

Figure 306: DDS Compiler Block Diagram

Phase Generator

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=461

The Phase Generator consists of an accumulator followed by an optional adder to provide
addition of phase offset. When the core is customized the phase increment and offset can be
independently configured to be either fixed, programmable (using the CONFIG channel) or
dynamic (using the input PHASE channel).

When set to fixed the DDS output frequency is set when the core is customized and cannot be
adjusted once the core is embedded in a design.

When set to programmable, the CONFIG channel TDATA field will have a subfield for the input
in question (PINC or POFF) or both if both have been selected to be programmable. If neither
PINC nor POFF is set to programmable, there is no CONFIG channel.

When set to streaming, the input PHASE channel TDATA port (s_axis_phase_tdata) will have a
subfield for the input in question (PINC or POFF) or both if both have been selected to be
streaming. If neither PINC nor POFF is set to streaming, and the DDS is configured to have a
Phase Generator then there is no input PHASE channel. Note that when the DDS is configured
to be a SIN/COS Lookup only, the PHASE_IN field is input using the input PHASE channel
TDATA port.

SIN/COS LUT

When configured as a SIN/COS Lookup only, the Phase Generator is not implemented, and the
PHASE_IN signal is input using the input PHASE channel, and transformed into the SINE and
COSINE outputs using a look-up table.

Efficient memory usage is achieved by exploiting the symmetry of sinusoid waveforms. The core
can be configured for SINE only output, COSINE only output or both (quadrature) output. Each
output can be configured independently to be negated. Precision can be increased using optional
Taylor Series Correction. This exploits XtremeDSP slices on FPGA families that support them to
achieve high SFDR with high speed operation.

AXI Ports that are Unique to this Block

Depending on the Configuration Options and Phase Increment/Offset Programmability options
selected, different subfield-ports for the PHASE channel or the CONFIG channel (or both
channels) are available on the block, as described in the table below.

Configuration
Option

Phase Increment Programmability Phase Offset Programmability
Option Selected Available Port Option Selected Available Port

Phase_Generator_only
Phase_Generator_and_
SIN_COS_LUT

Programmable s_axis_config_tdata_pin
c

Programmable s_axis_config_tdata_po
ff

Streaming s_axis_phase_tdata_pin
c

Streaming s_axis_phase_tdata_pof
f

Fixed NA Fixed NA

None NA

SIN_COS_LUT_only In this configuration, input port s_axis_phase_tdata_phase_in are available

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 462Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=462

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Configuration Options: This parameter allows for two parts of the DDS to be instantiated
separately or instantiated together. Select one of the following.

• Phase_Generator_and_SIN_COS_LUT

• Phase_Generator_only

• SIN_COS_LUT_only

• System Requirements:

• System Clock (MHz): Specifies the frequency at which the block is clocked for the
purposes of making architectural decisions and calculating phase increment from the
specified output frequency. This is a fixed ratio off the System Clock.

• Number of Channels: The channels are time-multiplexed in the DDS which affects the
effective clock per channel. The DDS can support 1 to 16 time-multiplexed channels.

• Mode of Operation:

• Standard: The output frequency of the DDS waveform is a function of the system
clock frequency, the phase width in the phase accumulator and the phase increment
value.

• Rasterized: The DDS does not truncate the accumulated phase. Rasterized operation
is intended for configurations where the desired frequency is a rational fraction of
the system clock (output frequency = system frequency * N/M, where 0 < N < M).
Values of M from 9 to 16384 are supported.

Note: Refer to the document LogiCORE IP DDS Compiler v6.0 Product Guide for a detailed
explanation of these modes.

• Parameter Selection: Select System_Parameters or Hardware_Parameters

• System Parameters:

• Spurious Free Dynamic Range (dB): The targeted purity of the tone produced by the
DDS. This sets the output width as well as internal bus widths and various
implementation decisions.

• Frequency Resolution (Hz): This sets the precision of the PINC and POFF values. Very
precise values will require larger accumulators. Less precise values will cost less in
hardware resource.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 463Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dds_compiler/v6_0/pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=463

• Noise Shaping: Select one: None, Phase_Dithering, Taylor_Series_Corrected, or Auto.

If the Configuration Options selection is SIN_COS_LUT_only, then None and
Taylor_Series_Corrected are the only valid options for Noise Shaping. If
Phase_Generator_Only is selected, then None is the only valid choice for Noise Shaping.

• Hardware Parameters:

• Phase Width: Equivalent to frequency resolution, this sets the width of the internal
phase calculations.

• Output Width: Broadly equivalent to SFDR, this sets the output precision and the
minimum Phase Width allowable. However, the output accuracy is also affected by the
choice of Noise Shaping.

• Output Selection:

• Sine_and_Cosine: Place both a Sine and Cosine output port on the block.

• Sine: Place only a Sine output port on the block.

• Cosine: Place only a Cosine output port on the block.

• Polarity:

• Negative Sine: Negates the sine output.

• Negative Cosine: Negates the cosine output.

• Amplitude Mode:

• Full_Range: Selects the maximum possible amplitude.

• Unit_Circle: Selects an exact power-of-two amplitude, which is about one half the
Full_Range amplitude.

• Implementation tab:

• Implementation Options:

• Memory Type: Select between Auto, Distributed_ROM, or Block_ROM.

• Optimization Goal: Select between Auto, Area, or Speed.

• DSP48 Use: Select between Minimal, or Maximal. When set to Maximal, XtremeDSP
slices are used to achieve to maximum performance.

• Latency Options:

• Auto: The DDS is fully pipelined for optimal performance.

• Configurable: Allows you to select less pipeline stages in the Latency pulldown menu
below. This generally results in less resources consumed.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 464Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=464

• Control Signals:

• Has phase out: When checked the DDS will have the phase_output port. This is an
output of the Phase_Generator half of the DDS, so it precedes the sine and cosine
outputs by the latency of the sine/cosine lookup table.

• ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

• ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN.
A minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the core, but the response to the
pulse is not in the cycle immediately following.

• Explicit Sample Period:

• Use explicit period: When checked, the DDS Compiler block uses the explicit sample
period that is specified in the dialog entry box below.

• AXI Channel Options tab:

• AXI Channel Options:

• TLAST:

Enabled when there is more than one DDS channel (as opposed to AXI channel), as
TLAST is used to denote the transfer of the last time-division multiplied channel of the
DDS. Options are as follows.

• Not_Required: In this mode, no TLAST appears on the input PHASE channel nor on
the output channels.

• Vector_Framing: In this mode, TLAST on the input PHASE channel and output
channels denotes the last.

• Packet_Framing: In this mode, TLAST is conveyed from the input PHASE channel to
the output channels with the same latency as TDATA. The DDS does not use or
interpret the TLAST signal in this mode.This mode is intended as a service to ease
system design for cases where signals must accompany the datastream, but which
have no application in the DDS.

• Config_Triggered: This is an enhanced variant of the Vector Framing option. In this
option, the TLAST on the input PHASE channel can trigger the adoption of new
configuration data from the CONFIG channel when there is new configuration data
available. This allows the re-configuration to be synchronized with the cycle of time-
division-multiplexed DDS channels.

• TREADY:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 465Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=465

• Output TREADY: When selected, the output channels will have a TREADY and hence
support the full AXI handshake protocol with inherent back-pressure. If there is an
input PHASE channel, its TREADY is also determined by this control, so that the
datapath from input PHASE channel to output channels as a whole supports
backpressure or not.

• TUSER Options: Select one of the following options for the Input, DATA Output, and
PHASE Output.

• Not_Required: Neither of the above uses is required; the channel in question will not
have a TUSER field.

• Chan_ID_Field: In this mode, the TUSER field identifies the time-division-multiplexed
channel for the transfer.

• User_Field: In this mode, the block ignores the content of the TUSER field, but passes
the content untouched from the input PHASE channel to the output channels.

• User and Chan_ID_Field: In this mode, the TUSER field has both a user field and a
chan_id field, with the chan_id field in the least significant bits. The minimal
number of bits required to describe the channel will determine the width of the
chan_id field. For example, 7 channels will require 3 bits.

• User Field Width: This field determines the width of the bit field which is conveyed
from input to output untouched by the DDS.

• Config Channel Options:

• Synchronization Mode:

• On_Vector: In this mode, the re-configuration data is applied when the channel
starts a new cycle of time-division-multiplexed channels.

• On_Packet: In this mode, available when TLAST is set to packet framing, the
TLAST channel will trigger the re-configuration. This mode is targeted at the case
where it is to be associated with the packets implied by the input TLAST indicator.

• Output Frequency tab:

• Phase Increment Programmability:

Specifies the phase increment to be Fixed, Programmable or Streaming. The choice of
Programmable adds channel, data, and we input ports to the block.

The following fields are activated when Phase_Generator_and_SIN_COS_LUT is selected as
the Configuration Options field on the Basic tab, the Parameter Selection on the Basic tab
is set to Hardware Parameters and Phase Increment Programmability field on the Phase
Offset Angles tab is set to Fixed or Programmable.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 466Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=466

• Output frequencies (MHz): For each channel, an independent frequency can be entered
into an array. This field is activated when Parameter Selection on the Basic tab is set to
System Parameters and Phase Increment Programmability is Fixed or Programmable.

• Phase Angle Increment Values: This field is activated when
Phase_Generator_and_SIN_COS_LUT is selected as the Configuration Options field on
the Basic tab, the Parameter Selection on the Basic tab is set to Hardware Parameters
and Phase Increment Programmability field on the Phase Offset Angles tab is set to
Fixed or Programmable. Values must be entered in binary. The range is 0 to the weight
of the accumulator, for example, 2Phase_Width-1.

• Phase Offset Angles tab:

• Phase Offset Programmability: Specifies the phase offset to be None, Fixed,
Programmable or Streaming. The choice of Fixed or Programmable adds the channel, data,
and we input ports to the block.

• Phase Offset Angles (x2pi radians): For each channel, an independent offset can be
entered into an array. The entered values are multiplied by 2π radians. This field is
activated when Parameter Selection on the Basic tab is set to System Parameters and
Phase Increment Programmability is Fixed or Programmable.

• Phase Angle Offset Values: For each channel, an independent offset can be entered into
an array. The entered values are multiplied by 2π radians. This field is activated when
Parameter Selection on the Basic tab is set to Hardware Parameters and Phase
Increment Programmability is Fixed or Programmable.

• Advanced tab: Block Icon Display

• Display shortened port names: This option is ON by default. When unselected, the full AXI
name of each port is displayed on the block.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP DDS Compiler v6.0 Product Guide

Delay

The Xilinx Delay block implements a fixed delay of L cycles.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 467Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dds_compiler/v6_0/pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=467

The delay value is displayed on the block in the form z-L, which is the Z-transform of the block’s
transfer function. Any data provided to the input of the block will appear at the output after L
cycles. The rate and type of the data of the output is inherited from the input. This block is used
mainly for matching pipeline delays in other portions of the circuit. The delay block differs from
the register block in that the register allows a latency of only 1 cycle and contains an initial value
parameter. The delay block supports a specified latency but no initial value other than zeros.The
figure below shows the Delay block behavior when L=4 and Period=1s.

Figure 307: Delay Block Behavior

For delays that need to be adjusted during run-time, you should use the Addressable Shift
Register block. Delays that are not an integer number of clock cycles are not supported and such
delays should not be used in synchronous design (with a few rare exceptions).

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 468Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=468

• Provide synchronous reset port: this option activates an optional reset (rst) pin on the
block. When the reset signal is asserted the block goes back to its initial state. Reset signal
has precedence over the optional enable signal available on the block. The reset signal has
to run at a multiple of the block's sample rate. The signal driving the reset port must be
Boolean.

• Provide enable port:: this option activates an optional enable (en) pin on the block. When
the enable signal is not asserted the block holds its current state until the enable signal is
asserted again or the reset signal is asserted. Reset signal has precedence over the enable
signal. The enable signal has to run at a multiple of the block 's sample rate. The signal
driving the enable port must be Boolean.

• Latency: Latency is the number of cycles of delay. The latency can be zero, provided that the
Provide enable port checkbox is not checked. The latency must be a non-negative integer. If
the latency is zero, the delay block collapses to a wire during logic synthesis. If the latency is
set to L=1, the block will generally be synthesized as a flip-flop (or multiple flip-flops if the
data width is greater than 1).

• Implementation tab:

Parameters specific to the Implementation tab are as follows:

• Implement using behavioral HDL: Uses behavioral HDL as the implementation. This allows
the downstream logic synthesis tool to choose the best implementation.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Logic Synthesis using Behavioral HDL

This setting is recommended if you are using Synplify Pro as the downstream logic synthesis tool.
The logic synthesis tool will implement the delay as it desires, performing optimizations such as
moving parts of the delay line back or forward into blockRAMs, DSP48s, or embedded IOB flip-
flops; employing the dedicated SRL cascade outputs for long delay lines based on the
architecture selected; and using flip-flops to terminate either or both ends of the delay line based
on path delays. Using this setting also allows the logic synthesis tool, if sophisticated enough, to
perform retiming by moving portions of the delay line back into combinational logic clouds.

Logic Synthesis using Structural HDL

If you do not check the box Implement using behavioral HDL, then structural HDL is used. This is
the default setting and results in a known, but less-flexible, implementation which is often better
for use with Vivado synthesis. In general, this setting produces structural HDL comprising an SRL
(Shift-Register LUT) delay of (L-1) cycles followed by a flip-flop, with the SRL and the flip-flop
getting packed into the same slice. For a latency greater than L=33, multiple SRL/flip-flop sets
are cascaded, albeit without using the dedicated cascade routes. For example, the following is
the synthesis result for a 1-bit wide delay block with a latency of L=64:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=469

Figure 308: 1-Bit Wide Delay Block with a Latency of L=64

The first SRL provides a delay of 32 cycles and the associated flip-flop adds another cycle of
delay. The second SRL provides a delay of 30 cycles; this is evident because the address is set to
{A4,A3,A2,A1,A0}=11101 (binary) = 29, and the latency through an SRL is the value of the
address plus one. The last flip-flop adds a cycle of delay, making the grand total
L=32+1+30+1=64 cycles.

The SRL is an efficient way of implementing delays in the Xilinx architecture. An SRL and its
associated flip-flop that comprise a single logic cell can implement 33 cycles of delay whereas a
delay line consisting only of flip-flops can implement only one cycle of delay per logic cell.

The SRL has a setup time that is longer than that of a flip-flop. Therefore, for very fast designs
with a combinational path preceding the delay block, it can be advantageous, when using the
structural HDL setting, to precede the delay block with an additional delay block with a latency
of L=1. This ensures that the critical path is not burdened with the long setup time of the SRL. An
example is shown below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=470

Figure 309: Delay Block with an Additional Delay Block with a Latency

In the example, the two designs are logically equivalent, but the bottom one will have a faster
hardware implementation. The bottom design will have the combinational path formed by
Inverter1 terminated by a flip-flop, which has a shorter setup time than an SRL.

The synthesis results of both designs are shown below, with the faster design highlighted in red:

Figure 310: Synthesis Results

Note that an equivalent to the faster design results from setting the latency of Inverter1 to 1 and
eliminating Delay1. This, however, is not equivalent to setting the latency of Inverter1 to 4 and
eliminating the delay blocks; this would yield a synthesis equivalent to the upper (slower) design.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=471

Implementing Long Delays

For very long delays, of, say, greater than 128 cycles, especially when coupled with larger bus
widths, it might be better to use a block-RAM-based delay block. The delay block is implemented
using SRLs, which are part of the general fabric in the Xilinx. Very long delays should be
implemented in the embedded block RAMs to save fabric. Such a delay exploits the dual-port
nature of the blockRAM and can be implemented with a fixed or run-time-variable delay. Such a
block is basically a block RAM with some associated address counters. The model below shows a
novel way of implementing a long delay using LFSRs (linear feedback shift registers) for the
address counters in order to make the design faster, but conventional counters can be used as
well. The difference in value between the counters (minus the RAM latency) is the latency L of
the delay line.

Figure 311: Novel Use of Long Delay LFSRs

Re-settable Delays and Initial Values

If a delay line absolutely must be re-settable to zero, this can be done by using a string of L
register blocks to implement the delay or by creating a circuit that forces the output to be zero
while the delay line is “flushed”.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=472

The delay block does not support initial values, but the Addressable Shift Register block does.
This block, when used with a fixed address, is generally equivalent to the delay block and will
synthesize to an SRL-based delay line. The initial values pertain to initialization only and not to a
reset. If using the addressable shift register in “structural HDL mode” (e.g., the Use behavioral
HDL checkbox is not selected) then the delay line will not be terminated with a flip-flop, making
it significantly slower. This can be remedied by using behavioral mode or by putting a Register or
Delay block after the addressable shift register.

Depuncture

The Xilinx Depuncture block allows you to insert an arbitrary symbol into your input data at the
location specified by the depuncture code.

The Xilinx depuncture block accepts data of type UFixN_0 where N equals the length of insert
string x (the number of ones in the depuncture code) and produces output data of type UFixK_0
where K equals the length of insert string multiplied by the length of the depuncture code.

The Xilinx Depuncture block can be used to decode a range of punctured convolution codes. The
following diagram illustrates an application of this block to implement soft decision Viterbi
decoding of punctured convolution codes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=473

Figure 312: Soft Decision Viterbi Decoding

The previous diagram shows a matched filter block connected to a add_erasure Subsystem which
attaches a 0 to the input data to mark it as a non-erasure signal. The output from the add_erasure
subsystem is then passed to a serial to parallel block. The serial to parallel block concatenates
two continuous soft inputs and presents it as a 8-bit word to the depuncture block. The
depuncture block inserts the symbol '0001' after the 4-bits from the MSB for code 0 ([1 0 1])
and 8-bits from the MSB for code 1 ([1 1 0]) to form a 12-bit word. The output of the
depuncture block is serialized as 4-bit words using the parallel to serial block. The
extract_erasure Subsystem takes the input 4-bit word and extracts 3-bits from the MSB to form a
soft decision input data word and 1-bit from the LSB to form the erasure signal for the Viterbi
decoder.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=474

Figure 313: Block Parameters

Parameters specific to the Xilinx Depuncturer block are:

• Depuncture code: Specifies the depuncture pattern for inserting the string to the input.

• Symbol to insert: Specifies the binary word to be inserted in the depuncture code.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Digital FIR Filter

The Xilinx Digital FIR Filter block allows you to generate highly parameterizable, area-efficient,
high-performance single channel FIR filters.

The Digital FIR filter block supports single channel, simple rate, integer decimation, and
interpolation and fractional decimation and interpolation filter types.

To specify the coefficient vector for the FIR Filter generated by this block, you can either enter
the coefficient vector directly into the Digital FIR Filter block parameters dialog box, or open an
interface to the FDATool block and specify the coefficient vector in that interface.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=475

The Digital FIR Filter block is ideal for generating simple, single channel FIR filters. If your FIR
filter implementation will use more complicated filter features such as multiple channels or
multiple path core configuration, an AXI4-Stream-compliant interface, or functions such as
reloading co-efficient, channel pattern support, or other HDL-based GUI parameters, use the
Xilinx FIR Compiler 7.2 block in your design instead of the Digital FIR Filter block.

In the Vivado® design flow, the Digital FIR filter block is inferred as "LogiCORE™ IP FIR Compiler
v7.2" for code generation. Refer to the document LogiCORE IP FIR Compiler v7.2 for details on
this LogicCore IP.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the Xilinx Digital FIR Filter block areas follows.

• Coefficient Vector:

• Use FDA Tool as Coefficient Source: : If selected,the Coefficient Vector will be determined
by the settings in the Filter Design and Analysis Tool (FDA Tool). To use the FDA Tool as
your coefficient source, you must click the FDATool button and configure the Block
Parameters dialog box that appears, to describe your FIR filter.

Note: Because the FDA Tool functionality is integrated into the Digital FIR Filter block itself, you do
not have to enter a separate FDATool block into your design to use the FDA Tool as your coefficient
source.

The FDA Tool is a user interface for designing and analyzing filters quickly. FDATool
enables you to design digital FIR filters by setting filter specifications, by importing filters
from your MATLAB® workspace, or by adding, moving or deleting poles and zeroes. FDA
Tool also provides tools for analyzing filters, such as magnitude and phase response and
pole-zero plots (see FDATool).

• Edit Box:

The edit box is enabled for you to specify the Coefficient Vector when the Use FDA Tool as
Coefficient Source option is disabled. The edit box specifies the vector coefficients of the
filter's transfer function. Filter coefficients must be specified as a single MATLAB row
vector. Filter structure must be Direct Form, and the input must be a scalar.

The number of taps is inferred from the length of the MATLAB row vector. If multiple
coefficient sets are specified, then each set is appended to the previous set in the vector.

• FDATool: This button is enabled if the Use FDA Tool as Coefficient Source option is
enabled. Click this button to open a Block Parameters dialog box for the FDA Tool, and
enter your filter specifications in this dialog box. To understand how to use this dialog box
to describe your FIR filter, see FDATool.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 476Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=476

• Coefficient Precision:

• Optimal Values: If selected, the Coefficient Width and Coefficient Fractional Bits will be set
automatically to their optimum values. The values are calculated using the dynamic range
of filter response between pass band and stop band signals. These values ensure the
minimum hardware will be used for the required filter response when the design is
implemented in the Xilinx FPGA or SoC.

• Coefficient Width: Specifies the number of bits used to represent the coefficients.

• Coefficient Fractional Bits: Specifies the binary point location in the coefficients datapath
options.

• Interpolation Rate: Specifies the interpolation rate of the filter. Any value greater than 1 is
applicable to all Interpolation filter types and Decimation filter types for Fractional Rate
Change implementations. The value provided in this field defines the upsampling factor, or
P for Fixed Fractional Rate (P/Q) resampling filter implementations.

• Decimation Rate: Specifies the decimation rate of the filter. Any value greater than 1 is
applicable to the all Decimation and Interpolation filter types for Fractional Rate Change
implementations. The value provided in this field defines the downsampling factor, or Q for
Fixed Fractional Rate (P/Q) resampling filter implementations.

Example

A simple filter design is shown below which uses the Digital FIR Filter block to implement a single
rate low pass filter. Because Use FDA Tool as Coefficient source is enabled in the block
parameters dialog box for the Digital FIR Filter block, the FDA Tool (invoked by clicking the FDA
Tool button) is used to generate the filter coefficient for the following specification:

• Fs (sample frequency) = 400 MHz

• Fpass = 11 MHz

• Fstop = 13 MHz

• Apass = 1 dB

• Astop = 120 dB

For Coefficient precision, the Optimal values selection is enabled for the filter Coefficient Width
parameter. Therefore, an optimized filter coefficient width will be computed automatically, for
minimum hardware usage and better filter response.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=477

Figure 314: Digital FIR Filter Example

LogiCORE Documentation

LogiCORE IP FIR Compiler v7.2

Divide

The Xilinx Divide block performs both fixed-point and floating-point division with the a input
being the dividend and the b input the divisor. Both inputs must be of the same data type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 478Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=478

Block Parameters

• Basic tab: Parameters specific to the Basic tab are as follows

• AXI Interface:

• Flow Control:

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input
channel does block the execution of an operation if data is received on another input
channel.

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one
input channel does not block the execution of an operation if data is received on
another input channel.

• Fixed-point Options:

• Algorithm Type:

• Radix2: This is non-restoring integer division using integer operands and allows a
remainder to be generated. This option is recommended for operand widths less
than 16 bits. This option supports both unsigned (two's complement) and signed
divisor and dividend inputs.

• High_Radix: This option is recommended for operand widths greater than 16 bits,
though the implementation requires the use of DSP48 (or variant) primitives. This
option only supports signed (two's complement) divisor and dividend inputs.

• LutMult: A simple lookup estimate of the reciprocal of the divisor followed by a
multiplier. Only remainder output type is supported because of the bias required
in the reciprocal estimate. This bias would introduce an offset (error) if used to
create a fractional output. This is recommened for operand widths less than or
equal to 12 bits.This implementation uses DSP slices, block RAM, and a small
number of FPGA logic primitives (registers and LUTs). For operand widths where
either Radix2 or the LUTMultoptions are possible, the LUTMult solution offers a
solution using fewer FPGA logic resources because of the use of DSP and block
RAM primitives. Supports unsigned or two's complement signed numbers.

• Output Fractional width: For Fixed-point division, this entry determines the number
of bits in the fractional part of the output.

• Optional Ports:

• Dividend Channel Ports:

• Has TLAST: Adds a TLAST port to the Input channel.

• Has TUSER: Adds a TUSER port to the Input channel.

• Divisor Channel Ports:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=479

• Has TLAST: Adds a TLAST port to the Input channel.

• Has TUSER: Adds a TUSER port to the Input channel.

• Control Options:

• Provide enable port: Adds an enable port to the block interface.

• Has Result TREADY: Adds a TREADY port to the Result channel.

• Output TLAST behavior: Determines the behavior of the result_tlast output port.

• Pass_A_TLAST: Pass the value of the a_tlast input port to the dout_tlast output
port.

• Pass B_TLAST: Pass the value of the b_tlast input port to the dout_tlast output
port.

• OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

• AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

• Exception Signals:

• UNDERFLOW: Adds an output port that serves as an underflow flag.

• OVERFLOW: Adds an output port that serves as an overflow flag.

• INVALID_OP: Adds an output port that serves as an invalid operation flag.

• DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Divider Generator 5.1
The Xilinx Divider Generator block creates a circuit for integer division based on Radix-2 non-
restoring division, or High-Radix division with prescaling.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 480Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=480

Block Parameters

The Block Parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

• Common Options:

• Algorithm Type:

• Radix-2 non-restoring integer division using integer operands, allows a remainder to
be generated. This is recommended for operand widths less than around 16 bits. This
option supports both unsigned and signed (2’s complement) divisor and dividend
inputs.

• High_Radix division with prescaling. This is recommended for operand widths greater
than 16 bits, though the implementation requires the use of DSP48 (or variant)
primitives. This option only supports signed (2’s complement) divisor and dividend
inputs.

• LutMultA simple lookup estimate of the reciprocal of the divisor followed by a
multiplier. Only the remainder output type is supported because of the bias required
in the reciprocal estimate. This bias would introduce an offset (error) if used to create
a fractional output. This is recommened for operand widths less than or equal to 12
bits. This implementation uses DSP slices, block RAM, and a small number of FPGA
logic primitives (registers and LUTs). For operand widths where either Radix2 or the
LUTMult options are possible, the LUTMult offers a solution using fewer FPGA logic
resources because of the use of DSP and block RAM primitives. Supports unsigned
or two's complement signed numbers.

• Output channel:

• Remainder type:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 481Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=481

• Remainder: Only supported for Radix 2.

• Fractional: Determines the number of bits in the fractional port output.

• Fractional width: If Fractional Remainder type is selected, this entry determines the
number of bits in the fractional port output.

• Radix2 Options:

• Radix2 throughput: Determines the interval in clocks between new data being input
(and output). Choices are 1, 2, 4, and 8.

• High Radix Options:

• Detect divide by zero: Determines if the core shall have a division-by-zero indication
output port.

• AXI Interface:

• AXI behavior:

• NonBlocking: Preforms an action only when a control packet and a data packet are
presented to the block at the same time.

• Blocking: Preforms an action when a data packet is presented to the block. The block
uses the previous control information.

• AXI Implementation emphasis:

• Resources: Automatic (fully pipelined) or Manual (determined by following field).

• Performance: Implementation decisions target the highest speed.

• Latency Options:

• Latency configuration: Automatic (fully pipelined) or Manual (determined by following
field).

• Latency: This field determines the exact latency from input to output in terms of clock
enabled clock cycles.

• Optional ports tab:

• Optional Ports:

• Divided Channel Ports:

• Has TUSER: Adds a tuser input port to the dividend channel.

• Has TLAST: Adds a tlast output port to the dividend channel.

• Divisor Channel Ports:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 482Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=482

• Has TUSER: Adds a tuser input port to the divisor channel.

• Has TLAST: Adds a tlast output port to the divisor channel.

• ACLKEN: Specifies that the block has a clock enable port (the equivalent of selecting the
Has ACLKEN option in the CORE Generator GUI).

• ARESETn: Specifies that the block has a reset port. Active-Low synchronous clear. A
minimum ARESETn pulse of two cycles is required.

• m_axis_dout_tready: Specifies that the block has a dout_tready output port.

• Input TLAST combination for output: Determines the behavior of the dout_tlast output
port.

• Null: Output is null.

• Pass_Dividend_TLAST: Pass the value of the dividend_tlast input port to the dout_tlast
output port.

• Pass Divisor_TLAST: Pass the value of the divisor_tlast input port to the dout_tlast
output port.

• OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

• AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Divider Generator 5.1

Down Sample

The Xilinx Down Sample block reduces the sample rate at the point where the block is placed in
your design.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 483Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=483

The input signal is sampled at even intervals, at either the beginning (first value), or end (last
value) of a frame. The sampled value is presented on the output port and held until the next
sample is taken.

A Down Sample frame consists of l input samples, where l is sampling rate. An example frame for
a Down Sample block configured with a sampling rate of 4 is shown below.

Figure 315: Down Sample Block Example

The Down Sample block is realized in hardware using one of three possible implementations that
vary in terms of implementation efficiency. The block receives two clock enable signals in
hardware, Src_CE, and Dest_CE. Src_CE is the faster clock enable signal and corresponds to the
input data stream rate. Dest_CE is the slower clock enable, corresponding to the output stream
rate, for example, down sampled data. These enable signals control the register sampling in
hardware.

Zero Latency Down Sample

The zero latency Down Sample block must be configured to sample the first value of the frame.
The first sample in the input frame passes through the mux to the output port. A register samples
this value during the first sample duration and the mux switches to the register output at the
start of the second sample of the frame. The result is that the first sample in a frame is present
on the output port for the entire frame duration. This is the least efficient hardware
implementation as the mux introduces a combinational path from Din to Dout. A single bit
register adjusts the timing of the destination clock enable, so that it is asserted at the start of the
sample period, instead of the end. The hardware implementation is shown below:

Figure 316: Down Sample with Zero Latency Example

Din

Dest_CE

Src_CE

D

CE

Q

D

CE

Q

1

0
Dout

“1”

X23238-091919

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 484Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=484

Down Sample with Latency

If the Down Sample block is configured with latency greater than zero, a more efficient
implementation is used. One of two implementations is selected depending on whether the
Down Sample block is set to sample the first or last value in a frame.

If the block samples the first value in a frame, two registers are required to correctly sample the
input stream. The first register is enabled by the adjusted clock enable signal so that it samples
the input at the start of the input frame. The second register samples the contents of the first
register at the end of the sample period to ensure output data is aligned correctly.

Figure 317: Down Sample with Latency Example

Din

Dest_CE

Src_CE

D

CE

Q

D

CE

Q Dout

“1”

D

CE

Q

X23239-091919

If the block samples the last value in a frame, a register samples the data input data at the end of
the frame. The sampled value is presented for the duration of the next frame. The most efficient
implementation is when the Down Sample block is configured to sample the last value of the
frame.

Figure 318: Sampling Last Value

Din

Dest_CE

D

CE

Q Dout

X23240-091919

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

• Sampling Rate (number of input samples per output sample): Must be an integer greater or
equal to 2. This is the ratio of the output sample period to the input, and is essentially a
sample rate divider. For example, a ratio of 2 indicates a 2:1 division of the input sample
rate. If a non-integer ratio is desired, the Up Sample block can be used in combination with
the Down Sample block.

• Sample: The Down Sample block can sample either the first or last value of a frame. This
parameter will determine which of these two values is sampled.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 485Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=485

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Xilinx LogiCORE

The Down Sample block does not use a Xilinx LogiCORE.

DSP48E

The Xilinx DSP48E block is an efficient building block for DSP applications that use supported
devices. The DSP48E combines an 18-bit by 25-bit signed multiplier with a 48-bit adder and
programmable mux to select the adder's input.

Operations can be selected dynamically. Optional input and multiplier pipeline registers can be
selected as well as registers for the alumode, carryin and opmode ports. The DSP48E block can
also target devices that do not contain the DSP48E hardware primitive if the Use synthesizable
model option is selected on the implementation tab.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 486Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=486

Figure 319: DSP48E

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

• A or ACIN input: Specifies if the A input should be taken directly from the a port or from
the cascaded acin port. The acin port can only be connected to another DSP48 block.

• B or BCIN input: Specifies if the B input should be taken directly from the b port or from
the cascaded bcin port. The bcin port can only be connected to another DSP48 block.

• Pattern Detection:

• Reset p register on pattern detection: If selected and the pattern is detected, reset the p
register on the next cycle

• Pattern Input:

• Pattern Input from c port: When selected, the pattern used in pattern detection is read
from the c port.

• Using Pattern Attribute (48bit hex value): Value is used in pattern detection logic which
is best described as an equality check on the output of the adder/subtractor/logic unit.

• Pattern attribute: A 48-bit value that is used in the pattern detector.

• Mask Input:

• Mask input from c port: When selected, the mask used in pattern detection is read from
the c port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 487Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=487

• Using Mask Attribute (48 bit hex value): 48-bit value used to mask out certain bits
during pattern detection.

• Mask attribute: A 48-bit value and used to mask out certain bits during a pattern
detection. A value of 0 passes the bit, and a value of 1 masks out the bit.48-bit value
and used to mask out certain bits during a pattern detection.

• Select rounding mask: Selects special masks that can be used for symmetric or convergent
rounding in the pattern detector. The choices are Select mask, Mode1, and Mode2.

• Optional Ports tab:

• Input Ports:

• Consolidate control port: When selected, combines the opmode, alumode, carry_in and
carry_in_sel ports into one 15-bit port. Bits 0 to 6 are the opmode, bits 7 to 10 are the
alumode port, bit 11 is the carry_in port, and bits 12 to 14 are the carry_in_sel port. This
option should be used when the Opmode block is used to generate a DSP48E
instruction.

• Provide c port: When selected, the c port is made available. Otherwise, the c port is tied
to '0'.

• Provide global reset port: When selected, the port rst is made available. This port is
connected to all available reset ports based on the pipeline selections.

• Provide global enable port: When selected, the optional en port is made available. This
port is connected to all available enable ports based on the pipeline selections.

• Cascadable Ports:

• Provide pcin port: When selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP48 block.

• Provide carry cascade in port: When selected, the carry cascade in port is exposed. This
port can only be connected to a carry cascade out port on another DSP48E block.

• Provide multiplier sign cascade in port: When selected, the multiplier sign cascade in
port (multsigncascin) is exposed. This port can only be connected to a multiplier sign
cascade out port of another DSP48E block.

• Output Ports:

• Provide carryout port: When selected, the carryout output port is made available. When
the mode of operation for the adder/subtractor is set to one 48-bit adder, the carryout
port is 1-bit wide. When the mode of operation is set to two 24 bit adders, the carryout
port is 2 bits wide. The MSB corresponds to the second adder's carryout and the LSB
corresponds to the first adder's carryout. When the mode of operation is set to four 12
bit adders, the carryout port is 4 bits wide with the bits corresponding to the addition of
the 48 bit input split into 4 12-bit sections.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 488Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=488

• Provide pattern detect port: When selected, the pattern detection output port is
provided. When the pattern, either from the mask or the c register, is matched the
pattern detection port is set to '1'.

• Provide pattern bar detect port: When selected, the pattern bar detection
(patternbdetect) output port is provided. When the inverse of the pattern, either from
the mask or the c register, is matched the pattern bar detection port is set to '1'.

• Provide overflow port: When selected, the overflow output port is provided. This port
indicates when the operation in the DSP48E has overflowed beyond the bit P[N] where
N is between 1 and 46. N is determined by the number of 1s in the mask whether set by
the GUI mask field or the c port input.

• Provide underflow port: When selected, the underflow output port is provided. This
port indicates when the operation in the DSP48E has underflowed. Underflow occurs
when the number goes below –P[N] where N is determined by the number of 1s in the
mask whether set by the GUI mask field or the c port input.

• Cascadable Ports:

• Provide ACOUT port: When selected, the acout output port is made available. The
acout port must be connected to the acin port of another DSP48E block.

• Provide BCOUT port: When selected, the bcout output port is made available. The
bcout port must be connected to the bcin port of another DSP48E block.

• Provide PCOUT port: when selected, the pcout output port is made available. The pcout
port must be connected to the pcin port of another DSP48 block.

• Provide multiplier sign cascade out port: When selected, the multiplier sign cascade out
port (multsigncascout) is made available. This port can only be connected to the
multiplier sign cascade in port of another DSP48E block and is used to support 96-bit
accumulators/adders and subtracters which are built from two DSP48Es.

• Provide carry cascade out port: When selected, the carry cascade out port
(carrycascout) is made available. This port can only be connected to the carry cascade in
port of another DSP48E block.

• Pipelining tab:

• Pipeline Options:

• Length of a/acin pipeline: Specifies the length of the pipeline on input register A. A
pipeline of length 0 removes the register on the input.

• Length of b/bCIN pipeline: Specifies the length of the pipeline for the b input whether it
is read from b or bcin.

• Length of acout pipeline: Specifies the length of the pipeline between the a/acin input
and the acout output port. A pipeline of length 0 removes the register from the acout
pipeline length. Must be less than or equal to the length of the a/acin pipeline.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 489Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=489

• Length of bcout pipeline: Specifies the length of the pipeline between the b/bcin input
and the bcout output port. A pipeline of length 0 removes the register from the bcout
pipeline length. Must be less than or equal to the length of the b/bcin pipeline.

• Pipeline c: Indicates whether the input from the c port should be registered.

• Pipeline p: Indicates whether the outputs p and pcout should be registered.

• Pipeline multiplier: indicates whether the internal multiplier should register its output.

• Pipeline opmode: Indicates whether the opmode port should be registered.

• Pipeline alumode: Indicates whether the alumode port should be registered.

• Pipeline carry in: Indicates whether the carry in port should be registered.

• Pipeline carry in select: Indicates whether the carry in select port should be registered.

• Reset/Enable Ports tab:

• Reset port for a/acin: When selected, a port rst_a is made available. This resets the pipeline
register for port a when set to '1'.

• Reset port for b/bcin: When selected, a port rst_b is made available. This resets the
pipeline register for port b when set to '1'.

• Reset port for c: When selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

• Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

• Reset port for P: When selected, a port rst_p is made available. This resets the output
register when set to '1'.

• Reset port for carry in: When selected, a port rst_carryin is made available. This resets the
pipeline register for carry in when set to '1'.

• Reset port for alumode: When selected, a port rst_alumode is made available. This resets
the pipeline register for the alumode port when set to '1'.

• Reset port for controls (opmode and carry_in_sel): When selected, a port rst_ctrl is made
available. This resets the pipeline register for the opmode register (if available) and the
carry_in_sel register (if available) when set to '1'.

• Enable port for first a/acin register: When selected, an enable port ce_a1 for the first a
pipeline register is made available.

• Enable port for second a/acin register: When selected, an enable port ce_a2 for the second
a pipeline register is made available.

• Enable port for first b/bcin register: When selected, an enable port ce_b1 for the first b
pipeline register is made available.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 490Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=490

• Enable port for second b/bcin register: When selected, an enable port ce_b2 for the
second b pipeline register is made available.

• Enable port for c: When selected, an enable port ce_c for the port C register is made
available.

• Enable port for multiplier: When selected, an enable port ce_m for the multiplier register is
made available.

• Enable port for p: When selected, an enable port ce_p for the port P output register is
made available.

• Enable port for carry in: When selected, an enable port ce_carry_in for the carry in register
is made available.

• Enable port for alumode: When selected, an enable port ce_alumode for the alumode
register is made available.

• Enable port for multiplier carry in: When selected, an enable port mult_carry_in for the
multiplier register is made available.

• Enable port for controls (opmode and carry_in_sel): When selected, the enable port ce_ctrl
is made available. The port ce_ctrl controls the opmode and carry in select registers.

• Implementation tab:

• Use synthesizable model: When selected, the DSP48E is implemented from an RTL
description which might not map directly to the DSP48E hardware. This is useful if a design
using the DSP48E block is targeted at device families that do not contain DSP48E
hardware primitives.

• Mode of operation for the adder/subtractor: This mode can be used to implement small
add-subtract functions at high speed and lower power with less logic utilization. The adder
and subtracter in the adder/subtracted/logic unit can also be split into two 24-bit fields or
four12-bit fields. This is achieved by setting the mode of operation to "Two 24-bit adders"
or "Four 12-bit adders".

• Use adder only: When selected, the block is optimized in hardware for maximum
performance without using the multiplier. If an instruction using the multiplier is
encountered in simulation, an error is reported.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

DSP Macro 1.0

The Xilinx DSP macro block provides a device independent abstraction of the DSP48E1,
DSP48E2, and DSP58 blocks. Using this block instead of using a technology-specific DSP slice
helps makes the design more portable between Xilinx technologies.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 491Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=491

The DSP Macro provides a simplified interface to the XtremeDSP slice by the abstraction of all
opmode, subtract, alumode, and inmode controls to a single SEL port. Further, all CE and RST
controls are grouped to a single CE and SCLR port respectively. This abstraction enhances
portability of HDL between device families.

You can specify 1 to 64 instructions which are translated into the various control signals for the
XtremeDSP slice of the target device. The instructions are stored in a ROM from which the
appropriate instruction is selected using the SEL port.

Block Parameters

• Instruction tab:

The Instruction tab is used to define the operations that the LogiCORE™ is to implement. Each
instruction can be entered on a new line, or in a comma delimited list, and are enumerated
from the top down. You can specify a maximum of 64 instructions.

Refer to the topic Instructions page of the LogiCORE IP DSP Macro 1.0 Product Guide for
details on all the parameters on this tab.

• Pipeline Options tab:

The Pipeline Options tab is used to define the pipeline depth of the various input paths.

• Pipeline Options:

Specifies the pipeline method to be used; Automatic, By Tier, or Expert.

• Custom Pipeline options:

Used to specify the pipeline depth of the various input paths.

• Tier 1 to 6: When By Tier is selected for Pipeline Options these parameters are used to
enable/disable the registers across all the input paths for a given pipeline stage. The
following restrictions are enforced:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 492Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dsp_macro;v=v1_0;d=pg323-dsp-macro.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=492

• When P has been specified in an expression tier, 6 will be forced as asynchronous
feedback is not supported.

• Individual registers:

When you select Expert for the Pipeline Options, these parameters are used to enable/
disable individual register stages. The following restrictions are enforced:

• The P register is forced when P is specified in an expression. Asynchronous feedback is
not supported.

Refer to the topic Detailed Pipeline Implementation of the LogiCORE IP DSP Macro v1.0
Product Guide for details on all the parameters on this tab.

• Implementation tab:

The Implementation tab is used to define implementation options.

• Output Port Properties:

• Precision: Specifies the precision of the P output port.

• Full: The bit width of the output port P is set to the full XtremeDSP Slide width of 48
bits.

• User_Defined: The output width of P can be set to any value up to 48 bits. When set
to less than 48 bits, the output is truncated (LSBs removed).

• Width: Specifies the User Defined output width of the P output port

• Binary Point: Specifies the placement of the binary point of the P output port.

• Additional ports:

• Use ACOUT: Use the optional cascade A output port.

• Use CARRYOUT: Use the optional carryout output port.

• Use BCOUT: Use the optional cascade B output port.

• Use CARRYCASCOUT: Use the optional cascade carryout output port.

• Use PCOUT: Use the optional cascade P output port.

• Control ports:

Refer to the topic Implementation Page of the LogiCORE IP DSP Macro v1.0 Product Guide
for details on all the parameters on this tab.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 493Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dsp_macro;v=v1_0;d=pg323-dsp-macro.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dsp_macro;v=v1_0;d=pg323-dsp-macro.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dsp_macro;v=v1_0;d=pg323-dsp-macro.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=493

LogiCORE Documentation

LogiCORE IP DSP Macro v1.0 Product Guide

DSP48E1

The Xilinx DSP48E1 block is an efficient building block for DSP applications that use Xilinx
Virtex®-7 series devices. Enhancements to the DSP48E1 slice provide improved flexibility and
utilization, improved efficiency of applications, reduced overall power consumption, and
increased maximum frequency. The high performance allows designers to implement multiple
slower operations in a single DSP48E1 slice using time-multiplexing methods.

The DSP48E1 slice supports many independent functions. These functions include multiply,
multiply accumulate (MACC), multiply add, three-input add, barrel shift, wide-bus multiplexing,
magnitude comparator, bit-wise logic functions, pattern detect, and wide counter. The
architecture also supports cascading multiple DSP48E1 slices to form wide math functions, DSP
filters, and complex arithmetic without the use of general FPGA.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 494Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dsp_macro;v=v1_0;d=pg323-dsp-macro.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=494

Figure 320: DSP48E1

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Input configuration:

• A or ACIN input: Specifies if the A input should be taken directly from the a port or from
the cascaded acin port. The acin port can only be connected to another DSP48 block.

• B or BCIN input: Specifies if the B input should be taken directly from the b port or from
the cascaded bcin port. The bcin port can only be connected to another DSP48 block.

Note: If the input to the block is NaN, you will see a behavioral simulation mismatch.

• DSP48E1 data-path configuration:

• SIMD Mode of Adder/Subtractor/Accumulator: This mode can be used to implement
small add-subtract functions at high speed and lower power with less logic utilization.
The adder and subtracter in the adder/subtracter/logic unit can also be split into Two
24-bit Units or Four 12-bit Units.

• Do not use multiplier: When selected, the block is optimized in hardware for maximum
performance without using the multiplier. If an instruction using the multiplier is
encountered in simulation, an error is reported.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=495

• Use dynamic multiplier mode: When selected, it instructs the block to use the dynamic
multiplier mode. This indicates that the block is switching between A*B and A:B
operations on the fly and therefore needs to get the worst-case timing of the two paths.

• Use Preadder: Use the 25-bit D data input to the pre-adder or alternative input to the
multiplier. The pre-adder implements D + A as determined by the INMODE3 signal.

• Pattern Detection:

• Reset p register on pattern detection: If selected and the pattern is detected, reset the p
register on the next cycle

• Pattern Input:

• Pattern Input from c port: When selected, the pattern used in pattern detection is read
from the c port.

• Pattern Input:

• Pattern Input from c port: When selected, the pattern used in pattern detection is
read from the c port.

• Using Pattern Attribute (48bit hex value): Value is used in pattern detection logic
which is best described as an equality check on the output of the adder/
subtracter/logic unit

• Pattern attribute: A 48-bit value that is used in the pattern detector.

• Mask Input:

• Mask input from c port: When selected, the mask used in pattern detection is
read from the c port.

• Using Mask Attribute (48 bit hex value): Enter a 48-bit value used to mask out
certain bits during pattern detection.

• MODE1: Selects rounding_mode 1.

• MODE2: Selects rounding_mode 2.

• Optional Ports tab:

Parameters specific to the Optional Ports tab are:

• Input Ports:

• Consolidate control port: When selected, combines the opmode, alumode, carry_in,
carry_in_sel, and inmode ports into one 20-bit port. Bits 0 to 6 are the opmode,
bits 7 to 10 are the alumode port, bit 11 is the carry_in port, bits 12 to 14 are the
carry_in_sel port, and bits 15-19 are the inmode bits. This option should be used
when the Opmode block is used to generate a DSP48 instruction.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 496Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=496

• Provide c port: When selected, the c port is made available. Otherwise, the c port is tied
to '0'.

• Provide global reset port: When selected, the port rst is made available. This port is
connected to all available reset ports based on the pipeline selections.

• Provide global enable port: When selected, the optional en port is made available. This
port is connected to all available enable ports based on the pipeline selections.

• Provide pcin port: When selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP48 block.

• Provide carry cascade in port: When selected, the carry cascade in port is exposed. This
port can only be connected to a carry cascade out port on another DSP48E block.

• Provide multiplier sign cascade in port: When selected, the multiplier sign cascade in
port (multsigncascin) is exposed. This port can only be connected to a multiplier sign
cascade out port of another DSP48E block.

• Provide carryout port: When selected, the carryout output port is made available.
When the mode of operation for the adder/subtractor is set to one 48-bit adder, the
carryout port is 1-bit wide. When the mode of operation is set to two 24 bit adders,
the carryout port is 2 bits wide. The MSB corresponds to the second adder's carryout
and the LSB corresponds to the first adder's carryout. When the mode of operation is
set to four 12 bit adders, the carryout port is 4 bits wide with the bits corresponding
to the addition of the 48 bit input split into 4 12-bit sections.

• Provide pattern detect port: When selected, the pattern detection output port is
provided. When the pattern, either from the mask or the c register, is matched the
pattern detection port is set to '1'.

• Provide pattern bar detect port: When selected, the pattern bar detection
(patternbdetect) output port is provided. When the inverse of the pattern, either from
the mask or the c register, is matched the pattern bar detection port is set to '1'.

• Provide overflow port: When selected, the overflow output port is provided. This port
indicates when the operation in the DSP48E has overflowed beyond the bit P[N] where
N is between 1 and 46. N is determined by the number of 1s in the mask whether set by
the GUI mask field or the c port input.

• Provide underflow port: When selected, the underflow output port is provided. This
port indicates when the operation in the DSP48E has underflowed. Underflow occurs
when the number goes below –P[N] where N is determined by the number of 1s in the
mask whether set by the GUI mask field or the c port input.

• Provide acout port: When selected, the acout output port is made available. The
acout port must be connected to the acin port of another DSP48E block.

• Provide bcout port: When selected, the bcout output port is made available. The
bcout port must be connected to the bcin port of another DSP48E block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=497

• Provide pcout port: When selected, the pcout output port is made available. The
pcout port must be connected to the pcin port of another DSP48 block.

• Provide multiplier sign cascade out port: When selected, the multiplier sign cascade out
port (multsigncascout) is made available. This port can only be connected to the
multiplier sign cascade in port of another DSP48E block and is used to support 96-bit
accumulators/adders and subtracters which are built from two DSP48Es.

• Provide carry cascade out port: When selected, the carry cascade out port
(carrycascout) is made available. This port can only be connected to the carry
cascade in port of another DSP48E block.

• Pipelining tab:

Parameters specific to the Pipelining tab are as follows.

• Length of a/acin pipeline: Specifies the length of the pipeline on input register A. A pipeline
of length 0 removes the register on the input.

• Length of b/bcin pipeline: Specifies the length of the pipeline for the b input whether it is
read from b or bcin.

• Length of acout pipeline: Specifies the length of the pipeline between the a/acin input
and the acout output port. A pipeline of length 0 removes the register from the acout
pipeline length. Must be less than or equal to the length of the a/acin pipeline.

• Length of bcout pipeline: Specifies the length of the pipeline between the b/bcin input
and the bcout output port. A pipeline of length 0 removes the register from the bcout
pipeline length. Must be less than or equal to the length of the b/bcin pipeline.

• Pipeline c: Indicates whether the input from the c port should be registered.

• Pipeline p: Indicates whether the outputs p and pcout should be registered.

• Pipeline multiplier: Indicates whether the internal multiplier should register its output.

• Pipeline opmode: Indicates whether the opmode port should be registered.

• Pipeline alumode: Indicates whether the alumode port should be registered.

• Pipeline carry in: Indicates whether the carry in port should be registered.

• Pipeline carry in select: Indicates whether the carry in select port should be registered.

• Pipeline preadder input register d: Indicates to add a pipeline register to the d input.

• Pipeline preadder output register ad: Indicates to add a pipeline register to the ad output.

• Pipeline INMODE register: Indicates to add a pipeline register to the INMODE input.

• Reset/Enable Ports: Parameters specific to the Reset/Enable tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=498

• Provide Reset Ports:

• Reset port for a/acin: When selected, a port rst_a is made available. This resets the
pipeline register for port a when set to '1'.

• Reset port for b/bcin: When selected, a port rst_b is made available. This resets the
pipeline register for port b when set to '1'.

• Reset port for c: When selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

• Reset port for multiplier: When selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

• Reset port for P: When selected, a port rst_p is made available. This resets the output
register when set to '1'.

• Reset port for carry in: When selected, a port rst_carryin is made available. This resets
the pipeline register for carry in when set to '1'.

• Reset port for alumode: When selected, a port rst_alumode is made available. This
resets the pipeline register for the alumode port when set to '1'.

• Reset port for controls (opmode and carry_in_sel): When selected, a port rst_ctrl is
made available. This resets the pipeline register for the opmode register (if available) and
the carry_in_sel register (if available) when set to '1'.

• Reset port for d and ad:

• Reset port for INMODE:

• Provide Enable Ports:

• Enable port for first a/acin register: When selected, an enable port ce_a1 for the first a
pipeline register is made available.

• Enable port for second a/acin register: When selected, an enable port ce_a2 for the
second a pipeline register is made available.

• Enable port for first b/bcin register: When selected, an enable port ce_b1 for the first b
pipeline register is made available.

• Enable port for second b/bcin register: When selected, an enable port ce_b2 for the
second b pipeline register is made available.

• Enable port for c: When selected, an enable port ce_c for the port C register is made
available.

• Enable port for multiplier: When selected, an enable port ce_m for the multiplier
register is made available.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=499

• Enable port for p: When selected, an enable port ce_p for the port P output register is
made available.

• Enable port for carry in: When selected, an enable port ce_carry_in for the carry in
register is made available.

• Enable port for alumode: When selected, an enable port ce_alumode for the alumode
register is made available.

• Enable port for multiplier carry in: When selected, an enable port mult_carry_in for the
multiplier register is made available.

• Enable port for controls (opmode and carry_in_sel): When selected, the enable port
ce_ctrl is made available. The port ce_ctrl controls the opmode and carry in select
registers.

• Enable port for d: When selected, an enable port is added input register d.

• Enable port for ad: When selected, an enable port is add for the preadder output
register ad.

• Enable port for INMODE: When selected, an enable port is added for the INMODE
register.

• Implementation:

Parameters specific to the Implementation tab are as follows.

• Use synthesizable model: When selected, the DSP48E is implemented from an RTL
description which might not map directly to the DSP48E hardware. This is useful if a design
using the DSP48E block is targeted at device families that do not contain DSP48E
hardware primitives.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

DSP48E2

The Xilinx DSP48E2 block is an efficient building block for DSP applications that use UltraScale
devices. DSP applications use many binary multipliers and accumulators that are best
implemented in dedicated DSP resources. UltraScale devices have many dedicated low-power
DSP slices, combining high speed with small size while retaining system design flexibility.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=500

The DSP48E2 slice is effectively a superset of the DSP48E1 slice with these differences:

• Wider functionality

• More flexibility in the pre-adder

• Added fourth operand to ALU with WMUX

• Wide XOR of the X, Y, and Z multiplexers

• Additional unique features

Refer to the document titled UltraScale Architecture DSP Slice User Guide (UG579) for a detailed
description of the DSP48E2 features.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 501Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=501

Figure 321: DSP48E2

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Input configuration:

• A or ACIN input: Specifies if the A input should be taken directly from the a port or from
the cascaded acin port. The acin port can only be connected to another DSP48 block.

• B or BCIN input: Specifies if the B input should be taken directly from the b port or from
the cascaded bcin port. The bcin port can only be connected to another DSP48 block.

Note: If the input to the block is NaN, you will see a behavioral simulation mismatch.

• DSP48E2 data-path configuration:

• SIMD Mode of Adder/Subtractor/Accumulator: This mode can be used to implement
small add-subtract functions at high speed and lower power with less logic utilization.
The adder and subtracter in the adder/subtracted/logic unit can also be split into Two
24-bit Units or Four 12-bit Units.

• Do not use multiplier: When selected, the block is optimized in hardware for maximum
performance without using the multiplier. If an instruction using the multiplier is
encountered in simulation, an error is reported.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 502Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=502

• Use dynamic multiplier mode: When selected, it instructs the block to use the dynamic
multiplier mode. This indicates that the block is switching between A*B and A:B
operations on the fly and therefore needs to get the worst-case timing of the two paths.

• Preadder configuration: Use the 25-bit D data input to the pre-adder or alternative input
to the multiplier. The pre-adder implements D + A as determined by the INMODE3 signal.

• PREADDINSEL Select preadder input: Selects the input to be added with D in the
preadder.

• AMULTSEL Select A multiplexer output: Selects the input to the 27-bit A input of the
multiplier. In the 7 series primitive DSP48E1 the attribute is called USE_DPORT, but has
been renamed due to new pre-adder flexibility enhancements (default AMULTSEL = A is
equivalent to USE_DPORT=FALSE).

• BMULTSEL Select B multiplexer output: Selects the input to the 18-bit B input of the
multiplier.

• Enable D Port: Automatically enabled when AD is selected above.

• Pattern Detection:

• Reset p register on pattern detection: If selected and the pattern is detected, reset the p
register on the next cycle.

• AUTO RESET PRIORITY: When enabled by selecting the option above, select RESET
(the default) or CEP (clock enabled for the P (output) resister).

• Pattern Input:

• Pattern Input from c port: When selected, the pattern used in pattern detection is read
from the c port.

• Using Pattern Attribute (48bit hex value): Value is used in pattern detection logic which
is best described as an equality check on the output of the adder/subtractor/logic unit.

• Pattern Attribute (48bit hex value): Enter a 48-bit value that is used in the pattern
detector.

• Mask Input:

• Mask input from c port: When selected, the mask used in pattern detection is read from
the c port.

• Using Mask Attribute (48 bit hex value): Enter a 48-bit value used to mask out certain
bits during pattern detection.

• MODE1: Selects rounding_mode 1 (C-bar left shifted by 1).

• MODE2: Selects rounding_mode 2 (C-bar left shifted by 2).

• Wide Xor tab: Parameters specific to the Wide Xor tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 503Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=503

• Use Wide XOR: This is a new feature in the DSP48E2 slice giving the ability to perform a
96-bit wide XOR function.

• XORSIMD Select Wide XOR SIMD: The XORSIMD attribute is used to select the width of
the XOR function. Select either XOR12 (the default), XOR24, XOR48, or XOR96.

• Optional Ports tab: Parameters specific to the Optional Ports tab are as follows.

• Input Ports:

• Consolidate control port: When selected, combines the opmode, alumode, carry_in,
carry_in_sel, and inmode ports into one 20-bit port. Bits 0 to 6 are the opmode,
bits 7 to 10 are the alumode port, bit 11 is the carry_in port, bits 12 to 14 are the
carry_in_sel port, and bits 15-19 are the inmode bits. This option should be used
when the Opmode block is used to generate a DSP48 instruction.

• Provide c port: When selected, the c port is made available. Otherwise, the c port is tied
to '0'.

• Provide global reset port: When selected, the port rst is made available. This port is
connected to all available reset ports based on the pipeline selections.

• Provide global enable port: When selected, the optional en port is made available. This
port is connected to all available enable ports based on the pipeline selections.

• Cascadable Ports:

• Provide pcin port: When selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP48 block.

• Provide carry cascade in port: When selected, the carry cascade in port is exposed. This
port can only be connected to a carry cascade out port on another DSP48E block.

• Provide multiplier sign cascade in port: When selected, the multiplier sign cascade in
port (multsigncascin) is exposed. This port can only be connected to a multiplier sign
cascade out port of another DSP48E block.

• Output Ports:

• Provide carryout port: When selected, the carryout output port is made available.
When the mode of operation for the adder/subtractor is set to one 48-bit adder, the
carryout port is 1-bit wide. When the mode of operation is set to two 24 bit adders,
the carryout port is 2 bits wide. The MSB corresponds to the second adder's carryout
and the LSB corresponds to the first adder's carryout. When the mode of operation is
set to four 12 bit adders, the carryout port is 4 bits wide with the bits corresponding
to the addition of the 48 bit input split into 4 12-bit sections.

• Provide pattern detect port: When selected, the pattern detection output port is
provided. When the pattern, either from the mask or the c register, is matched the
pattern detection port is set to '1'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=504

• Provide pattern bar detect port: When selected, the pattern bar detection
(patternbdetect) output port is provided. When the inverse of the pattern, either from
the mask or the c register, is matched the pattern bar detection port is set to '1'.

• Provide overflow port: When selected, the overflow output port is provided. This port
indicates when the operation in the DSP48E has overflowed beyond the bit P[N] where
N is between 1 and 46. N is determined by the number of 1s in the mask whether set by
the GUI mask field or the c port input.

• Provide underflow port: When selected, the underflow output port is provided. This
port indicates when the operation in the DSP48E has underflowed. Underflow occurs
when the number goes below –P[N] where N is determined by the number of 1s in the
mask whether set by the GUI mask field or the c port input.

• Cascadable Ports:

• Provide acout port: When selected, the acout output port is made available. The
acout port must be connected to the acin port of another DSP48E block.

• Provide bcout port: When selected, the bcout output port is made available. The
bcout port must be connected to the bcin port of another DSP48E block.

• Provide pcout port: When selected, the pcout output port is made available. The
pcout port must be connected to the pcin port of another DSP48 block.

• Provide multiplier sign cascade out port: When selected, the multiplier sign cascade out
port (multsigncascout) is made available. This port can only be connected to the
multiplier sign cascade in port of another DSP48E block and is used to support 96-bit
accumulators/adders and subtracters which are built from two DSP48Es.

• Provide carry cascade out port: When selected, the carry cascade out port
(carrycascout) is made available. This port can only be connected to the carry
cascade in port of another DSP48E block.

• Pipelining tab:

Parameters specific to the Pipelining tab are as follows.

• Length of a/acin pipeline: Specifies the length of the pipeline on input register A. A pipeline
of length 0 removes the register on the input.

• Length of b/bcin pipeline: Specifies the length of the pipeline for the b input whether it is
read from b or bcin.

• Length of acout pipeline: Specifies the length of the pipeline between the a/acin input
and the acout output port. A pipeline of length 0 removes the register from the acout
pipeline length. Must be less than or equal to the length of the a/acin pipeline.

• Length of bcout pipeline: Specifies the length of the pipeline between the b/bcin input
and the bcout output port. A pipeline of length 0 removes the register from the bcout
pipeline length. Must be less than or equal to the length of the b/bcin pipeline.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 505Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=505

• Pipeline c: Indicates whether the input from the c port should be registered.

• Pipeline p: Indicates whether the outputs p and pcout should be registered.

• Pipeline multiplier: Indicates whether the internal multiplier should register its output.

• Pipeline opmode: Indicates whether the opmode port should be registered.

• Pipeline alumode: Indicates whether the alumode port should be registered.

• Pipeline carry in: Indicates whether the carry in port should be registered.

• Pipeline carry in select: Indicates whether the carry in select port should be registered.

• Pipeline preadder input register d: Indicates to add a pipeline register to the d input.

• Pipeline preadder output register ad: Indicates to add a pipeline register to the ad output.

• Pipeline INMODE register: Indicates to add a pipeline register to the INMODE input.

• Reset/Enable Ports tab: Parameters specific to the Reset/Enable tab are as follows.

• Provide Reset Ports:

• Reset port for a/acin: When selected, a port rst_a is made available. This resets the
pipeline register for port a when set to '1'.

• Reset port for b/bcin: When selected, a port rst_b is made available. This resets the
pipeline register for port b when set to '1'.

• Reset port for c: When selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

• Reset port for multiplier: When selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

• Reset port for P: When selected, a port rst_p is made available. This resets the output
register when set to '1'.

• Reset port for carry in: When selected, a port rst_carryin is made available. This resets
the pipeline register for carry in when set to '1'.

• Reset port for alumode: When selected, a port rst_alumode is made available. This
resets the pipeline register for the alumode port when set to '1'.

• Reset port for controls (opmode and carry_in_sel): When selected, a port rst_ctrl is
made available. This resets the pipeline register for the opmode register (if available) and
the carry_in_sel register (if available) when set to '1'.

• Reset port for d and ad: When selected, a port rst_a and rst_ad is made available. This
resets the pipeline register for ports when set to '1'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 506Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=506

• Reset port for INMODE: When selected, a port rst_inmode is made available. This
resets the pipeline register for the inmode port when set to '1'.

• Provide Enable Ports:

• Enable port for first a/acin register: When selected, an enable port ce_a1 for the first a
pipeline register is made available.

• Enable port for second a/acin register: When selected, an enable port ce_a2 for the
second a pipeline register is made available.

• Enable port for first b/bcin register: When selected, an enable port ce_b1 for the first b
pipeline register is made available.

• Enable port for second b/bcin register: When selected, an enable port ce_b2 for the
second b pipeline register is made available.

• Enable port for c: When selected, an enable port ce_c for the port C register is made
available.

• Enable port for multiplier: When selected, an enable port ce_m for the multiplier
register is made available.

• Enable port for p: When selected, an enable port ce_p for the port P output register is
made available.

• Enable port for carry in: When selected, an enable port ce_carry_in for the carry in
register is made available.

• Enable port for alumode: When selected, an enable port ce_alumode for the alumode
register is made available.

• Enable port for multiplier carry in: When selected, an enable port mult_carry_in for the
multiplier register is made available.

• Enable port for controls (opmode and carry_in_sel): When selected, the enable port
ce_ctrl is made available. The port ce_ctrl controls the opmode and carry in select
registers.

• Enable port for d: When selected, an enable port is added input register d.

• Enable port for ad: When selected, an enable port is add for the preadder output
register ad.

• Enable port for INMODE: When selected, an enable port is added for the INMODE
register.

• Inversion Options tab: When a checkbox is selected on this tab, the specified signal is
inverted.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=507

• Use synthesizable model: When selected, the DSP48E2 is implemented from an RTL
description which might not map directly to the DSP48E2 hardware. This is useful if a
design using the DSP48E2 block is targeted at device families that do not contain
DSP48E2 hardware primitives.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

DSP58

The Xilinx DSP58 block is an efficient building block for DSP applications that use Versal™
devices. DSP applications use many binary multipliers and accumulators that are best
implemented in dedicated DSP resources. Versal™ devices have many dedicated low-power DSP
slices, combining high speed with small size while retaining system design flexibility.

The DSP58 slice is effectively a super-set of the DSP48E2 slice with these differences. The
DSP58 has the following.

• Wider functionality

• More flexibility in the pre-adder

• New optional negate inport

• More XOR operations

• Additional unique features

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 508Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=508

Figure 322: DSP58

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

• Input Configuration:

• A or ACIN input: Specifies if the A input should be taken directly from the a port or from
the cascaded acin port. The acin port can only be connected to another DSP58 block.

• B or BCIN input: Specifies if the B input should be taken directly from the b port or from
the cascaded bcin port. The bcin port can only be connected to another DSP58 block.

Note: If the input to the block is NaN, you will see a behavioral simulation mismatch.

• DSP58 Data-Path Configuration:

• SIMD Mode of Adder/Subtractor/Accumulator: This mode can be used to implement
small add-subtract functions at high speed and lower power with less logic utilization.
The adder and subtracter in the adder/subtracted/logic unit can also be split into two
24-bit units or four 12-bit units.

• Mode of Multiplier : This option is disabled in the current release

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 509Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=509

• Do not use multiplier: When this is selected, the DSP58 block is optimized in hardware
for maximum performance without using the multiplier. If an instruction using the
multiplier is encountered in simulation, an error is reported.

• Use dynamic multiplier mode: When this is selected, it instructs the DSP58 block to use
the dynamic multiplier mode. This indicates that the block is switching between A*B and
A:B operations on the fly, and therefore needs to get the worst-case timing of the two
paths.

• Preadder Configuration: Use the 27-bit D data input to the pre-adder or alternative input
to the multiplier. The pre-adder implements D + A as determined by the INMODE3 signal.

• PREADDINSEL Select preadder input: Selects the input to be added with D in the pre-
adder.

• AMULTSEL Select A multiplexer output: Selects the input to the 27-bit A input of the
multiplier. In the 7 series primitive, DSP48E1 the attribute is called USE_DPORT, but has
been renamed due to new pre-adder flexibility enhancements (default AMULTSEL = A is
equivalent to USE_DPORT=FALSE).

• BMULTSEL Select B multiplexer output: Selects the input to the 18-bit B input of the
multiplier.

• Enable D Port: Automatically enabled when AD is selected.

• Pattern Detection:

• Reset p register on pattern detection: If selected and the pattern is detected, reset the p
register on the next cycle

• AUTO RESET PRIORITY: When enabled by selecting the option above, select RESET
(the default) or CEP (clock enabled for the P (output) resister).

• Pattern Input:

• Pattern Input from c port: When selected, the pattern used in pattern detection is read
from the c port.

• Using Pattern Attribute (58bit hex value): Value is used in pattern detection logic, which
is best described as an equality check on the output of the adder/subtractor/logic unit.

• Pattern attribute: A 58-bit value that is used in the pattern detector.

• Mask Input:

• Mask input from c port: When selected, the mask used in pattern detection is read from
the c port.

• Using Mask Attribute (58 bit hex value): A 58-bit value used to mask out certain bits
during pattern detection.

• MODE1: Selects rounding_mode 1 (C-bar left shifted by 1).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 510Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=510

• MODE2: Selects rounding_mode 2 (C-bar left shifted by 2).

• Wide Xor tab: Parameters specific to the Wide Xor tab are as follows.

• Use Wide XOR: Use this is feature to perfom a 116 bit XOR function.

• XORSIMD Select Wide XOR SIMD: Use the XORSIMD attribute to select the width of the
XOR function. Select either XOR12 (the default), XOR22, XOR24, XOR34, XOR58, or
XOR116).

• Optional Ports tab:

• Input Ports:

• Consolidate control port: When selected, combines the opmode, alumode, carry_in,
carry_in_sel, inmode, and negate ports into one 25-bit port. Bits 0 to 8 are the opmode,
bits 9 to 12 are the alumode port, bit 13 is the carry_in port, and bits 14 to 16 are the
carry_in_sel port, bits 17 to 21 are the inmode port, and bits 22 to 24 are the negate
port. This option should be used when the Opmode block is used to generate a DSP58
instruction.

• Provide c port: When selected, the c port is made available. Otherwise, the c port is tied
to '0'.

• Provide global reset port: When selected, the port rst is made available. This port is
connected to all available reset ports based on the pipeline selections.

• Provide global enable port: When selected, the optional en port is made available. This
port is connected to all available enable ports based on the pipeline selections.

• Cascadable Ports:

• Provide pcin port: When selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP58 block.

• Provide carry cascade in port: When selected, the carry cascade in port is exposed. This
port can only be connected to a carry cascade out port on another DSP58 block.

• Provide multiplier sign cascade in port: When selected, the multiplier sign cascade in
port (multsigncascin) is exposed. This port can only be connected to a multiplier sign
cascade out port of another DSP58 block.

• Output Ports:

• Provide carryout port: When selected, the carryout output port is made available. When
the mode of operation for the adder/subtractor is set to one 58-bit adder, the carryout
port is 1-bit wide. When the mode of operation is set to two 24 bit adders, the carryout
port is 2 bits wide. The MSB corresponds to the second adder's carryout and the LSB
corresponds to the first adder's carryout. When the mode of operation is set to four 12
bit adders, the carryout port is 4 bits wide with the bits corresponding to the addition of
the 48 bit input split into four 12-bit sections.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=511

• Provide pattern detect port: When selected, the pattern detection output port is
provided. When the pattern, either from the mask or the c register, is matched the
pattern detection port is set to '1'.

• Provide pattern bar detect port: When selected, the pattern bar detection
(patternbdetect) output port is provided. When the inverse of the pattern, either from
the mask or the c register, is matched the pattern bar detection port is set to '1'.

• Provide overflow port: When selected, the overflow output port is provided. This port
indicates when the operation in the DSP58 has overflowed beyond the bit P[N] where
N is between 1 and 46. N is determined by the number of 1s in the mask whether set by
the GUI mask field or the c port input.

• Provide underflow port: When selected, the underflow output port is provided. This
port indicates when the operation in the DSP58 has underflowed. Underflow occurs
when the number goes below –P[N] where N is determined by the number of 1s in the
mask whether set by the GUI mask field or the c port input.

• Cascadable Ports:

• Provide ACOUT port: When selected, the acout output port is made available. The
acout port must be connected to the acin port of another DSP58 block.

• Provide BCOUT port: When selected, the bcout output port is made available. The
bcout port must be connected to the bcin port of another DSP58 block.

• Provide PCOUT port: when selected, the pcout output port is made available. The pcout
port must be connected to the pcin port of another DSP58 block.

• Provide multiplier sign cascade out port: When selected, the multiplier sign cascade out
port (multsigncascout) is made available. This port can only be connected to the
multiplier sign cascade in port of another DSP58 block and is used to support 96-bit
accumulators/adders and subtracters which are built from two DSP58s.

• Provide carry cascade out port: When selected, the carry cascade out port
(carrycascout) is made available. This port can only be connected to the carry cascade in
port of another 58 block.

• Pipelining tab:

• Pipeline Options:

• Length of a/acin pipeline: Specifies the length of the pipeline on input register A. A
pipeline of length 0 removes the register on the input.

• Length of b/bCIN pipeline: Specifies the length of the pipeline for the b input whether it
is read from b or bcin.

• Length of acout pipeline: Specifies the length of the pipeline between the a/acin input
and the acout output port. A pipeline of length 0 removes the register from the acout
pipeline length. Must be less than or equal to the length of the a/acin pipeline.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 512Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=512

• Length of bcout pipeline: Specifies the length of the pipeline between the b/bcin input
and the bcout output port. A pipeline of length 0 removes the register from the bcout
pipeline length. Must be less than or equal to the length of the b/bcin pipeline.

• Pipeline c: Indicates whether the input from the c port should be registered.

• Pipeline p: Indicates whether the outputs p and pcout should be registered.

• Pipeline multiplier: indicates whether the internal multiplier should register its output.

• Pipeline opmode: Indicates whether the opmode port should be registered.

• Pipeline alumode: Indicates whether the alumode port should be registered.

• Pipeline carry in: Indicates whether the carry in port should be registered.

• Pipeline carry in select: Indicates whether the carry in select port should be registered.

• Pipeline preadder input register d: Indicates to add a pipeline register to the d input.

• Pipeline preadder output register ad: Indicates to add a pipeline register to the ad
output.

• Pipeline INMODE register: Indicates to add a pipeline register to the INMODE input.

• Reset/Enable Ports tab:

• Provide Reset Ports:

• Reset port for a/acin: When selected, a port rst_a is made available. This resets the
pipeline register for port a when set to '1'.

• Reset port for b/bcin: When selected, a port rst_b is made available. This resets the
pipeline register for port b when set to '1'.

• Reset port for c: When selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

• Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

• Reset port for P: When selected, a port rst_p is made available. This resets the output
register when set to '1'.

• Reset port for carry in: When selected, a port rst_carryin is made available. This resets
the pipeline register for carry in when set to '1'.

• Reset port for alumode: When selected, a port rst_alumode is made available. This
resets the pipeline register for the alumode port when set to '1'.

• Reset port for controls (opmode and carry_in_sel): When selected, a port rst_ctrl is
made available. This resets the pipeline register for the opmode register (if available) and
the carry_in_sel register (if available) when set to '1'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=513

• Provide Enable Ports:

• Enable port for first a/acin register: When selected, an enable port ce_a1 for the first a
pipeline register is made available.

• Enable port for second a/acin register: When selected, an enable port ce_a2 for the
second a pipeline register is made available.

• Enable port for first b/bcin register: When selected, an enable port ce_b1 for the first b
pipeline register is made available.

• Enable port for second b/bcin register: When selected, an enable port ce_b2 for the
second b pipeline register is made available.

• Enable port for c: When selected, an enable port ce_c for the port C register is made
available.

• Enable port for multiplier: When selected, an enable port ce_m for the multiplier
register is made available.

• Enable port for p: When selected, an enable port ce_p for the port P output register is
made available.

• Enable port for carry in: When selected, an enable port ce_carry_in for the carry in
register is made available.

• Enable port for alumode: When selected, an enable port ce_alumode for the alumode
register is made available.

• Enable port for multiplier carry in: When selected, an enable port mult_carry_in for the
multiplier register is made available.

• Enable port for controls (opmode and carry_in_sel): When selected, the enable port
ce_ctrl is made available. The port ce_ctrl controls the opmode and carry in select
registers.

• Enable port for d: When selected, an enable port is added input register d.

• Enable port for ad: When selected, an enable port is add for the preadder output
register ad.

• Enable port for INMODE: When selected, an enable port is added for the INMODE
register.

• Inversion Options tab : When a checkbox is selected under this tab, the specified signal is
inverted.

• Implementation tab:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=514

• Use synthesizable model: When selected, the DSP58 is implemented from an RTL
description which might not map directly to the DSP58 hardware. This is useful if a design
using the DSP58 block is targeted at device families that do not contain DSP58 hardware
primitives.

• Mode of operation for the adder/subtractor: This mode can be used to implement small
add-subtract functions at high speed and lower power with less logic utilization. The adder
and subtractor in the adder/subtracted/logic unit can also be split into two 24-bit fields or
four12-bit fields. This is achieved by setting the mode of operation to "Two 24-bit adders"
or "Four 12-bit adders".

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

DSPCPLX
The Xilinx DSPCPLX block is one of the advanced features provided by Versal™ architecture DSP,
which is the optimized solution to deal with 18x18 complex multiplication followed by 58 + 58
accumulation operation.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 515Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=515

Versal architecture DSP supports an 18-bit complex multiplier with two back-to-back DSP58s in
the same tile pair together. The two DSP58s with their DSP_MODE attributes set to CINT18
form one complex arithmetic unit. The right DSP58 computes the real result P_RE and left
computes the imaginary result P_IM. The following figure shows the unisim DSPCPLX primitive
which is used to develop this feature.

Figure 323: Unisim DSPCPLX Primitive

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic tab are as follows:

• Input Configuration:

• A or ACIN input: Specifies if the A input should be taken directly from the a_re, a_im
ports or from the cascaded acin_re, acin_im ports. The acin_re and acin_im
ports can only be connected to another DSPCPLX block.

• B or BCIN input: Specifies if the B input should be taken directly from the b_re, b_im
ports or from the cascaded bcin_re, bcin_im ports. The bcin_re and bcin_im ports can
only be connected to another DSPCPLX block.

• Pattern Detection on Real Output:

• Reset p_re register on pattern detection: If selected and the pattern_re is detected,
reset the p_re register on the next cycle

• AUTO RESET PRIORITY RE: When enabled by selecting the option above, select RESET
(the default) or CEP (clock enabled for the P_RE (output) resister).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=516

• Pattern Input RE:

• Pattern Input from c_re port: When selected, the pattern_re used in pattern
detection on Real Output is read from the c_re port.

• Using Pattern Attribute RE (58-bit hex value): Value is used in pattern detection logic
which is best described as an equality check on the output of the adder/subtractor/logic
unit.

• Using Pattern Attribute RE (58-bit hex value): Enter a 58-bit value that is used in the
pattern detector.

• Mask Input RE:

• Mask input from c_re port: When selected, the mask_re used in pattern detection is
read from the c_re port.

• Using Mask Attribute RE (58-bit hex value): Enter a 58-bit value used to mask out
certain bits during pattern detection on Real Output.

• MODE1: Selects rounding_mode 1 (C_RE-bar left shifted by 1).

• MODE2: Selects rounding_mode 2 (C_RE-bar left shifted by 2).

• Pattern Detection on Imaginary Output:

• Reset p_im register on pattern detection: If selected and the pattern_im is detected,
reset the p_im register on the next cycle.

• AUTO RESET PRIORITY IM: When enabled by selecting the option above, select RESET
(the default) or CEP (clock enabled for the P_IM (output) resister).

• Mask Input IM:

• Mask input from c_im port: When selected, the mask_im used in pattern detection on
Imaginary Output is read from the c_im port.

• Using Mask Attribute RE (58-bit hex value): Enter a 58-bit value used to mask out
certain bits during pattern detection on Imaginary Output.

• MODE1: Selects rounding_mode 1 (C_IM-bar left shifted by 1).

• MODE2: Selects rounding_mode 2 (C_IM-bar left shifted by 2).

• Optional Ports tab: Parameters specific to the Optional Ports tab are as follows:

• Input Ports:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=517

• Consolidate control port: When selected, combines the opmode, alumode, carry_in,
carry_in_sel, inmode and conjugate ports into one 18-bit port. Bits 0 to 8 are
the opmode, bits 9 to 12 are the alumode port, bit 13 is the carry_in port, bits 14 to
16 are the carry_in_sel port, bit 17 is the Conjugate_A input port and bit 18 is
the Conjugate_B port. This option should be used when the Opmode block is used to
generate a DSPCPLX instruction.

Note: Enabling this option will drive both the left and right dsp58 tiles with the same
configuration.

• Provide c port: When selected, the c_re and c_im ports are made available.
Otherwise, the c_re and c_im ports are tied to '0'.

• Provide global reset port: When selected, the port rst_all is made available. This port
is connected to all available reset ports based on the pipeline selections.

• Provide global enable port: When selected, the optional en_all port is made available.
This port is connected to all available enable ports based on the pipeline selections.

• Cascadable Ports:

• Provide pcin port: When selected, the pcin_re and pcin_im ports are exposed. The
pcin_re and pcin_im ports must be connected to the pcout_re and pcout_im
ports of another DSPCPLX block respectively.

• Provide carry cascade in port: When selected, the carrycascin_re and
carrycascin_im ports are exposed. These ports can only be connected to a carry
cascade out ports of another DSPCPLX block.

• Provide multiplier sign cascade in port: When selected, the multsignin_re and
multsignin_im ports are exposed. These ports can only be connected to a multiplier
sign cascade out ports of another DSPCPLX block.

• Output Ports:

• Provide carryout port: When selected, the carryout_re and carryout_im output
ports are made available.

• Provide pattern detect port: When selected, the patterndetect_re and
patterndetect_out ports are provided. When the pattern_re/pattern_im,
either from the mask_re/mask_im or the c_re/c_im register is matched, the
respective patterndetect_re/patterndetect_im port is set to '1'.

• Provide pattern bar detect port: When selected, the patternbdetect_re and
patternbdetect_im ports are provided. When the inverse of the pattern_re/
pattern_im, either from the mask_re/mask_im or the c_re/c_im register is
matched, the patternbdetect_re/patternbdetect_im port is set to '1'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 518Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=518

• Provide overflow port: When selected, the overflow_re and overflow_im ports are
provided. These ports indicate when the operation in the DSPCPLX has overflowed
beyond the bit P_RE[N]/P_IM[N] where N is between 0 and 56. N is determined by the
number of 1s in the mask_re/mask_im whether set by the GUI mask field or the
c_re/c_im port input.

• Provide underflow port: When selected, the underflow_re and underflow_im
ports are provided. These ports indicate when the operation in the DSPCPLX has
underflowed. Underflow occurs when the number goes below -P_RE[N]/P_IM[N],
where N is determined by the number of 1s in the mask_re/mask_im whether set by
the GUI mask field or the c_re/c_im port input.

• Cascadable Ports:

• Provide acout port: When selected, the acout_re and acout_im output ports are
made available. The acout_re/acout_im port must be connected to the acin_re/
acin_im port of another DSPCPLX block.

• Provide bcout port: When selected, the bcout_re and bcout_im output ports are
made available. The bcout_re/bcout_im port must be connected to the bcin_re/
bcin_im port of another DSPCPLX block.

• Provide pcout port: When selected, the pcout_re and pcout_im output ports are
made available. The pcout_re/pcout_im port must be connected to the pcin_re/
pcin_im port of another DSPCPLX block.

• Provide multiplier sign cascade out port: When selected, the multsignout_re and
multsignout_im ports are made available. These ports can only be connected to the
multsignin_re and multsignin_im ports of another DSPCPLX block respectively
and is used to support 116-bit accumulators/adders and subtracters which are built
from two DSPCPLXs.

• Provide carry cascade out port: When selected, the carrycascout_re and
carrycascout_im ports are made available. These ports can only be connected to the
carrycascin_re and carrycascin_im ports of another DSPCPLX block
respectively.

• Pipelining tab: Parameters specific to the Pipelining tab are as follows:

• Length of a_re/acin_re pipeline: Specifies the length of the pipeline on input register A_RE.
The pipeline of length 0 removes the register on the input.

• Length of a_im/acin_im pipeline: Specifies the length of the pipeline on input register
A_IM. The pipeline of length 0 removes the register on the input.

• Length of b_re/bcin_re pipeline: Specifies the length of the pipeline for the b_re input and
whether it is read from b_re or bcin_re.

• Length of b_im/bcin_im pipeline: Specifies the length of the pipeline for the b_im input
and whether it is read from b_im or bcin_im.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 519Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=519

• Length of acout_re pipeline: Specifies the length of the pipeline between the a_re/
acin_re input and the acout_re output port. The pipeline of length 0 removes the
register from the acout_re pipeline length. Must be less than or equal to the length of
the a_re/acin_re pipeline.

• Length of acout_im pipeline: Specifies the length of the pipeline between the a_im/
acin_im input and the acout_im output port. The pipeline of length 0 removes the
register from the acout_im pipeline length. Must be less than or equal to the length of
the a_im/acin_im pipeline.

• Length of bcout_re pipeline: Specifies the length of the pipeline between the b_re/
bcin_re input and the bcout_re output port. The pipeline of length 0 removes the
register from the bcout_re pipeline length. Must be less than or equal to the length of
the b_re/bcin_re pipeline.

• Length of bcout_im pipeline: Specifies the length of the pipeline between the b_im/
bcin_im input and the bcout_im output port. The pipeline of length 0 removes the
register from the bcout_im pipeline length. Must be less than or equal to the length of
the b_im/bcin_im pipeline.

• Pipeline c_re: Indicates whether the input from the c_re port should be registered.

• Pipeline c_im: Indicates whether the input from the c_im port should be registered.

• Pipeline p_re: Indicates whether the outputs p_re and pcout_re should be registered.

• Pipeline p_im: Indicates whether the outputs p_im and pcout_im should be registered.

• Pipeline multiplier_re: Indicates whether the internal multiplier_re should register its
output.

• Pipeline multiplier_im: Indicates whether the internal multiplier_im should register its
output.

• Pipeline opmode_re: Indicates whether the opmode_re port should be registered.

• Pipeline opmode_im: Indicates whether the opmode_im port should be registered.

• Pipeline alumode_re: Indicates whether the alumode_re port should be registered.

• Pipeline alumode_im: Indicates whether the alumode_im port should be registered.

• Pipeline carry in Re: Indicates whether the carryin_re port should be registered.

• Pipeline carry in Im: Indicates whether the carryin_im port should be registered.

• Pipeline carry in select Re: Indicates whether the carryinsel_re port should be
registered.

• Pipeline carry in select Im: Indicates whether the carryinsel_im port should be
registered.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 520Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=520

• Pipeline preadder output register ad: Indicates to add a pipeline register to the ad output.

• Pipeline Conjugate register A: Indicates to add a pipeline register to the Conjugate_A
input.

• Pipeline Conjugate register B: Indicates to add a pipeline register to the Conjugate_B
input.

• Reset/Enable Ports tab: Parameters specific to the Reset/Enable tab are as follows:

• Provide Reset Ports:

• Reset port for a/acin:

When selected, rsta_re and rsta_im ports are made available. This resets the
pipeline registers for port a_re, a_im when set to '1'.

• Reset port for b/bcin: When selected, rstb_re and rstb_im are made available. This
resets the pipeline registers for port b_re, b_im when set to '1'.

• Reset port for c: When selected, rstc_re and rstc_im are made available. This resets
the pipeline registers for port c_re, c_im when set to '1'.

• Reset port for multiplier: When selected, rstm_re and rstm_im are made available.
This resets the pipeline registers for internal multiplier respectively when set to '1'.

• Reset port for P: When selected, rstp_re and rstp_im are made available. This
resets the output p_re and p_im registers when set to '1'.

• Reset port for carry in: When selected, rstallcarryin_re and
rstallcarryin_im are made available. This resets the pipeline registers for
carryin_re and carryin_im port when set to '1'.

• Reset port for alumode: When selected, rstalumode_re and rstalumode_im are
made available. This resets the pipeline register for the alumode_re and alumode_im
port when set to '1'.

• Reset port for controls (opmode and carry_in_sel): When selected, a port rstctrl_re
and rstctrl_im are made available. This resets the pipeline register for the
opmode_re/opmode_im register (if available) and the carryinsel_re/
carryinsel_im register (if available) when set to '1'.

• Reset port for ad: When selected, port rstad is made available. This resets the pipeline
ad register for ports when set to '1'.

• Reset port for Conjugate_a: When selected, port rstconjugate_a is made available.
This resets the pipeline register for the Conjugate_a port when set to '1'.

• Reset port for Conjugate_b: When selected, port rstconjugate_b is made available.
This resets the pipeline register for the Conjugate_b port when set to '1'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 521Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=521

• Provide Enable Ports:

• Enable port for first a/acin register: When selected, enable ports cea1_re and
cea1_im for the first a_re and a_im pipeline register are made available.

• Enable port for second a/acin register: When selected, enable ports cea2_re and
cea2_im for the second a_re and a_im pipeline registers are made available.

• Enable port for first b/bcin register: When selected, enable ports ceb1_re and
ceb1_im for the first b_re and b_im pipeline registers are made available.

• Enable port for second b/bcin register: When selected, enable ports ceb2_re and
ceb2_im for the second b_re and b_im pipeline registers are made available.

• Enable port for c: When selected, enable ports cec_re and cec_im for the port C_re
and C_im registers are made available.

• Enable port for multiplier: When selected, enable ports cem_re and cem_im for the
Real and Imaginary multiplier registers are made available.

• Enable port for p: When selected, enable ports cep_re and cep_im for the port P_re
and P_im output registers are made available.

• Enable port for carry in: When selected, enable ports cecarryin_re and
cecarryin_im for the Real and Imaginary carry in registers are made available.

• Enable port for alumode: When selected, enable ports cealumode_re and
cealumode_im for the Real and Imaginary alumode registers are made available.

• Enable port for controls (opmode and carry_in_sel): When selected, enable ports
cectrl_re and cectrl_im are made available. The ports cectrl_re and
cectrl_im controls the Real and Imaginary opmode and carry in select registers.

• Enable port for ad: When selected, an enable port is created for the preadder output
register ad.

• Enable port for Conjugate_a: When selected, an enable port conjugate_a is added for
the Conjugate_A register.

• Enable port for Conjugate_b: When selected, an enable port conjugate_b is added
for the Conjugate_B register.

• Inversion Options tab: When the checkbox is selected on this tab, the specified signal is
inverted.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

• Use synthesizable model: When selected, the DSPCPLX is implemented from an RTL
description which might not map directly to the DSP58 hardware. This is useful if a design
using the DSPCPLX block is targeted at device families that do not contain DSP58
hardware primitives.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 522Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=522

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Dual Port RAM

The Xilinx Dual Port RAM block implements a random access memory (RAM). Dual ports enable
simultaneous access to the memory space at different sample rates using multiple data widths.

Block Interface

The block has two independent sets of ports for simultaneous reading and writing. Independent
address, data, and write enable ports allow shared access to a single memory space. By default,
each port set has one output port and three input ports for address, input data, and write enable.
Optionally, you can also add a port enable and synchronous reset signal to each input port set.

A dual-port RAM can be implemented using either distributed memory, block RAM, or UltraRAM
resources in the FPGA.

Form Factors

The Dual Port RAM block also supports various Form Factors (FF). Form factor is defined as:

FF = WB / WA

where WB is data width of Port B and WA is Data Width of Port A.

The Depth of port B (DB) is inferred from the specified form factor as follows:

DB = DA / FF

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 523Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=523

The data input ports on Port A and B can have different arithmetic type and binary point position
for a form factor of 1. For form factors greater than 1, the data input ports on Port A and Port B
should have an unsigned arithmetic type with binary point at 0. The output ports, labeled A and
B, have the same types as the corresponding input data ports.

The location in the memory block can be accessed for reading or writing by providing the valid
address on each individual address port. A valid address is an unsigned integer from 0 to d-1,
where d denotes the RAM depth (number of words in the RAM) for the particular port. An
attempt to read past the end of the memory is caught as an error in simulation. When the dual-
port RAM is implemented in distributed memory or block RAM, the initial RAM contents can be
specified through a block parameter. Each write enable port must be a boolean value. When the
WE port is 1, the value on the data input is written to the location indicated by the address line.

Write Mode

When the Dual Port RAM block is implemented in block RAM, you can set the write mode for
the block in the block parameters dialog box.

The output during a write operation depends on the write mode. When the WE is 0, the output
port has the value at the location specified by the address line. During a write operation (WE
asserted), the data presented on the input data port is stored in memory at the location selected
by the port's address input. During a write cycle, you can configure the behavior of each data out
port A and B to one of the following choices:

• Read after write

• Read before write

• No read on write

The write modes can be described with the help of the figure below. In the figure, the memory
has been set to an initial value of 5 and the address bit is specified as 4. When using No read on
write mode, the output is unaffected by the address line and the output is the same as the last
output when the WE was 0. For the other two modes, the output is obtained from the location
specified by the address line, and hence is the value of the location being written to. This means
that the output can be the old value which corresponds to Read after write.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 524Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=524

Figure 324: Write Mode Output

Collision Behavior

The result of simultaneous access to both ports is described below:

Read-Read Collisions

If both ports read simultaneously from the same memory cell, the read operation is successful.

Write-Write Collisions

If both ports try to write simultaneously to the same memory cell, both outputs are marked as
invalid (nan).

Write-Read Collisions

This collision occurs when one port writes and the other reads from the same memory cell. While
the memory contents are not corrupted, the validity of the output data on the read port depends
on the Write Mode of the write port.

• If the write port is in Read before write mode, the other port can reliably read the old memory
contents.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 525Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=525

• If the write port is in Read after write or No read on write, data on the output of the read port
is invalid (nan).

You can set the Write Mode of each port using the Advanced tab of the block parameters dialog
box.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Depth: Specifies the number of words in the memory for Port A, which must be a positive
integer. The Port B depth is inferred from the form factor specified by the input data
widths.

• Initial value vector: For distributed memory or block RAM, specifies the initial memory
contents. The size and precision of the elements of the initial value vector are based on the
data format specified for Port A. When the vector is longer than the RAM, the vector's
trailing elements are discarded. When the RAM is longer than the vector, the RAM's trailing
words are set to zero. The initial value vector is saturated and rounded according to the
precision specified on the data port A of RAM.

Note: UltraRAM memory is initialized to all 0's during power up or device reset. If implemented in
UltraRAM, the Single Port RAM block cannot be initialized to user defined values.

• Memory Type: Option to select whether the dual port RAM will be implemented in
Distributed memory, Block RAM, or UltraRAM. The distributed dual port RAM is always
set to use port A in Read Before Write mode and port B in read-only mode.

Depending on your selection for Memory Type, the dual-port RAM will be inferred or
implemented in this way when the design is compiled:

• If the block will be implemented in Distributed memory, the Distributed Memory
Generator v8.0 LogiCORE IP will be inferred or implemented when the design is
compiled. This LogiCORE IP is described in the Distributed Memory Generator LogiCORE
IP Product Guide (PG063).

• If the block will be implemented in block RAM or UltraRAM, the
XPM_MEMORY_TDPRAM (True Dual Port RAM) macro will be inferred or implemented
when the design is compiled. For information on the XPM_MEMORY_TDPRAM Xilinx
Parameterized Macro (XPM), refer to UltraScale Architecture Libraries Guide (UG974).

• Initial value for port A output Register: Specifies the initial value for port A output register.
The initial value is saturated and rounded according to the precision specified on the data
port A of RAM.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 526Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=latest;d=pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=526

• Initial value for port B output register: Specifies the initial value for port B output register.
The initial value is saturated and rounded according to the precision specified on the data
port B of RAM.

• Provide synchronous reset port for port A output register: When selected, allows access to
the reset port available on the port A output register of the block RAM or UltraRAM. The
reset port is available only when the latency of the Block RAM or UltraRAM is greater than
or equal to 1.

• Provide synchronous reset port for port B output register: When selected, allows access to
the reset port available on the port B output register of the Block RAM or UltraRAM. The
reset port is available only when the latency of the Block RAM or UltraRAM is greater than
or equal to 1.

• Provide enable port for port A: When selected, allows access to the enable port for port A.
The enable port is available only when the latency of the block is greater than or equal to 1.

• Provide enable port for port B: When selected, allows access to the enable port for port B.
The enable port is available only when the latency of the block is greater than or equal to 1.

• Advanced tab: Parameters specific to the Advanced tab are as follows.

• Write Modes:

• Port A or Port B: When the Dual Port RAM block is implemented in block RAM,
specifies memory behavior for port A or port B when WE is asserted. Supported modes
are: Read after write, Read before write, and No read On write. Read after write
indicates the output value reflects the state of the memory after the write operation.
Read before write indicates the output value reflects the state of the memory before
the write operation. No read on write indicates that the output value remains
unchanged irrespective of change of address or state of the memory. There are device
specific restrictions on the applicability of these modes. Also refer to the Write Mode
topic above for more information.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE and XPM Documentation

LogiCORE IP Distributed Memory Generator v8.0 (Distributed Memory)

UltraScale Architecture Libraries Guide - XPM_MEMORY_TDPRAM Macro (UltraRAM)

Exponential

This Xilinx Exponential block preforms the exponential operation on the input. Currently, only
the floating-point data type is supported.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 527Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=527

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• AXI Interface:

• Flow Control:

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input
channel does block the execution of an operation if data is received on another input
channel.

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one
input channel does not block the execution of an operation if data is received on
another input channel.

• Optimize Goal: When NonBlocking mode is selected, the following optimization options
are activated.

• Resources: Block is configured for minimum resources.

• Performance: Block is configured for maximum performance.

• Block Memory Usage:

• BMG Usage:

• No Usage: Do not use Block Memory.

• Full Usage: Make full use of Block Memory.

• Latency Specification:

• Latency: This defines the number of sample periods by which the block's output is
delayed.

• Optional Ports tab: Parameters specific to the Optional Ports tab are as follows.

• Input Channel Ports:

• Has TLAST: Adds a tlast port to the input channel.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 528Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=528

• Has TUSER: Adds a tuser port to the input channel.

• Control Options:

• Provide enable port: Add an enable port to the block interface.

• Has Result TREADY: Add a TREADY port to the result channel.

• Exception Signals:

• UNDERFLOW: Add an output port that serves as an underflow flag.

• OVERFLOW: Add an output port that serves as an overflow flag.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Expression

The Xilinx Expression block performs a bitwise logical expression.

The expression is specified with operators described in the table below. The number of input
ports is inferred from the expression. The input port labels are identified from the expression,
and the block is subsequently labeled accordingly. For example, the expression: ~((a1 | a2)
& (b1 ^ b2)) results in the following block with 4 input ports labeled 'a1', 'a2', 'b1', and
'b2'.

The expression is parsed and an equivalent statement is written in VHDL (or Verilog). Shown
below, in decreasing order of precedence, are the operators that can be used in the Expression
block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 529Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=529

Operator Symbol
Precedence ()

NOT ~

AND &

OR |

XOR ^

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Expression: Bitwise logical expression.

• Align Binary Point: Specifies that the block must align binary points automatically. If not
selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Fast Fourier Transform 9.1

The Xilinx Fast Fourier Transform block implements the Cooley-Tukey FFT algorithm, a
computationally efficient method for calculating the Discrete Fourier Transform (DFT). In
addition, the block provides an AXI4-Stream-compliant interface.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 530Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=530

The FFT computes an N-point forward DFT or inverse DFT (IDFT) where, N = 2m, m = 3 - 16. For
fixed-point inputs, the input data is a vector of N complex values represented as dual bx-bit two’s
complement numbers, that is, bx bits for each of the real and imaginary components of the data
sample, where bx is in the range 8 to 34 bit, inclusive. Similarly, the phase factors bw can be 8 to
34 bits wide.

For single-precision floating-point inputs, the input data is a vector of N complex values
represented as dual 32-bit floating-point numbers with the phase factors represented as 24- or
25-bit fixed-point numbers.

Theory of Operation

The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform
(DFT) of sample sizes that are a positive integer power of 2. The DFT of a sequence is defined as:

X(k)= k=0,…,N-1∑ x(n)e -jnk2π |N
N- 1

k=0

where N is the transform length and j is the square root of -1. The inverse DFT (IDFT) is:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=531

x(n)= n=0,…,N-1
1
N ∑ X(k)e jnk2π |N

N 1

k=0

AXI Ports that are Unique to this Block

This Sysgen Generator block exposes the AXI CONFIG channel as a group of separate ports
based on sub-field names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

config_tdata_scale_sch A sub-field port that represents the Scaling Schedule field in the Configuration
Channel vector. Refer to the document LogiCORE IP Fast Fourier Transform v9.1
for an explanation of the bits in this field.

config_tdata_fwd_inv A sub-field port that represents the Forward Inverse field in the Configuration
Channel vector. Refer to the document LogiCORE IP Fast Fourier Transform v9.1
for an explanation of the bits in this field.

config_tdata_nfft A sub-field port that represents the Transform Size (NFFT) field in the
Configuration Channel vector. Refer to the document LogiCORE IP Fast Fourier
Transform v9.1 for an explanation of the bits in this field.

config_tdata_cp_len A sub-field port that represents the Cyclic Prefix Length (CP_LEN) field in the
Configuration Channel vector. Refer to the document LogiCORE IP Fast Fourier
Transform v9.1 for an explanation of the bits in this field.

This HDL block exposes the AXI DATA channel as separate ports based on the real and imaginary
sub-field names. The sub-field ports are described as follows:

DATA Channel Input Signals:

data_tdata_xn_im Represents the imaginary component of the Data Channel. The signal driving
xn_im can be a signed data type of width S with binary point at S-1, where S is a
value between 8 and 34, inclusive. eg: Fix_8_7, Fix_34_33.
Both xn_re and xn_im signals must have the same data type.
Refer to the document LogiCORE IP Fast Fourier Transform v9.1 for an
explanation of the bits in this field.

data_tdata_xn_re Represents the real component of the Data Channel. The signal driving xn_re can
be a signed data type of width S with binary point at S-1, where S is a value
between 8 and 34, inclusive. eg: Fix_8_7, Fix_34_33.
Both xn_re and xn_im signals must have the same data type.
Refer to the document LogiCORE IP Fast Fourier Transform v9.1 for an
explanation of the bits in this field.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 532Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=532

• Transform Length:

• Transform_length: One of N = 2(3..16) = 8 - 65536.

• Architecture Configuration:

• Target Clock Frequency(MHz): Enter the target clock frequency.

• Target Data Throughput(MSPS): Enter the target throughput.

• Architecture Choice: Choose one of the following.

• automatically_select

• pipelined_streaming_io

• radix_4_burst_io

• radix_2_burst_io

• radix_2_lite_burst_io

• Transform Length Options:

• Run Time Configurable Transform Length: The transform length can be set through the
nfft port if this option is selected. Valid settings and the corresponding transform sizes
are provided in the section titled Transform Size in the associated document LogiCORE
IP Fast Fourier Transform v9.1 for an explanation of the bits in this field.

• Advanced tab: Parameters specific to the Advanced tab are as follows.

• Precision Options:

• Phase Factor Width: Choose a value between 8 and 34, inclusive to be used as bit
widths for phase factors.

• Scaling Options: Select between Unscaled, Scaled, and Block Floating Point output data
types.

• Rounding Modes:

• Truncation: To be applied at the output of each rank.

• Convergent Rounding: To be applied at the output of each rank.

• Control Signals:

• ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

• ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN.
A minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the core, but the response to the
pulse is not in the cycle immediately following.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 533Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=533

• Output Ordering:

• Cyclic Prefix Insertion:

Cyclic prefix insertion takes a section of the output of the FFT and prefixes it to the
beginning of the transform. The resultant output data consists of the cyclic prefix (a
copy of the end of the output data) followed by the complete output data, all in natural
order. Cyclic prefix insertion is only available when output ordering is Natural Order.

When cyclic prefix insertion is used, the length of the cyclic prefix can be set frame-by-
frame without interrupting frame processing. The cyclic prefix length can be any number
of samples from zero to one less than the point size. The cyclic prefix length is set by the
CP_LEN field in the Configuration channel. For example, when N = 1024, the cyclic
prefix length can be from 0 to 1023 samples, and a CP_LEN value of 0010010110
produces a cyclic prefix consisting of the last 150 samples of the output data.

• Output ordering: Choose between Bit/Digit Reversed Order or Natural Order output.

• Throttle Schemes: Select the tradeoff between performance and data timing requirements.

• Real Time: This mode typically gives a smaller and faster design, but has strict
constraints on when data must be provided and consumed.

• Non Real Time: This mode has no such constraints, but the design might be larger and
slower.

• Optional Output Fields:

• XK_INDEX: The XK_INDEX field (if present in the Data Output channel) gives the
sample number of the XK_RE/XK_IM data being presented at the same time. In the case
of natural order outputs, XK_INDEX increments from 0 to (point size) -1. When bit
reversed outputs are used, XK_INDEX covers the same range of numbers, but in a bit (or
digit) reversed manner.

• OVFLO:

The Overflow (OVFLO) field in the Data Output and Status channels is only available
when the Scaled arithmetic is used. OVFLO is driven High during unloading if any point
in the data frame overflowed.

For a multichannel core, there is a separate OVFLO field for each channel. When an
overflow occurs in the core, the data is wrapped rather than saturated, resulting in the
transformed data becoming unusable for most applications

• Block Icon Display:

• Display shortened port names: On by default. When unchecked, data_tvalid, for
example, becomes m_axis_data_tvalid.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 534Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=534

• Memory Options:

• Data: Option to choose between Block RAM and Distributed RAM. This option is
available only for sample points 8 through 1024. This option is not available for
Pipelined Streaming I/O implementation.

• Phase Factors: Choose between Block RAM and Distributed RAM. This option is
available only for sample points 8 till 1024. This option is not available for Pipelined
Streaming I/O implementation.

• Number Of Stages Using Block RAM: Store data and phase factor in Block RAM and
partially in Distributed RAM. This option is available only for the Pipelined Streaming
I/O implementation.

• Reorder Buffer: Choose between Block RAM and Distributed RAM up to 1024 points
transform size.

• Hybrid Memories: Click check box to Optimize Block RAM Count Using Hybrid
Memories.

• Optimize Options:

• Complex Multipliers: Choose one of the following.

• Use CLB logic

• Use 3-multiplier structure (resource optimization)

• Use 4-multiplier structure (performance optimization)

• Butterfly Arithmetic: Choose one of the following:

• Use CLB logic

• Use XTremeDSP Slices

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Block Timing

To better understand the FFT blocks control behavior and timing, please consult the core data
sheet.

LogiCORE Documentation

LogiCORE IP Fast Fourier Transform v9.1

LogiCORE IP Floating-Point Operator v7.1

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 535Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=535

FDATool

The Xilinx FDATool block provides an interface to the FDATool software available as part of the
MATLAB® Signal Processing Toolbox.

The block does not function properly and should not be used if the Signal Processing Toolbox is
not installed. This block provides a means of defining an FDATool object and storing it as part of
a Model Composer model. FDATool provides a powerful means for defining digital filters with a
graphical user interface.

Example of Use

Copy an FDATool block into a Subsystem where you would like to define a filter. Double-clicking
the block icon opens up an FDATool session and graphical user interface. The filter is stored in an
data structure internal to the FDATool interface block, and the coefficients can be extracted
using MATLAB® helper functions provided as part of Model Composer. The function call
xlfda_numerator('FDATool') returns the numerator of the transfer function (e.g., the
impulse response of a finite impulse response filter) of the FDATool block named 'FDATool'.
Similarly, the helper function xlfda_denominator('FDATool') retrieves the denominator
for a non-FIR filter.

A typical use of the FDATool block is as a companion to an FIR filter block, where the
Coefficients field of the filter block is set to xlfda_numerator('FDATool'). An example is
shown in the following diagram:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 536Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=536

Figure 325: FDATool Example

Note that xlfda_numerator() can equally well be used to initialize a memory block or a
'coefficient' variable for a masked Subsystem containing an FIR filter.

This block does not use any hardware resources.

FDA Tool Interface

Double-clicking the icon in your Simulink model opens up an FDATool session and its graphical
user interface. Upon closing the FDATool session, the underlying FDATool object is stored in the
UserData parameter of the Xilinx FDATool block. Use the xlfda_numerator() helper function
and get_param() to extract information from the object as desired.

FFT

The Xilinx FFT (Fast Fourier Transform) block takes a block of time domain waveform data and
computes the frequency of the sinusoid signals that make up the waveform.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 537Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=537

FFT is a fast implementation of the discrete Fourier transform. The data of the time domain
signal is sampled at discrete intervals. The sampling frequency is twice the maximum frequency
that can be resolved by the FFT, based on the Nyquist theorem. If a signal is sampled at 1 kHz,
the highest frequency that can be resolved by the FFT is 500 Hz.

fs = fmax/2

where fmax = maximum resolvable frequency and fs = sampling frequency.

The duration of the data sample is inversely proportional to the frequency resolution of the FFT.
The longer the sample duration, the higher the number of data points, and the finer the
frequency resolution. If a signal sampled at fs for twice the duration, the difference between
successive frequency df is halved, resulting in an FFT with finer frequency resolution.

df = 1/T

where df = frequency resolution of the FFT, and T= total sampling time.

The number of samples taken over time T is N, so sampling frequency is N/T samples/sec.

Description

FFT is a computationally efficient implementation of the Discrete Fourier Transform (DFT). A
DFT is a collection of data points detailing the correlation between the time domain signal and
sinusoids at discrete frequencies.

The DFT is defined by the following equation:

X(k)= for k=0,1,2, … ,N-1∑ x[n]e -j nk

N- 1

n=0

2π
N

where N is the transform length, k is used to denote the frequency domain ordinal, and n is used
to represent the time-domain ordinal.

The FFT block is ideal for implementing simple Fourier transforms. If your FFT implementation
will use more complicated transform features such as an AXI4-Stream-compliant interface, a real
time throttle scheme, Radix-4 Burst I/O, or Radix-2 Lite Burst I/O, use the Xilinx Fast Fourier
Transform 9.1 block in your design instead of the FFT block.

In the Vivado® design flow, the FFT block is inferred as "LogiCORE IP Fast Fourier Transform
v9.1" for code generation. Refer to the document LogiCORE IP Fast Fourier Transform v9.1 for
details on this LogicCore IP.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 538Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=538

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the Xilinx FFT block are as follows.

• Transform Length: Select the desired point size ranging from 8 to 65536.

• Scale Result by FFT length: If selected, data is scaled between FFT stages using a scaling
schedule determined by the Transform Length setting. If not selected, data is unscaled, and all
integer bit growth is carried to the output.

• Natural Order: If selected, the output of the FFT block will be ordered in natural order. If not
selected, the output of the FFT block will be ordered in bit/digit reversed order.

• Optimize for: Directs the block to be optimized for either speed (Performance) or area
(Resources) in the generated hardware.

Note: If Resources is selected and the input sample period is 8 times slower than the system sample
period, the block implements Radix-2 Burst I/O architecture. Otherwise, Pipeline Streaming I/O
architecture will be used.

• Optional Port:

• Provide start frame port: Adds start_frame_in and start_frame_out ports to the
block. The signals on these ports can be used to synchronize frames at the input and
output of the FFT block. See Adding Start Frame Ports to Synchronize Frames for a
description of the operation of these two ports.

Context Based Pipeline vs. Radix Implementation

Pipelined Streaming I/O and Radix-2 Burst I/O architectures are supported by the FFT block.
Radix-4 Burst I/O architecture is implemented when you select Optimize for: Resources block
parameter and the sample rate of the inputs is 8 times slower than the system rate. In all other
configurations Pipelined Streaming I/O architecture is implemented by default.

Input Data Type Support

The FFT block accepts inputs of varying bit widths with changeable binary point location, such as
Fix_16_0 or Fix_30_10, etc. in unscaled block configuration. For the scaled configuration, the
input is supported in the same format as the Fast Fourier Transform 9.1 block. The Fast Fourier
Transform 9.1 block accepts input values only in the normalized form in the format of Fix_x_[x-1]
(for example, Fix_16_15), so the inputs are 2's complement with a single sign/integer bit.

Latency Value Displayed on the Block

The latency value depends on parameters selected by the user, and the corresponding latency
value is displayed on the FFT block icon in the Simulink model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 539Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=539

Automatic Fixed Point and Floating Point Support

Signed fixed point and floating point data types are supported.

For floating point input, either scaled or unscaled data can be selected in the FFT block
parameters. In the Fast Fourier Transform 9.1 block, the floating point data type is accepted only
when the scaled configuration is selected by the user.

Handling Overflow for Scaled Configuration

The FFT block uses a conservative schedule to avoid overflow scenarios. This schedule sets the
scaling value for the corresponding FFT stages in a way that makes sure no overflow occurs.

Adding Start Frame Ports to Synchronize Frames

Selecting Provide start frame port in the FFT block properties dialog box adds
start_frame_in and start_frame_out ports at the input and output of the FFT block.
These ports are used to synchronize frames at the input and output of the FFT block.

Figure 326: Adding Start Frame Ports

You must provide a valid input at the start_frame_in port. When the start_frame_in
signal is asserted, an impulse is generated at the start of every frame to signal the FFT block to
start processing the frame. The frame size is the Transform Length entered in the block
parameters dialog box.

The start_frame_out port provides the information as to when the output frames start. An
impulse at the start of every frame on the output side helps in tracking the block behavior.

The FFT block has a frame alignment requirement and these ports help the block operate in
accordance with this requirement.

The figure below shows that as soon as the output is processed by the FFT block the
start_frame_out signal becomes High (1).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 540Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=540

Figure 327: Output

The following apply to the Provide start frame port option and the start frame ports added to
the FFT block when the option is enabled:

• The Provide start frame port option selection is valid only for Pipelined Streaming I/O
architecture. See Context Based Pipeline vs. Radix Implementation for a description of the
conditions under which Pipelined Streaming I/O architecture is implemented.

• The option is valid only for input of type fixed point.

• Verilog is supported for netlist generation currently, when the Provide start frame port option
is selected.

Note: The first sample input to the FFT block may be ignored and users are advised to drive the input data
accordingly.

LogiCORE Documentation

LogiCORE IP Fast Fourier Transform v9.1

FIFO

The Xilinx FIFO block implements an FIFO memory queue.

Values presented at the module's data-input port are written to the next available empty memory
location when the write-enable input is one. By asserting the read-enable input port, data can be
read out of the FIFO using the data output port (dout) in the order in which they were written.
The FIFO can be implemented using block RAM, distributed RAM, SRL, or built-in FIFO.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 541Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=541

The full output port is asserted to one when no unused locations remain in the module's
internal memory. The percent_full output port indicates the percentage of the FIFO that is
full, represented with user-specified precision. When the empty output port is asserted the FIFO
is empty.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• FIFO Implementation:

• Memory Type:

This block implements FIFOs built from block RAM, distributed RAM, shift registers, or
the 7 series built-in FIFOs. Memory primitives are arranged in an optimal configuration
based on the selected width and depth of the FIFO. The following table provides best-
use recommendations for specific design requirements.

Table 54: Memory Type

Independent
Clocks

Common
Clock

Small
Buffering

Medium-
Large

Buffering
High

Performance
Minimal

Resources

7 Series,
with Built-In

FIFO

X X X X X

Block RAM X X X X X

Shift
Register

X X X

Distributed
RAM

X X X X

• Performance Options:

• Standard FIFO: FIFO will operate in Standard Mode.

• First Word Fall Through: FIFO will operate in First-Word Fall-Through (FWFT) mode.
The First-Word Fall-Through feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is
available in the FIFO, the first word falls through the FIFO and appears automatically
on the output. FWFT is useful in applications that require low-latency access to data
and to applications that require throttling based on the contents of the data that are
read. FWFT support is included in FIFOs created with block RAM, distributed RAM,
or built-in FIFOs in 7 series devices.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 542Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=542

• Implementation Options:

• Use Embedded Registers (when possible): In 7 series FPGA block RAM and FIFO
macros, embedded output registers are available to increase performance and add
a pipeline register to the macros. This feature can be leveraged to add one
additional cycle of latency to the FIFO core (DOUT bus and VALID outputs) or
implement the output registers for FWFT FIFOs. The embedded registers available
in 7 series FPGAs can be reset (DOUT) to a default or user programmed value for
common clock built-in FIFOs. See the topic Embedded Registers in block RAM
and FIFO Macros in the LogiCORE IP FIFO Generator 12.0.

• Depth: Specifies the number of words that can be stored. Range 16K-4M.

• Bits of precision to use for %full signal: Specifies the bit width of the %full port. The binary
point for this unsigned output is always at the top of the word. Thus, if for example
precision is set to one, the output can take two values: 0.0 and 0.5, the latter indicating the
FIFO is at least 50% full.

• Optional Ports:

• Provide reset port: Add a reset port to the block.

• Reset Latency: Creates a latency on the reset by adding registers. The default is 1.

Note: For UltraScale™ devices, after the reset gets asserted, the FIFO will remain disable for
the next 20 cycles. During this 20 cycle period, all read and write operations are ignored.

• Provide enable port: Add enable port to the block.

• Provide data count port: Add data count port to the block. Provides the number of
words in the FIFO.

• Provide percent full port: Add a percent full output port to the block. Indicates the
percentage of the FIFO that is full using the user-specified precision. This optional
port is turned on by default for backward compatibility reasons.

• Provide almost empty port: Add almost empty (ae) port to the block.

• Provide almost full port: Add almost efull (af) port to the block.

Following are some general guidelines to use Reset, Write enable, Read enable for the 'built-in
FIFO' Memory type:

• 7 series devices: Without Reset port, it is required to run at least 8 clock cycles latency before
asserting WE/RE signals.With Reset port, it is required to run Reset signal ON for at least
three clock cycles. During this time no WE or RE signals should be asserted. To be consistent
across all built-in FIFO configurations, it is recommended to give reset pulse of at least five
clock cycles.

After Reset de-assertion, run at least 30 clock cycles (reset duration +30 clock cycles duration
is defined as a no access zone) before asserting WE/RE signals.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 543Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v12_0/pg057-fifo-generator.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=543

• UltraScale devices: The built-in FIFO requires a reset pulse of at least one clock cycle.

• Versal Devices: Read enable (rd_en) and Write enable (wr_en) signals can be made high only
when rd_rst_busy and wr_rst_busy signals are low.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP FIFO Generator 12.0

LogiCORE IP Floating-Point Operator v7.1

FIR Compiler 7.2

This Xilinx FIR Compiler block provides users with a way to generate highly parameterizable,
area-efficient, high-performance FIR filters with an AXI4-Stream-compliant interface.

AXI Ports that are Unique to this Block

This block exposes the AXI CONFIG channel as a group of separate ports based on sub-field
names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

config_tdata_fsel A sub-field port that represents the fsel field in the Configuration Channel
vector. fsel is used to select the active filter set. This port is exposed when the
number of coefficient sets is greater than one. Refer to the FIR Compiler V7.2
Product Guide for an explanation of the bits in this field.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 544Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v12_0/pg057-fifo-generator.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=544

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Filter Specification tab:

Parameters specific to the Filter Specification tab are as follows.

• Filter Coefficients:

• Coefficient Vector: Specifies the coefficient vector as a single MATLAB® row vector.
The number of taps is inferred from the length of the MATLAB® row vector. If multiple
coefficient sets are specified, then each set is appended to the previous set in the
vector. It is possible to enter these coefficients using the FDATool block as well.

• Number of Coefficients Sets: The number of sets of filter coefficients to be
implemented. The value specified must divide without remainder into the number of
coefficients.

• Use Reloadable Coefficients: Check to add the coefficient reload ports to the block. The
set of data loaded into the reload channel will not take action until triggered by a re-
configuration synchronization event. Refer to the FIR Compiler V7.2 Product Guide for a
more detailed explanation of the RELOAD Channel interface timing. This block supports
the xlGetReloadOrder function. See the Model Composer Utility function
xlGetReloadOrder for details.

• Filter Specification:

• Filter Type:

• Single_Rate: The data rate of the input and the output are the same.

• Interpolation: The data rate of the output is faster than the input by a factor
specified by the Interpolation Rate value.

• Decimation: The data rate of the output is slower than the input by a factor specified
in the Decimation Rate Value.

• Hilbert: Filter uses the Hilbert Transform.

• Interpolated: An interpolated FIR filter has a similar architecture to a conventional
FIR filter, but with the unit delay operator replaced by k-1 units of delay. k is referred
to as the zero-packing factor. The interpolated FIR should not be confused with an
interpolation filter. Interpolated filters are single-rate systems employed to produce
efficient realizations of narrow-band filters and, with some minor enhancements,
wide-band filters can be accommodated. The data rate of the input and the output
are the same.

• Rate Change Type: This field is applicable to Interpolation and Decimation filter types.
Used to specify an Integer or Fixed_Fractional rate change.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 545Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=545

• Interpolation Rate Value: This field is applicable to all Interpolation filter types and
Decimation filter types for Fractional Rate Change implementations. The value provided
in this field defines the up-sampling factor, or P for Fixed Fractional Rate (P/Q)
resampling filter implementations.

• Decimation Rate Value: This field is applicable to the all Decimation and Interpolation
filter types for Fractional Rate Change implementations. The value provided in this field
defines the down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter
implementations.

• Zero pack factor: Allows you to specify the number of 0’s inserted between the
coefficient specified by the coefficient vector. A zero packing factor of k inserts k-1 0s
between the supplied coefficient values. This parameter is only active when the Filter
type is set to Interpolated.

• Channel Specification tab: Parameters specific to the Channel Specification tab are as follows.

• Interleaved Channel Specification:

• Channel Sequence: Select Basic or Advanced. See the LogiCORE IP FIR Compiler v7.2
Product Guide for an explanation of the advanced channel specification feature.

• Number of Channels: The number of data channels to be processed by the FIR Compiler
block. The multiple channel data is passed to the core in a time-multiplexed manner. A
maximum of 64 channels is supported.

• Sequence ID List: A comma delimited list that specifies which channel sequences are
implemented.

• Parallel Channel Specification:

• Number of Paths: Specifies the number of parallel data paths the filter is to process. As
shown below, when more than one path is specified, the data_tdata input port is divided
into sub-ports that represent each parallel path.

Figure 328: Number of Paths

• Hardware Oversampling Specification:

• Select format:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 546Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=546

• Maximum_Possible: Specifies that oversampling be automatically determined based
on the din sample rate.

• Input_Sample_Period/Output_Sample_Period: Activates the Sample period dialog
box below. Enter the Sample Period specification. Selecting this option exposes the
s_axis_data_tvalid port (called ND port on earlier versions of the core). With this port
exposed, no input handshake abstraction and no rate-propagation takes place.

• Hardware Oversampling Rate: Activates the Hardware Oversampling Rate dialog
box. Enter the Hardware Oversampling Rate specification below.

• Hardware Oversampling Rate: The hardware oversampling rate determines the degree of
parallelism. A rate of one produces a fully parallel filter. A rate of n (resp., n+1) for an n-bit
input signal produces a fully serial implementation for a non-symmetric (resp., symmetric)
impulse response. Intermediate values produce implementations with intermediate levels
of parallelism.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

• Coefficient Options:

• Coefficient Type: Specify Signed or Unsigned.

• Quantization: Specifies the quantization method to be used for quantizing the
coefficients. This can be set to one of the following:

• Integer_Coefficients

• Quantize_Only

• Maximize_Dynamic_Range

• Normalize_to_Centre_Coefficient

• Coefficient Width: Specifies the number of bits used to represent the coefficients.

• Best Precision Fractional Bits: When selected, the coefficient fractional width is
automatically set to maximize the precision of the specified filter coefficients.

• Coefficient Fractional Bits: Specifies the binary point location in the coefficients
datapath options.

• Coefficients Structure: Specifies the coefficient structure. Depending on the coefficient
structure, optimizations are made in the core to reduce the amount of hardware
required to implement a particular filter configuration. The selected structure can be any
of the following.

• Inferred

• Non-Symmetric

• Symmetric

• Negative_Symmetric

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 547Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=547

• Half_Band

• Hilbert

The vector of coefficients specified must match the structure specified unless Inferred
from coefficients is selected in which case the structure is determined automatically
from these coefficients.

• Datapath Options:

• Output Rounding Mode: Choose one of the following.

• Full_Precision

• Truncate_LSBs

• Non_Symmetric_Rounding_Down

• Non_Symmetric_Rounding_Up

• Symmetric_Rounding_to_Zero

• Symmetric_Rounding_to_Infinity

• Convergent_Rounding_to_Even

• Convergent_Rounding_to_Odd

• Output Width: Specify the output width. Edit box activated only if the Rounding mode
is set to a value other than Full_Precision.

• Detailed Implementation tab: Parameters specific to the Detailed Implementation tab are as
follows.

• Filter Architecture: The following two filter architectures are supported.

• Systolic_Multiply_Accumulate

• Transpose_Multiply_Accumulate

Note: When selecting the Transpose Multiply-Accumulate architecture, these limitations apply:

○ Symmetry is not exploited. If the Coefficient Vector specified on the Filter
Specification tab is detected as symmetric, the FIR Compiler 7.2 block parameters
dialog box will not allow you to select Transpose Multiply Accumulate.

○ Multiple interleaved channels are not supported.

• Optimization Options:

Specifies if the core is required to operate at maximum possible speed (“Speed” option) or
minimum area (“Area” option). The “Area” option is the recommended default and will
normally achieve the best speed and area for the design, however in certain configurations,
the “Speed” setting might be required to improve performance at the expense of overall
resource usage (this setting normally adds pipeline registers in critical paths).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 548Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=548

• Goal:

• Area

• Speed

• Custom

• List: A comma delimited list that specifies which optimizations are implemented by the
block. The optimizations are as follows.

• Data_Path_Fanout: Adds additional pipeline registers on the data memory outputs to
minimize fan-out. Useful when implementing large data width filters requiring
multiple DSP slices per multiply-add unit.

• Pre-Adder_Pipeline: Pipelines the pre-adder when implemented using fabric
resources. This may occur when a large coefficient width is specified.

• Coefficient_Fanout: Adds additional pipeline registers on the coefficient memory
outputs to minimize fan-out. Useful for Parallel channels or large coefficient width
filters requiring multiple DSP slices per multiply-add unit.

• Control_Path_Fanout: Adds additional pipeline registers to control logic when Parallel
channels have been specified.

• Control_Column_Fanout: Adds additional pipeline registers to control logic when
multiple DSP columns are required to implement the filter.

• Control_Broadcast_Fanout: Adds additional pipeline registers to control logic for fully
parallel (one clock cycle per channel per input sample) symmetric filter
implementations.

• Control_LUT_Pipeline: Pipelines the Look-up tables required to implement the
control logic for Advanced Channel sequences.

• No_BRAM_Read_First_Mode: Specifies that Block RAM READ-FIRST mode should
not be used.

• Increased speed: Multiple DSP slice columns are required for non-symmetric filter
implementations.

• Other: Miscellaneous optimizations.

Note: All optimizations maybe specified but are only implemented when relevant to the core
configuration.

• Memory Options: The memory type for MAC implementations can either be user-selected
or chosen automatically to suit the best implementation options. Note that a choice of
“Distributed” might result in a shift register implementation where appropriate to the filter
structure. Forcing the RAM selection to be either Block or Distributed should be used with
caution, as inappropriate use can lead to inefficient resource usage - the default Automatic
mode is recommended for most applications.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 549Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=549

• Data Buffer Type: Specifies the type of memory used to store data samples.

• Coefficient Buffer Type: Specifies the type of memory used to store the coefficients.

• Input Buffer Type: Specifies the type of memory to be used to implement the data input
buffer, where present.

• Output Buffer type: Specifies the type of memory to be used to implement the data
output buffer, where present.

• Preference for other storage: Specifies the type of memory to be used to implement
general storage in the datapath.

• DSP Slice Column Options:

• Multi-Column Support: For device families with DSP slices, implementations of large
high speed filters might require chaining of DSP slice elements across multiple columns.
Where applicable (the feature is only enabled for multi-column devices), you can select
the method of folding the filter structure across the multiple-columns, which can be
Automatic (based on the selected device for the project) or Custom (you select the
length of the first and subsequent columns).

• Column Configuration: Specifies the individual column lengths in a comma delimited list.
(See the data sheet for a more detailed explanation.)

• Inter-Column Pipe Length: Pipeline stages are required to connect between the
columns, with the level of pipelining required being depending on the required system
clock rate, the chosen device and other system-level parameters. The choice of this
parameter is always left for you to specify.

• Interface tab:

• Data Channel Options:

• TLAST: TLAST can either be Not_Required, in which case the block will not have the
port, or Vector_Framing, where TLAST is expected to denote the last sample of an
interleaved cycle of data channels, or Packet_Framing, where the block does not
interpret TLAST, but passes the signal to the output DATA channel TLAST with the
same latency as the datapath.

• Output TREADY: This field enables the data_tready port. With this port enabled, the
block will support back-pressure. Without the port, back-pressure is not supported, but
resources are saved and performance is likely to be higher.

• Input FIFO: Selects a FIFO interface for the S_AXIS_DATA channel. When the FIFO has
been selected, data can be transferred in a continuous burst up to the size of the FIFO
(default 16) or, if greater, the number of interleaved data channels. The FIFO requires
additional FPGA logic resources.

• TUSER: Select one of the following options for the Input and the Output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 550Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=550

• Not_Required: Neither of the uses is required; the channel in question will not have a
TUSER field.

• User_Field: In this mode, the block ignores the content of the TUSER field, but passes
the content untouched from the input channel to the output channels.

• Chan_ID_Field: In this mode, the TUSER field identifies the time-division-multiplexed
channel for the transfer.

• User and Chan_ID_Field: In this mode, the TUSER field will have both a user field and
a chan_id field, with the chan_id field in the least significant bits. The minimal number
of bits required to describe the channel will determine the width of the chan_id field,
e.g. 7 channels will require 3 bits.

• Configuration Channel Options:

• Synchronization Mode:

• On_Vector: Configuration packets, when available, are consumed and their contents
applied when the first sample of an interleaved data channel sequence is processed
by the block. When the block is configured to process a single data channel
configuration packets are consumed every processing cycle of the block.

• On_Packet: Further qualifies the consumption of configuration packets. Packets will
only be consumed once the block has received a transaction on the s_axis_data
channel where s_axis_data_tlast has been asserted.

• Configuration Method:

• Single: A single coefficient set is used to process all interleaved data channels.

• By_Channel: A unique coefficient set is specified for each interleaved data channel.

• Reload Channel Options:

• Reload Slots: Specifies the number of coefficient sets that can be loaded in advance.
Reloaded coefficients are only applied to the block once the configuration packet has
been consumed. (Range 1 to 256).

• Control Options:

• ACLKEN: Active-high clock enable. Available for MAC-based FIR implementations.

• ARESETn (active low): Active-low synchronous clear input that always takes priority
over ACLKEN. A minimum ARESETn active pulse of two cycles is required, since the
signal is internally registered for performance. A pulse of one cycle resets the control
and datapath of the core, but the response to the pulse is not in the cycle immediately
following.

• Advanced tab:

• Block Icon Display:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=551

• Display shortened port names:

On by default. When unchecked, data_tvalid, for example, becomes m_axis_data_tvalid.

Other parameters used by this block are explained in the topic Common Options in
Block Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP FIR Compiler v7.2

Gateway In

The Xilinx Gateway In blocks are the inputs into the HDL portion of your Simulink® design.
These blocks convert Simulink® integer, double, and fixed-point data types into the Model
Composer fixed-point type. Each block defines a top-level input port or interface in the HDL
design generated by Model Composer.

Conversion of Simulink Data to Model Composer Data

A number of different Simulink data types are supported on the input of Gateway In. The data
types supported include int8, uint8, int16, uint16, in32, uint32, single, double, and Simulink fixed
point data type (if Simulink fixed point data type license is available). In all causes the input data
is converted to a double internal to gateway and then converted to target data type as specified
on the Gateway In block (Fixed Point, Floating Point or Boolean). When converting to Fixed point
from the internal double representation, the Quantization and Overflow is further handled as
specified in the Block GUI. For overflow, the options are to saturate to the largest positive/
smallest negative value, to wrap (for example, to discard bits to the left of the most significant
representable bit), or to flag an overflow as a Simulink error during simulation. For quantization,
the options are to round to the nearest representable value (or to the value furthest from zero if
there are two equidistant nearest representable values), or to truncate (for example, to discard
bits to the right of the least significant representable bit).It is important to realize that conversion,
overflow and quantization do not take place in hardware, they take place only in the simulation
model of the block.

Gateway Blocks

As listed below, the Xilinx Gateway In block is used to provide a number of functions:

• Converting data from Simulink integer, double and fixed-point type to the Model Composer
fixed-point type during simulation in Simulink.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 552Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=552

• Defining top-level input ports or interface in the HDL design generated by Model Composer.

• Defining test bench stimuli when the Create Testbench box is checked in the System
Generator token. In this case, during HDL code generation, the inputs to the block that occur
during Simulink simulation are logged as a logic vector in a data file. During HDL simulation,
an entity that is inserted in the top level test bench checks this vector and the corresponding
vectors produced by Gateway Out blocks against expected results.

• Naming the corresponding port in the top level HDL entity.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Output Type:

Specifies the output data type. Can be Boolean, Fixed-point, or Floating-point.

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the total number of bits, including the binary point bit width.

• Binary point: Specifies the bit location of the binary point, where bit zero is the least
significant bit.

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Quantization:

Quantization errors occur when the number of fractional bits is insufficient to represent
the fractional portion of a value. The options are to Truncate (for example, to discard bits
to the right of the least significant representable bit), or to Round(unbiased: +/- inf) or
Round (unbiased: even values).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 553Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=553

• Round(unbiased: +/- inf):

Also known as "Symmetric Round (towards +/- inf)" or "Symmetric Round (away from
zero)". This is similar to the MATLAB® round() function. This method rounds the value
to the nearest desired bit away from zero and when there is a value at the midpoint
between two possible rounded values, the one with the larger magnitude is selected.
For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly
between 01.01 and 01.10, and the latter is further from zero.

• Overflow:

Overflow errors occur when a value lies outside the representable range. For overflow the
options are to Saturate to the largest positive/smallest negative value, to Wrap (for
example, to discard bits to the left of the most significant representable bit), or to Flag as
error (an overflow as a Simulink® error) during simulation. Flag as error is a simulation only
feature. The hardware generated is the same as when Wrap is selected.

• Implementation tab:

Parameters specific to the Implementation tab are as follows.

• Interface Options:

• Interface:

• None: Implies that during HDL Netlist generation, this Gateway In will be translated
as an Input Port at the top level.

• AXI4-Lite: Implies that during HDL Netlist generation, an AXI4-Lite interface will be
created and this Gateway In will be mapped to one of the registers within the AXI4-
Lite interface.

• Auto assign address offset:

If the Gateway In is configured to be an AXI4-Lite interface, this option allows an
address offset to be automatically assigned to the register within the AXI4-Lite interface
that the Gateway In is mapped to.

• Address offset: If Auto assign address offset is not checked, then this entry box allows
you to explicitly specify an address offset to use. Must be a multiple of 4.

• Interface Name: If the Gateway In is configured to be an AX4-Lite interface, assigns a
unique name to this interface. This name can be used to differentiate between multiple
AXI4-Lite interfaces in the design. When using the IP Catalog flow, you can expect to
see an interface in the IP that Model Composer creates with the name
<design_name>_<interface_name>_ s_axi.

IMPORTANT! The Interface Name must be composed of alphanumeric characters (lowercase
alphabetic) or an underscore (_) only, and must begin with a lowercase alphabetic character.
axi4_lite1 is acceptable, 1Axi4-Lite is not.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 554Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=554

• Description: Additional designer comments about this Gateway In that is captured in
the interface documentation.

• Constraints:

• IOB Timing Constraint: In hardware, a Gateway In is realized as a set of input/output
buffers (IOBs). There are two constraint options: None, and Data Rate.

If None is selected, no timing constraints for the IOBs are put in the user constraint file
produced by Model Composer. This means the paths from the IOBs to synchronous
elements are not constrained.

If Data Rate is selected, the IOBs are constrained at the data rate at which the IOBs
operate. The rate is determined by System Clock Period provided on the System
Generator token and the sample rate of the Gateway relative to the other sample
periods in the design.

• Specify IOB location constraints: Checking this option allows IOB location constraints
and I/O standards to be specified.

• IOB pad locations, e.g. {'MSB', ..., 'LSB'}: IOB pin locations can be specified as a cell array
of strings in this edit box. The locations are package-specific.

• IO Standards, e.g. {'MSB', ..., 'LSB'}: I/O standards can be specified as a cell array of
strings in this edit box. The locations are package-specific.

Gateway Out

Xilinx Gateway Out blocks are the outputs from the HDL portion of your Simulink® design. This
block converts the Model Composer fixed-point or floating-point data type into a Simulink
integer, single, double or fixed-point data type.

According to its configuration, the Gateway Out block can either define an output port for the
top level of the HDL design generated by Model Composer, or be used simply as a test point that
is trimmed from the hardware representation

Gateway Blocks

As listed below, the Xilinx Gateway Out block is used to provide the following functions:

• Convert data from a Model Composer fixed-point or floating-point data type into a Simulink
integer, single, double, or fixed-point data type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 555Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=555

• Define I/O ports for the top level of the HDL design generated by Model Composer. A
Gateway Out block defines a top-level output port.

• Define test bench result vectors when the Model Composer Create Testbench box is checked.
In this case, during HDL code generation, the outputs from the block that occur during
Simulink simulation are logged as logic vectors in a data file. For each top level port, an HDL
component is inserted in the top-level test bench that checks this vector against expected
results during HDL simulation.

• Name the corresponding output port on the top-level HDL entity.

Block Parameters

• Basic tab: Parameters specific to the Basic tab are as follows.

• Propagate data type to output: This option is useful when you instantiate a Model
Composer design as a sub-system into a Simulink design. Instead of using a Simulink double
as the output data type by default, the Model Composer data type is propagated to an
appropriate Simulink data type according to the following table:

Table 55: Propagate Data Type Output

System Generator Data Type Simulink Data Type
XFloat_8_24 single

XFloat_11_53 double

Custom floating-point precision data type exponent
width and fraction width less than those for single
precision

single

Custom floating-point precision data type with exponent
width or fraction width greater than that for single
precision

double

XFix_<width>_<binpt> sfix<width>_EN<binpt>

UFix_<width>_<binpt> ufix<width>_EN<binpt>

XFix_<width>_0 where width is 8, 16 or 32 int<width> where width is 8, 16 or 32

UFix_<width>_0 where width is 8, 16 or 32 uint<width> where width is 8, 16 or 32

XFix_<width>_0 where width is other than 8, 16 or 32 sfix<width>

UFix_<width>_0 where width is other than 8, 16 or 32 ufix<width>

• Translate into Output Port: Having this box unchecked prevents the gateway from
becoming an actual output port when translated into hardware. This checkbox is on by
default, enabling the output port. When this option is not selected, the Gateway Out block
is used only during debugging, where its purpose is to communicate with Simulink Sink
blocks for probing portions of the design. In this case, the Gateway Out block will turn gray
in color, indicating that the gateway will not be translated into an output port.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

• Interface Options:

• Interface:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 556Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=556

• None: During HDL Netlist generation, this Gateway Out will be translated as an
Output Port at the top level.

• AXI4-Lite: During HDL Netlist Generation, an AXI4-Lite interface will be created and
the Gateway Out will be mapped to one of the registers within the AXI4-Lite
interface.

• Interrupt: During an IP Catalog Generation, this Gateway Out will be tagged as an
Interrupt output port when the Model Composer design is packaged into an IP
module that can be included in the Vivado® IP catalog.

• Auto assign address offset: If a Gateway Out is configured to be an AXI4-Lite interface,
this option allows an address offset to be automatically assigned to the register within
the AXI4-Lite interface that the Gateway Out is mapped to.

• Address offset: If Auto assign address offset is not checked, then this entry box allows
you to explicitly specify a address offset to use. Must be a multiple of 4.

• Interface Name: If the Gateway Out is configured to be an AX4-Lite interface, assigns a
unique name to this interface. This name can be used to differentiate between multiple
AXI4-Lite interfaces in the design. When using the IP Catalog flow, you can expect to
see an interface in the IP that Model Composer creates with the name
<design_name>_<interface_name>_ s_axi.

IMPORTANT! The Interface Name must be composed of alphanumeric characters (lowercase
alphabetic) or an underscore (_) only, and must begin with a lowercase alphabetic character.
axi4_lite1 is acceptable, 1Axi4-Lite is not.

• Description: Additional designer comments about this Gateway Out that is captured in
the interface documentation.

• Constraints:

• IOB Timing Constraint: In hardware, a Gateway Out is realized as a set of input/output
buffers (IOBs). There are three ways to constrain the timing on IOBs. They are None,
Data Rate, and Data Rate, Set 'FAST' Attribute.

If None is selected, no timing constraints for the IOBs are put in the user constraint file
produced by Model Composer. This means the paths from the IOBs to synchronous
elements are not constrained.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 557Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=557

If Data Rate is selected, the IOBs are constrained at the data rate at which the IOBs
operate. The rate is determined by System Clock Period provided on the System
Generator token and the sample rate of the Gateway relative to the other sample
periods in the design. For example, the following OFFSET = OUT constraints are
generated for a Gateway Out named 'Dout' that is running at the system period of 10
ns:

Offset out constraints
NET "Dout(0)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(1)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(2)" OFFSET = OUT : 10.0 : AFTER "clk";

If Data Rate, Set 'FAST' Attribute is selected, the OFFSET = OUT constraints described
above are produced. In addition, a FAST slew rate attribute is generated for each IOB.
This reduces delay but increases noise and power consumption. For the previous
example, the following additional attributes are added to the constraints file.

NET "Dout(0)" FAST;
NET "Dout(1)" FAST;
NET "Dout(2)" FAST;

• Specify IOB Location Constraints: Checking this option allows IOB location constraints
to be specified.

• IOB Pad Locations, e.g. {'MSB', ..., 'LSB'}: IOB pin locations can be specified as a cell
array of strings in this edit box. The locations are package-specific.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Indeterminate Probe

The output of the Xilinx Indeterminate Probe indicates whether the input data is indeterminate
(MATLAB value NaN). An indeterminate data value corresponds to a VHDL indeterminate logic
data value of 'X'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 558Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=558

!def >>
The probe accepts any Xilinx signal as input and produces a double signal as output.
Indeterminate data on the probe input will result in an assertion of the output signal indicated by
a value one. Otherwise, the probe output is zero.

Interleaver/De-interleaver 8.0
.

Note: This block goes into the FPGA fabric and is a Licensed Core. Please visit the Xilinx web site to
purchase the appropriate core license.

The Xilinx Interleaver Deinterleaver block implements an interleaver or a deinterleaver using an
AXI4-compliant block interface. An interleaver is a device that rearranges the order of a
sequence of input symbols. The term symbol is used to describe a collection of bits. In some
applications, a symbol is a single bit. In others, a symbol is a bus.

The classic use of interleaving is to randomize the location of errors introduced in signal
transmission. Interleaving spreads a burst of errors out so that error correction circuits have a
better chance of correcting the data.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=559

If a particular interleaver is used at the transmit end of a channel, the inverse of that interleaver
must be used at the receive end to recover the original data. The inverse interleaver is referred to
as a de-interleaver.

Two types of interleaver/de-interleavers can be generated with this LogiCORE™: Forney
Convolutional and Rectangular Block. Although they both perform the general interleaving
function of rearranging symbols, the way in which the symbols are rearranged and their methods
of operation are entirely different. For very large interleavers, it might be preferable to store the
data symbols in external memory. The core provides an option to store data symbols in internal
FPGA RAM or in external RAM.

Forney Convolutional Operation

The figure below, shows the operation of a Forney Convolutional Interleaver. The core operates
as a series of delay line shift registers. Input symbols are presented to the input commutator arm
on DIN. Output symbols are extracted from the output commutator arm on DOUT. DIN and
DOUT are fields in the AXI Data Input and Data Output channels, respectively. Output symbols
are extracted from the output commutator arm on DOUT. Both commutator arms start at branch
0 and advance to the next branch after the next rising clock edge. After the last branch (B-1) has
been reached, the commutator arms both rotate back to branch 0 and the process is repeated.

Figure 329: Interleaver

In the figure above, the branches increase in length by a uniform amount, L. The core allows
interleavers to be specified in this way, or the branch lengths can be passed in using a file,
allowing each branch to be any length.

Although branch 0 appears to be a zero-delay connection, there will still be a delay of a number
of clock cycles between DIN and DOUT because of the fundamental latency of the core. For
clarity, this is not illustrated in the figure.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 560Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=560

The only difference between an interleaver and a de-interleaver is that branch 0 is the longest in
the de-interleaver and the branch length is decremented by L rather than incremented. Branch
(B-1) has length 0. This is illustrated in the figure below:

Figure 330: De-interleaver

If a file is used to specify the branch lengths, as shown below, it is arbitrary whether the resulting
core is called an interleaver or de-interleaver. All that matters is that one must be the inverse of
the other. If a file is used, each branch length is individually controllable. This is illustrated in the
figure below. For the file syntax, please consult the LogiCORE product specification.

Figure 331: Interleaver/De-Interleaver

branch_length_vector(2)

branch_length_vector(1)

branch_length_vector(B-3)

branch_length_vector(B-2)

DIN DOUT

0

1

2

(B-3)

(B-2)

(B-1)

branch_length_vector(0)

branch_length_vector(B-1)
X23236-091919

The reset pin (aresetn) sets the commutator arms to branch 0, but does not clear the branches of
data.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 561Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=561

Configuration Swapping

It is possible for the core to store a number of pre-defined configurations. Each configuration can
have a different number of branches and branch length constant. It is even possible for each
configuration to have every individual branch length defined by file.

The configuration can be changed at any time by sending a new CONFIG_SEL value on the AXI
Control Channel. This value takes effect when the next block starts. The core assumes all
configurations are either for an interleaver or de-interleaver, depending on what was selected in
the GUI. It is possible to switch between interleaving and de-interleaving by defining the
individual branch lengths for every branch of each configuration. The details for each
configuration are specified in a COE file.

For details, please consult the Configuration Swapping section of the Interleaver/De-Interleaver
LogiCORE IP Product Guide (PG049).

Rectangular Block Operation

The Rectangular Block Interleaver works by writing the input data symbols into a rectangular
memory array in a certain order and then reading them out in a different, mixed-up order. The
input symbols must be grouped into blocks. Unlike the Convolutional Interleaver, where symbols
can be continuously input, the Rectangular Block Interleaver inputs one block of symbols and
then outputs that same block with the symbols rearranged. No new inputs can be accepted while
the interleaved symbols from the previous block are being output.

The rectangular memory array is composed of a number of rows and columns as shown in the
following figure.

Row\Column 0 1 ... (C-2) (C-1)
0

1

..

(R-2)

(R-1)

The Rectangular Block Interleaver operates as follows:

1. All the input symbols in an entire block are written row-wise, left to right, starting with the
top row.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read column-wise, top to bottom, starting with the left column.

The Rectangular Block De-interleaver operates in the reverse way:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 562Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=latest;d=pg049-sid.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=562

1. All the input symbols in an entire block are written column-wise, top to bottom, starting with
the left column.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read row-wise, left to right, starting with the top row.

Refer to the Interleaver/De-Interleaver LogiCORE IP Product Guide (PG049) for examples and more
detailed information on the Rectangular Block Interleaver.

AXI Interface

The AXI SID v7.1 has the following interfaces:

• A non AXI-channel interface for ACLK, ACLKEN and ARESETn

• A non AXI-channel interface for external memory (if enabled)

• A non AXI-channel interface for miscellaneous events

○ event_tlast_unexpected

○ event_tlast_missing (available only in Rectangular mode)

○ event_halted (optional, available when Master channel TREADY is enabled)

○ event_col_valid (optional)

○ event_col_sel_valid (optional)

○ event_row_valid (optional)

○ event_row_sel_valid (optional)

○ event_block_size_valid (optional)

• An AXI slave channel to receive configuration information (s_axis_ctrl) consisting of:

○ s_axis_ctrl_tvalid

○ s_axis_ctrl_tready

○ s_axis_ctrl_tdata

The control channel is only enabled when the core is configured in such a way to require it.

• An AXI slave channel to receive the data to be interleaved (s_axis_data) consisting of:

○ s_axis_data_tvalid (This is the equivalent of ND pin of SID v6.0 block; No longer optional)

○ s_axis_data_tready

○ s_axis_data_tdata

○ s_axis_data_tlast

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 563Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=latest;d=pg049-sid.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=563

• An AXI master channel to send the data that has been interleaved (m_axis_data) consisting of:

○ m_axis_data_tvalid

○ m_axis_data_tready

○ m_axis_data_tdata

○ m_axis_data_tuser

○ m_axis_data_tlast

AXI Ports that are Unique to this Block

This HDL block exposes the AXI Control and Data channels as a group of separate ports based
on the following sub-field names.

Note: Refer to the document LogiCORE IP Interleaver/De-interleaver v8.0 for an explanation of the bits in
the specified sub-field name.

• Control Channel Input Signals:

• s_axis_ctrl_tdata_config_sel:

A sub-field port that represents the CONFIG_SEL field in the Control Channel vector.
Available when in Forney mode and Number of configurations is greater than one.

• s_axis_ctrl_tdata_row:

A sub-field port that represents the ROW field in the Control Channel vector. Available
when in Rectangular mode and Row type is Variable.

• s_axis_ctrl_tdata_row_sel:

A sub-field port that represents the ROW_SEL field in the Control Channel vector.
Available when in Rectangular mode and Row type is Selectable.

• s_axis_ctrl_tdata_col: A sub-field port that represents the COL field in the Control Channel
vector. Available when in Rectangular mode and Column type is Variable.

• s_axis_ctrl_tdata_col_sel:

A sub-field port that represents the COL_SEL field in the Control Channel vector. Available
when in Rectangular mode and Column type is Selectable.

• s_axis_ctrl_tdata_block_size: A sub-field port that represents the COL field in the Control
Channel vector. Available when in Rectangular mode and Block Size type is Variable.

• DATA Channel Input Signals:

• s_axis_data_tdata_din:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 564Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/sid/v8_0/pg049-sid.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=564

Represents the DIN field of the Input Data Channel.

• DATA Channel Output Signals:

• m_axis_data_tdata_dout:

Represents the DOUT field of the Output Data Channel.

• TUSER Channel Output Signals:

• m_axis_data_tuser_fdo: Represents the FDO field of the Output TUSER Channel. Available
when in Forney mode and Optional FDO pin has been selected on the GUI.

• m_axis_data_tuser_rdy: Represents the RDY field of the Output TUSER Channel. Available
when in Forney mode and Optional RDY pin has been selected on the GUI.

• m_axis_data_tuser_block_start: Represents the BLOCK_START field of the Output TUSER
Channel. Available when in Rectangular mode and Optional BLOCK_START pin has been
selected on the GUI.

• m_axis_data_tuser_block_end: Represents the BLOCK_END field of the Output TUSER
Channel. Available when in Rectangular mode and Optional BLOCK_END pin has been
selected on the GUI.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic Parameters tab are as follows.

• Memory Style: Select Distributed if all the Block Memories are required elsewhere in the
design; select Block to use Block Memory where ever possible; select Automatic and let
Model Composer use the most appropriate style of memory for each case, based on the
required memory depth.

• Symbol Width: This is the number of bits in the symbols to be processed.

• Type: Select Forney Convolutional or Rectangular Block.

• Mode: Select Interleaver or Deinterleaver

• Symbol memory: Specifies whether or not the data symbols are stored in Internal FPGA
RAM or in External RAM.

• Forney tab: Parameters specific to the Forney Parameters tab are as follows.

• Dimensions:

• Number of branches: 1 to 256 (inclusive)

• Architecture:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 565Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=565

• ROM-based: Look-up table ROMs are used to compute some of the internal results in
the block.

• Logic-based: Logic circuits are used to compute some of the internal results in the block.

Which option is best depends on the other core parameters. You should try both options to
determine the best results. This parameter has no effect on the block behavior.

• Configurations:

• Number of configurations: If greater than 1, the block is generated with CONFIG_SEL
and NEW_CONFIG inputs. The parameters for each configuration are defined in a COE
file. The number of parameters defined must exactly match the number of
configurations specified.

• Length of Branches: Branch length descriptions for Forney SID.

• constant_difference_between_consecutive_branches: Specified by the Value parameter.

• use_coe_file_to_define_branch_lengths: Location of file is specified by the COE File
parameter.

• coe_file_defines_individual_branch_lengths_for_every_branch_in_each_configuration:
Location of file is specified by the COE File parameter.

• coe_file_defines_branch_length_constant_for_each_configuration: Location of file is
specified by the COE File parameter.

• Value: 1 to MAX (inclusive). MAX depends on the number of branches and size of block
input. Branch length must be an array of either length one or number of branches. If the
array size is one, the value is used as a constant difference between consecutive
branches. Otherwise, each branch has a unique length.

• COE File: The branch lengths are specified from a file

• Rectangular Parameters #1 Tab: Parameters specific to the Rectangular Parameters #1 tab are
as follows.

• Number of Rows:

• Value: This parameter is relevant only when the Constant row type is selected. The
number of rows is fixed at this value.

• Row Port Width: This parameter is relevant only when the Variable row type is selected.
It sets the width of the ROW input bus. The smallest possible value should be used to
keep the underlying LogiCORE as small as possible.

• Minimum Number of Rows: This parameter is relevant only when the Variable row type
is selected. In this case, the core has to potentially cope with a wide range of possible
values for the number of rows. If the smallest value that will actually occur is known,
then the amount of logic in the LogiCORE can sometimes be reduced. The largest
possible value should be used for this parameter to keep the core as small as possible.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=566

• Number of Values: This parameter is relevant only when you select the Selectable row
type. This parameter defines how many valid selection values have been defined in the
COE file. You should only add the number of select values you need.

• Row Type:

• Constant: The number of rows is always equal to the Row Constant Value parameter.

• Variable: The number of rows is sampled from the ROW input at the start of each
new block. Row permutations are not supported for the variable row type.

• Selectable: ROW_SEL is sampled at the start of each new block. This value is then
used to select from one of the possible values for the number of rows provided in the
COE file.

• Number of Columns:

• Value: This parameter is relevant only when you select the Constant column type is
selected. The number of columns is fixed at this value.

• COL Port Width: This parameter is relevant only when you select the Variable column
type. It sets the width of the COL input bus. The smallest possible value should be used
to keep the underlying LogiCORE™ as small as possible.

• Minimum Number of Columns: This parameter is relevant only when you select the
Variable column type is selected. In this case, the core has to potentially cope with a
wide range of possible values for the number of columns. If the smallest value that will
actually occur is known, then the amount of logic in the LogiCORE can sometimes be
reduced. The largest possible value should be used for this parameter to keep the core
as small as possible.

• Number of Values: This parameter is relevant only when you select the Selectable
column type. This parameter defines how many valid selection values have been defined
in the COE file. You should only add the number of select values you need.

• Column Type:

• Constant: The number of columns is always equal to the Column Constant Value
parameter.

• Variable: The number of columns is sampled from the COL input at the start of each
new block. Column permutations are not supported for the variable column type.

• Selectable: COL_SEL is sampled at the start of each new block. This value is then
used to select from one of the possible values for the number of columns provided in
the COE file.

• Rectangular Parameters #2 Tab: Parameters specific to the Rectangular Parameters #2 tab are
as follows.

• Permutations Configuration:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=567

• Row permutations:

• None: This tells Model Composer that row permutations are not to be performed.

• Use COE file: This tells Model Composer that a row permute vector exists in the COE
file, and that row permutations are to be performed. Remember this is possible only
for un-pruned interleaver/deinterleavers.

• Column permutations:

• None: This tells Model Composer that column permutations are not to be performed

• Use COE file: This tells Model Composer that a column permute vector exists in the
COE file, and that column permutations are to be performed. Remember this is
possible only for un-pruned interleaver/deinterleavers.

• COE File: Specify the pathname to the COE file.

• Block Size:

• Value: This parameter is relevant only when you select the Constant block size type. The
block size is fixed at this value.

• BLOCK_SIZE Port Width: This parameter is relevant only if the Variable block size type
is selected. It sets the width of the BLOCK_SIZE input bus. The smallest possible value
should be used to keep the core as small as possible.

• Block Size Type:

• Constant: The block size never changes. The block can be pruned (block size < row *
col). The block size must be chosen so that the last symbol is on the last row. An un-
pruned interleaver will use a smaller quantity of FPGA resources than a pruned one,
so pruning should be used only if necessary.

• Rows*Columns:

If the number of rows and columns is constant, selecting this option has the same
effect as setting the block size type to constant and entering a value of rows *
columns for the block size.

If the number of rows or columns is not constant, selecting this option means the
core will calculate the block size automatically whenever a new row or column value
is sampled. Pruning is impossible with this block size type.

• Variable:

Block size is sampled from the BLOCK_SIZE input at the beginning of every block.
The value sampled on BLOCK_SIZE must be such that the last symbol falls on the last
row, as previously described.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=568

If the block size is already available external to the core, selecting this option is
usually more efficient than selecting “rows * columns” for the block size type. Row
and column permutations are not supported for the Variable block size type.

• Port Parameters #1 tab: Parameters specific to the Port Parameters tab are as follows.

• Control Signals:

• ACLKEN: When ACLKEN is de-asserted (Low), all the synchronous inputs are ignored
and the block remains in its current state.

• ARESETn (Active-Low).: The Active-Low synchronous clear input always takes priority
over ACLKEN.

• Status Signals:

• COL_VALID: This optional output is available when a variable number of columns is
selected. If an illegal value is sampled on the s_axis_ctrl_tdata_col input,
event_col_valid will go Low a predefined number of clock cycles later.

• COL_SEL_VALID: This optional output (event_col_sel_valid) is available when a
selectable number of columns is chosen. The event pins are event_col_valid,
event_col_sel_valid, event_row_valid, event_row_sel_valid,
event_block_size_valid (in the same order as in the options on the GUI).

• ROW_VALID: This optional output is available when a selectable number of rows is
chosen.

• ROW_SEL_VALID: This optional output is available when a selectable number of rows is
chosen.

• BLOCK_SIZE_VALID: This optional output is available when the block size is not
constant, that is, if the block size type is either Variable or equal to Rows * Columns.

• Port Parameters #2 tab: Parameters specific to the Port Parameters #2 tab are as follows.

• Data Output Channel Options:

• TREADY: TREADY for the Data Input Channel. Used by the Symbol Interleaver/De-
interleaver to signal that it is ready to accept data.

• FDO: Adds a data_tuser_fdo (First Data Out) output port.

• RDY: Adds a data_tuser_rdy output port.

• BLOCK_START: Adds a data_tuser_block_start output port.

• BLOCK_END: Adds a data_tuser_block_end output port.

• Pipelining:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=569

• Pipelining: Pipelines the underlying LogiCORE for Minimum, Medium, or Maximum
performance.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Interleaver/De-interleaver v8.0

Inverse FFT

The Xilinx Inverse FFT block performs a fast inverse (or backward) Fourier transform (IDFT),
which undoes the process of Discrete Fourier Transform (DFT). The Inverse FFT maps the signal
back from the frequency domain into the time domain.

The IDFT of a sequence {Fn} can be defined as:

x(n)= for n=0,1,2, … ,N-1∑ X[k]e+j nk
N- 1

k=0

2π
N

1
N

where N is the transform length, k is used to denote the frequency domain ordinal, and n is used
to represent the time-domain ordinal.

The Inverse FFT (IFFT) is computed by conjugating the phase factors of the corresponding
forward FFT.

The Inverse FFT block is ideal for implementing simple inverse Fourier transforms. If your Inverse
FFT implementation will use more complicated transform features such as an AXI4-Stream-
compliant interface, a real time throttle scheme, Radix-4 Burst I/O, or Radix-2 Lite Burst I/O, use
the Xilinx Fast Fourier Transform 9.1 block in your design instead of the Inverse FFT block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 570Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/sid/v8_0/pg049-sid.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=570

In the Vivado® design flow, the Inverse FFT block is inferred as "LogiCORE™ IP Fast Fourier
Transform v9.1" for code generation. Refer to the document LogiCORE IP Fast Fourier Transform
v9.1 for details on this LogicCore IP.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the Xilinx Inverse FFT block are:

• Transform Length: Select the desired point size ranging from 8 to 65536.

• Scale Result by FFT length: If selected, data is scaled between IFFT stages using a scaling
schedule determined by the Transform Length setting. If not selected, data is unscaled, and all
integer bit growth is carried to the output.

• Natural Order: If selected, the output of the Inverse FFT block will be ordered in natural order.
If not selected, the output of the Inverse FFT block will be ordered in bit/digit reversed order.

• Optimize for: Directs the block to be optimized for either speed (Performance) or area
(Resources) in the generated hardware.

Note: If you selected Resources and the input sample period is 8 times slower than the system sample
period, the block implements Radix-2 Burst I/O architecture. Otherwise, Pipeline Streaming I/O
architecture is used.

• Optional Port:

• Provide start frame port: Adds start_frame_in and start_frame_out ports to the
block. The signals on these ports can be used to synchronize frames at the input and
output of the Inverse FFT block. See Adding Start Frame Ports to Synchronize Frames for a
description of the operation of these two ports.

Context Based Pipeline vs. Radix Implementation

Pipelined Streaming I/O and Radix-2 Burst I/O architectures are supported by the Inverse FFT
block. Radix-4 Burst I/O architecture is implemented when the Optimize for: Resources block
parameter is selected and the sample rate of the inputs is 8 times slower than the system rate. In
all other configurations Pipelined Streaming I/O architecture is implemented by default.

Input Data Type Support

The Inverse FFT block accepts inputs of varying bit widths with changeable binary point location,
such as Fix_16_0 or Fix_30_10, etc. in unscaled block configuration. For the scaled configuration,
the input is supported in the same format as the Fast Fourier Transform 9.1 block. The Fast
Fourier Transform 9.1 block accepts input values only in the normalized form in the format of
Fix_x_[x-1] (for example, Fix_16_15), so the inputs are 2's complement with a single sign/integer
bit.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 571Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=571

Latency Value Displayed on the Block

The latency value depends on parameters selected by the user, and the corresponding latency
value is displayed on the Inverse FFT block icon in the Simulink model.

Automatic Fixed Point and Floating Point Support

Signed fixed point and floating point data types are supported.

For floating point input, either scaled or unscaled data can be selected in the Inverse FFT block
parameters. In the Fast Fourier Transform 9.1 block, the floating point data type is accepted only
when the scaled configuration is selected by the user.

Handling Overflow for Scaled Configuration

The Inverse FFT block uses a conservative schedule to avoid overflow scenarios. This schedule
sets the scaling value for the corresponding FFT stages in a way that makes sure no overflow
occurs.

Adding Start Frame Ports to Synchronize Frames

Selecting Provide start frame port in the Inverse FFT block properties dialog box adds
start_frame_in and start_frame_out ports at the input and output of the Inverse FFT
block. These ports are used to synchronize frames at the input and output of the Inverse FFT
block.

Figure 332: Adding Start Frame Ports

You must provide a valid input at the start_frame_in port. When the start_frame_in
signal is asserted, an impulse is generated at the start of every frame to signal the Inverse FFT
block to start processing the frame. The frame size is the Transform Length entered in the block
parameters dialog box.

The start_frame_out port provides the information as to when the output frames start. An
impulse at the start of every frame on the output side helps in tracking the block behavior.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=572

The Inverse FFT block has a frame alignment requirement and these ports help the block operate
in accordance with this requirement.

The figure below shows that as soon as the output is processed by the Inverse FFT block the
start_frame_out signal becomes High (1).

Figure 333: Output

The following apply to the Provide start frame port option and the start frame ports added to
the FFT block when the option is enabled:

• The Provide start frame port option selection is valid only for Pipelined Streaming I/O
architecture. See Context Based Pipeline vs. Radix Implementation for a description of the
conditions under which Pipelined Streaming I/O architecture is implemented.

• The option is valid only for input of type fixed point.

• Verilog is supported for netlist generation currently, when the Provide start frame port option
is selected.

Note: The first sample input to the Inverse FFT block may be ignored and users are advised to drive the
input data accordingly.

LogiCORE Documentation

LogiCORE IP Fast Fourier Transform v9.1

Inverter

The Xilinx Inverter block calculates the bitwise logical complement of a fixed-point number. The
block is implemented as a synthesizable VHDL module.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 573Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=573

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LFSR

The Xilinx LFSR block implements a Linear Feedback Shift Register (LFSR). This block supports
both the Galois and Fibonacci structures using either the XOR or XNOR gate and allows a re-
loadable input to change the current value of the register at any time. The LFSR output and re-
loadable input can be configured as either serial or parallel ports

Block Interface

Table 56: Block Interface

Port Name Port Description Port Type
din Data input for re-loadable seed Optional serial or parallel input

load Load signal for din Optional boolean input

rst Reset signal Optional boolean input

en Enable signal Optional boolean input

dout Data output of LFSR Required serial or parallel output

As shown in the table above, there can be between 0 and 4 block input ports and exactly one
output port. If the configuration selected requires 0 inputs, the LFSR is set up to start at a
specified initial seed value and will step through a repeatable sequence of states determined by
the LFSR structure type, gate type, and initial seed.

The optional din and load ports provide the ability to change the current value of the LFSR at
runtime. After the load completes, the LFSR behaves as with the 0 input case, and starts up a
new sequence based upon the newly loaded seed, and the statically configured LFSR options for
structure and gate type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=574

The optional rst port will reload the statically specified initial seed of the LFSR and continue on
as before after the rst signal goes low. And when the optional en port goes low, the LFSR will
remain at its current value with no change until the en port goes high again.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows:

• Type: Fibonacci or Galois. This field specifies the structure of the feedback. Fibonacci has
one XOR (or XNOR) gate at the beginning of the register chain that XORs (or XNORs) the
taps together with the result going into the first register. Galois has one XOR(or XNOR)
gate for each tap and gates the last register in the chains output with the input to the
register at that tap.

• Gate type: XOR or XNOR. This field specifies the gate used by the feedback signals.

• Number of bits in LFSR: This field specifies the number of registers in the LFSR chain. As a
result, this number specifies the size of the input and output when selected to be parallel.

• Feedback polynomial: This field specifies the tap points of the feedback chain and the
value must be entered in hex with single quotes. The lsb of this polynomial always must be
set to 1 and the msb is an implied 1 and is not specified in the hex input. Please see the
Xilinx application note titled Efficient Shift Registers, LFSR Counters, and Long Pseudo-
Random Sequence Generators for more information on how to specify this equation and
for optimal settings for the maximum repeating sequence.

• Initial value: This field specifies the initial seed value where the LFSR begins its repeating
sequence. The initial value might not be all zeroes when choosing the XOR gate type and
might not be all ones when choosing XNOR, as those values will stall the LFSR.

• Advanced tab: Parameters specific to the Advanced tab are as follows:

• Use reloadable seed value : This field specifies whether or not an input is needed to reload
a dynamic LFSR seed value at run time.

• Parallel input: This field specifies whether the reloadable input seed is shifted in one bit at
a time or if it happens in parallel.

• Parallel output: This field specifies whether all of the bits in the LFSR chain are connected
to the output or just the last register in the chain (serial or parallel).

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Logical

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 575Send Feedback

https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=575

The Xilinx Logical block performs bitwise logical operations on fixed-point numbers. Operands
are zero padded and sign extended as necessary to make binary point positions coincide; then
the logical operation is performed and the result is delivered at the output port.

In hardware this block is implemented as synthesizable VHDL. If you build a tree of logical gates,
this synthesizable implementation is best as it facilitates logic collapsing in synthesis and
mapping.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows:

• Logical function: Specifies one of the following bitwise logical operators: AND, NAND, OR,
NOR, XOR, XNOR.

• Number of inputs: Specifies the number of inputs (1 - 1024).

• Logical Reduction Operation: When the number of inputs is specified as 1, a unary logical
reduction operation performs a bit-wise operation on the single operand to produce a
single bit result. The first step of the operation applies the logical operator between the
least significant bit of the operand and the next most significant bit. The second and
subsequent steps apply the operator between the one-bit result of the prior step and the
next bit of the operand using the same logical operator. The logical reduction operator
implements the same functionality as that of the logical reduction operation in HDLs. The
output of the logical reduction operation is always Boolean.

• Output Type tab: Parameters specific to the Output Type tab are as follows.

• Align binary point: Specifies that the block must align binary points automatically. If not
selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

MCode

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 576Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=576

The Xilinx MCode block is a container for executing a user-supplied MATLAB function within
Simulink. A parameter on the block specifies the M-function name. The block executes the M-
code to calculate block outputs during a Simulink simulation. The same code is translated in a
straightforward way into equivalent behavioral VHDL/Verilog when hardware is generated.

The block's Simulink® interface is derived from the MATLAB function signature, and from block
mask parameters. There is one input port for each parameter to the function, and one output
port for each value the function returns. Port names and ordering correspond to the names and
ordering of parameters and return values.

The MCode block supports a limited subset of the MATLAB language that is useful for
implementing arithmetic functions, finite state machines, and control logic.

The MCode block has the following three primary coding guidelines that must be followed:

• All block inputs and outputs must be of Xilinx fixed-point type.

• The block must have at least one output port.

• The code for the block must exist on the MATLAB path or in the same directory as the
directory as the model that uses the block.

The example described below consists of a function xlmax which returns the maximum of its
inputs. The second illustrates how to do simple arithmetic. The third shows how to build a finite
state machine.

Configuring an MCode Block

The MATLAB Function parameter of an MCode block specifies the name of the block's M- code
function. This function must exist in one of the three locations at the time this parameter is set.
The three possible locations are:

• The directory where the model file is located.

• A subdirectory of the model directory named private.

• A directory in the MATLAB path.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 577Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=577

The block icon displays the name of the M-function. To illustrate these ideas, consider the file
xlmax.m containing function xlmax:

function z = xlmax(x, y)
 if x > y
 z = x;
 else
 z = y;
 end

An MCode block based on the function xlmax will have input ports x and y and output port z.

The following figure shows how to set up an MCode block to use function xlmax.

Figure 334: xlmax function

Once the model is compiled, the xlmax MCode block will appear like the block illustrated below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 578Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=578

Figure 335: xlmax MCode block

MATLAB Language Support

The MCode block supports the following MATLAB language constructs:

• Assignment statements

• Simple and compound if/else/elseif end statements

• switch statements

• Arithmetic expressions involving only addition and subtraction

• Addition

• Subtraction

• Multiplication

• Division by a power of two

• Relational operators:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

• Logical operators:

& And

| Or

~ Not

The MCode block supports the following MATLAB functions.

• Type conversion. The only supported data type is xfix, the Xilinx fixed-point type. The
xfix() type conversion function is used to convert to this type. The conversion is done
implicitly for integers but must be done explicitly for floating point constants. All values must
be scalar; arrays are not supported.

• Functions that return xfix properties:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 579Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=579

xl_nbits() Returns number of bits

xl_binpt() Returns binary point position

xl_arith() Returns arithmetic type

• Bit-wise logical functions:

xl_and() Bit-wise and

xl_or() Bit-wise or

xl_xor() Bit-wise xor

xl_not() Bit-wise not

• Shift functions: xl_lsh() and xl_rsh()

• Slice function: xl_slice()

• Concatenate function: xl_concat()

• Reinterpret function: xl_force()

• Internal state variables: xl_state()

• MATLAB Functions:

disp() Displays variable values

error() Displays message and abort function

isnan() Tests whether a number is NaN

NaN() Returns Not-a-Number

num2str() Converts a number to string

ones(1,N) Returns 1-by-N vector of ones

pi() Returns pi

zeros(1,N) Returns 1-by-N vector of zeros

• Data Types :

There are three kinds of xfix data types: unsigned fixed-point (xlUnsigned), signed fixed-
point(xlSigned), and boolean (xlBoolean). Arithmetic operations on these data types
produce signed and unsigned fixed-point values. Relational operators produce a boolean
result. Relational operands can be any xfix type, provided the mixture of types makes sense.
Boolean variables can be compared to boolean variables, but not to fixed-point numbers;
boolean variables are incompatible with arithmetic operators. Logical operators can only be
applied to boolean variables. Every operation is performed in full precision, for example, with
the minimum precision needed to guarantee that no information is lost.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 580Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=580

Literal Constants

Integer, floating-point, and boolean literals are supported. Integer literals are automatically
converted to xfix values of appropriate width having a binary point position at zero.
Floating-point literals must be converted to the xfix type explicitly with the xfix()
conversion function. The predefined MATLAB values true and false are automatically
converted to boolean literals.

Assignment

The left-hand side of an assignment can only contain one variable. A variable can be assigned
more than once.

Control Flow

The conditional expression of an if statement must evaluate to a boolean. Switch statements
can contain a case clause and an otherwise clause. The types of a switch selector and its
cases must be compatible; thus, the selector can be boolean provided its cases are. All cases in
a switch must be constant; equivalently, no case can depend on an input value.

When the same variable is assigned in several branches of a control statement, the types
being assigned must be compatible. For example,

if (u > v)
 x = a;
else
 x = b;
end

is acceptable only if a and b are both boolean or both arithmetic.

• Constant Expressions:

An expression is constant provided its value does not depend on the value of any input
argument. Thus, for example, the variable c defined by

a = 1;
b = a + 2;
c = xfix({xlSigned, 10, 2}, b + 3.345);

can be used in any context that demands a constant.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 581Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=581

xfix() Conversion

The xfix() conversion function converts a double to an xfix, or changes one xfix into
another having different characteristics. A call on the conversion function looks like the
following

x = xfix(type_spec, value)

Here x is the variable that receives the xfix. type_spec is a cell array that specifies the type of
xfix to create, and value is the value being operated on. The value can be floating point or
xfix type. The type_spec cell array is defined using curly braces in the usual MATLAB
method. For example,

xfix({xlSigned, 20, 16, xlRound, xlWrap}, 3.1415926)

returns an xfix approximation to pi. The approximation is signed, occupies 20 bits (16
fractional), quantizes by rounding, and wraps on overflow.

The type_spec consists of 1, 3, or 5 elements. Some elements can be omitted. When elements
are omitted, default element settings are used. The elements specify the following properties
(in the order presented): data type, width, binary point position, quantization
mode, and overflow mode. The data type can be xlBoolean, xlUnsigned, or
xlSigned. When the type is xlBoolean, additional elements are not needed (and must not
be supplied). For other types, width and binary point position must be supplied. The
quantization and overflow modes are optional, but when one is specified, the other
must be as well. Three values are possible for quantization: xlTruncate, xlRound, and
xlRoundBanker. The default is xlTruncate. Similarly, three values are possible for
overflow: xlWrap, xlSaturate, and xlThrowOverflow. For xlThrowOverflow, if an
overflow occurs during simulation, an exception occurs.

All values in a type_spec must be known at compilation time; equivalently, no type_spec value
can depend on an input to the function.

The following is a more elaborate example of an xfix() conversion:

width = 10, binpt = 4;
z = xfix({xlUnsigned, width, binpt}, x + y);

This assignment to x is the result of converting x + y to an unsigned fixed-point number that
is 10 bits wide with 4 fractional bits using xlTruncate for quantization and xlWrap for
overflow.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 582Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=582

If several xfix() calls need the same type_spec value, you can assign the type_spec to a
variable, then use the variable for xfix() calls. For example, the following is allowed:

proto = {xlSigned, 10, 4};
x = xfix(proto, a);
y = xfix(proto, b);

• xfix Properties: xl_arith, xl_nbits, and xl_binpt:

Each xfix number has three properties: the arithmetic type, the bit width, and the binary
point position. The MCode blocks provide three functions to get these properties of a fixed-
point number. The results of these functions are constants and are evaluated when Simulink
compiles the model.

Function a = xl_arith(x) returns the arithmetic type of the input number x. The return
value is either 1, 2, or 3 for xlUnsigned, xlSigned, or xlBoolean respectively.

Function n = xl_nbits(x) returns the width of the input number x.

Function b = xl_binpt(x) returns the binary point position of the input number x.

• Bit-wise Operators: xl_or, xl_and, xl_xor, and xl_not :

The MCode block provides four built-in functions for bit-wise logical operations: xl_or,
xl_and, xl_xor, and xl_not.

Function xl_or, xl_and, and xl_xor perform bit-wise logical or, and, and xor operations
respectively. Each function is in the form of

x = xl_op(a, b,).

Each function takes at least two fixed-point numbers and returns a fixed-point number. All the
input arguments are aligned at the binary point position.

Function xl_not performs a bit-wise logical not operation. It is in the form of x =
xl_not(a). It only takes one xfix number as its input argument and returns a fixed- point
number.

The following are some examples of these function calls:

X = xl_and(a, b);
Y = xl_or(a, b, c);
Z = xl_xor(a, b, c, d);
N = xl_not(x);

• Shift Operators: xl_rsh, and xl_lsh:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 583Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=583

Functions xl_lsh and xl_rsh allow you to shift a sequence of bits of a fixed-point number.
The function is in the form:

x = xl_lsh(a, n) and x = xl_rsh(a, n) where a is a xfix value and n is the
number of bits to shift.

Left or right shift the fixed-point number by n number of bits. The right shift (xl_rsh) moves
the fixed-point number toward the least significant bit. The left shift (xl_lsh) function moves
the fixed-point number toward the most significant bit. Both shift functions are a full precision
shift. No bits are discarded and the precision of the output is adjusted as needed to
accommodate the shifted position of the binary point.

Here are some examples:

% left shift a 5 bits
a = xfix({xlSigned, 20, 16, xlRound, xlWrap}, 3.1415926)
b = xl_rsh(a, 5);

The output b is of type xlSigned with 21 bits and the binary point located at bit 21.

• Slice Function: xl_slice:

Function xl_slice allows you to access a sequence of bits of a fixed-point number. The
function is in the form:

x = xl_slice(a, from_bit, to_bit).

Each bit of a fixed-point number is consecutively indexed from zero for the LSB up to the
MSB. For example, given an 8-bit wide number with binary point position at zero, the LSB is
indexed as 0 and the MSB is indexed as 7. The block will throw an error if the from_bit or
to_bit arguments are out of the bit index range of the input number. The result of the
function call is an unsigned fixed-point number with zero binary point position.

Here are some examples:

% slice 7 bits from bit 10 to bit 4
b = xl_slice(a, 10, 4);
% to get MSB
c = xl_slice(a, xl_nbits(a)-1, xl_nbits(a)-1);

• Concatenate Function: xl_concat :

Function x = xl_concat(hi, mid, ..., low) concatenates two or more fixed-point
numbers to form a single fixed-point number. The first input argument occupies the most
significant bits, and the last input argument occupies the least significant bits. The output is an
unsigned fixed-point number with binary point position at zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 584Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=584

• Reinterpret Function: xl_force:

Function x = xl_force(a, arith, binpt) forces the output to a new type with
arith as its new arithmetic type and binpt as its new binary point position. The arith
argument can be one of xlUnsigned, xlSigned, or xlBoolean. The binpt argument
must be from 0 to the bit width inclusively. Otherwise, the block will throw an error.

• State Variables: xl_state:

An MCode block can have internal state variables that hold their values from one simulation step
to the next. A state variable is declared with the MATLAB keyword persistent and must be
initially assigned with an xl_state function call.

The following code models a 4-bit accumulator:

function q = accum(din, rst)
 init = 0;

 persistent s, s = xl_state(init, {xlSigned, 4, 0});
 q = s;
 if rst
 s = init;
 else
 s = s + din;
 end

The state variable s is declared as persistent, and the first assignment to s is the result of the
xl_state invocation. The xl_state function takes two arguments. The first is the initial value
and must be a constant. The second is the precision of the state variable. It can be a type cell
array as described in the xfix function call. It can also be an xfix number. In the above code, if
s = xl_state(init, din), then state variable s will use din as the precision. The
xl_state function must be assigned to a persistent variable.

The xl_state function behaves in the following way:

1. In the first cycle of simulation, the xl_state function initializes the state variable with the
specified precision.

2. In the following cycles of simulation, the xl_state function retrieves the state value left
from the last clock cycle and assigns the value to the corresponding variable with the
specified precision.

v = xl_state(init, precision) returns the value of a state variable. The first input
argument init is the initial value, the second argument precision is the precision for this
state variable. The argument precision can be a cell arrary in the form of {type, nbits,
binpt} or {type, nbits, binpt, quantization,overflow}. The precision
argument can also be an xfix number.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 585Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=585

v = xl_state(init, precision, maxlen) returns a vector object. The vector is
initialized with init and will have maxlen for the maximum length it can be. The vector is
initialized with init. For example, v = xl_state(zeros(1, 8), prec, 8) creates a
vector of 8 zeros, v = xl_state([], prec, 8) creates an empty vector with 8 as maximum
length, v = xl_state(0, prec, 8) creates a vector of one zero as content and with 8 as
the maximum length.

Conceptually, a vector state variable is a double ended queue. It has two ends, the front which is
the element at address 0 and the back which is the element at length – 1.

Methods available for vector are:

val = v(idx); Returns the value of element at address idx.
v(idx) = val; Assigns the element at address idx with val.
f = v.front; Returns the value of the front end. An error is thrown if the vector is empty.
v.push_front(val); Pushes val to the front and then increases the vector length by 1. An error is

thrown if the vector is full.
v.pop_front; Pops one element from the front and decreases the vector length by 1. An error

is thrown if the vector is empty.
b = v.back; Returns the value of the back end. An error is thrown if the vector is empty.
v.push_back(val); Pushes val to the back and the increases the vector length by 1. An error is

thrown if the vector is full.
v.pop_back; Pops one element from the back and decreases the vector length by 1. An error

is thrown if the vector is empty.
v.push_front_pop_back(val); Pushes val to the front and pops one element out from the back. It's a shift

operation. The length of the vector is unchanged. The vector cannot be empty to
perform this operation.

full = v.full; Returns true if the vector is full, otherwise, false.

empty = v.empty; Returns true if the vector is empty, otherwise, false.

len = v.length; Returns the number of elements in the vector.

A method of a vector that queries a state variable is called a query method. It has a return value.
The following methods are query method: v(idx), v.front, v.back, v.full, v.empty,
v.length, v.maxlen. A method of a vector that changes a state variable is called an update
method. An update method does not return any value. The following methods are update
methods: v(idx) = val, v.push_front(val), v.pop_front, v.push_back(val),
v.pop_back, and v.push_front_pop_back(val). All query methods of a vector must be
invoked before any update method is invocation during any simulation cycle. An error is thrown
during model compilation if this rule is broken.

The MCode block can map a vector state variable into a vector of registers, a delay line, an
addressable shift register, a single port ROM, or a single port RAM based on the usage of the
state variable. The xl_state function can also be used to convert a MATLAB 1-D array into a
zero-indexed constant array. If the MCode block cannot map a vector state variable into an
FPGA, an error message is issued during model netlist time. The following are examples of using
vector state variables.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 586Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=586

Delay Line

The state variable in the following function is mapped into a delay line.

function q = delay(d, lat)
 persistent r, r = xl_state(zeros(1, lat), d, lat);
 q = r.back;
 r.push_front_pop_back(d);

Line of Registers

The state variable in the following function is mapped into a line of registers.

function s = sum4(d)
 persistent r, r = xl_state(zeros(1, 4), d);
 S = r(0) + r(1) + r(2) + r(3);
 r.push_front_pop_back(d);

Vector of Constants

The state variable in the following function is mapped into a vector of constants.

function s = myadd(a, b, c, d, nbits, binpt)
 p = {xlSigned, nbits, binpt, xlRound, xlSaturate};
 persistent coef, coef = xl_state([3, 7, 3.5, 6.7], p);
 s = a*coef(0) + b*coef(1) + c*coef(2) + c*coef(3);

Addressable Shift Register

The state variable in the following function is mapped into an addressable shift register.

function q = addrsr(d, addr, en, depth)
 persistent r, r = xl_state(zeros(1, depth), d);
 q = r(addr);
 if en
 r.push_front_pop_back(d);
 end

Single Port ROM

The state variable in the following function is mapped into a single port ROM.

function q = addrsr(contents, addr, arith, nbits, binpt)
 proto = {arith, nbits, binpt};
 persistent mem, mem = xl_state(contents, proto);
 q = mem(addr);

• Single Port RAM:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 587Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=587

The state variable in the following function is mapped to a single port RAM in fabric
(Distributed RAM).

function dout = ram(addr, we, din, depth, nbits, binpt)
 proto = {xlSigned, nbits, binpt};
 persistent mem, mem = xl_state(zeros(1, depth), proto);
 dout = mem(addr);
 if we
 mem(addr) = din;
 end

The state variable in the following function is mapped to BlockRAM as a single port RAM.

function dout = ram(addr, we, din, depth, nbits, binpt,ram_enable)
 proto = {xlSigned, nbits, binpt};
 persistent mem, mem = xl_state(zeros(1, depth), proto);
 persistent dout_temp, dout_temp = xl_state(0,proto);
 dout = dout_temp;
 dout_temp = mem(addr);
 if we
 mem(addr) = din;
 end

MATLAB Functions

• disp() :

Displays the expression value. In order to see the printing on the MATLAB console, the option
Enable printing with disp must be checked on the Advanced tab of the MCode block
parameters dialog box. The argument can be a string, an xfix number, or an MCode state
variable. If the argument is an xfix number, it will print the type, binary value, and double
precision value. For example, if variable x is assigned with xfix({xlSigned, 10, 7},
2.75), the disp(x) will print the following line:

type: Fix_10_7, binary: 010.1100000, double: 2.75

If the argument is a vector state variable, disp() will print out the type, maximum length,
current length, and the binary and double values of all the elements. For each simulation step,
when Enable printing with disp is on and when a disp() function is invoked, a title line is
printed for the corresponding block. The title line includes the block name, Simulink
simulation time, and FPGA clock number.

The following MCode function shows several examples of using the disp() function.

function x = testdisp(a, b)
persistent dly, dly = xl_state(zeros(1, 8), a);
persistent rom, rom = xl_state([3, 2, 1, 0], a);
disp('Hello World!');
disp(['num2str(dly) is ', num2str(dly)]);

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 588Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=588

disp('disp(dly) is ');
disp(dly);
disp('disp(rom) is ');
disp(rom);
a2 = dly.back;
dly.push_front_pop_back(a);
x = a + b;
disp(['a = ', num2str(a), ', ', ...
'b = ', num2str(b), ', ', ...
'x = ', num2str(x)]);
disp(num2str(true));
disp('disp(10) is');
disp(10);
disp('disp(-10) is');
disp(-10);
disp('disp(a) is ');
disp(a);
disp('disp(a == b)');
disp(a==b);

The following lines are the result for the first simulation step.

xlmcode_testdisp/MCode (Simulink time: 0.000000, FPGA clock: 0)
Hello World!
num2str(dly) is [0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000,
0.000000, 0.000000]
disp(dly) is
type: Fix_11_7,
maxlen: 8,
length: 8,
0: binary 0000.0000000, double 0.000000,
1: binary 0000.0000000, double 0.000000,
2: binary 0000.0000000, double 0.000000,
3: binary 0000.0000000, double 0.000000,
4: binary 0000.0000000, double 0.000000,
5: binary 0000.0000000, double 0.000000,
6: binary 0000.0000000, double 0.000000,
7: binary 0000.0000000, double 0.000000,
disp(rom) is
type: Fix_11_7,
maxlen: 4,
length: 4,
0: binary 0011.0000000, double 3.0,
1: binary 0010.0000000, double 2.0,
2: binary 0001.0000000, double 1.0,
3: binary 0000.0000000, double 0.0,
a = 0.000000, b = 0.000000, x = 0.000000
1
disp(10) is
type: UFix_4_0, binary: 1010, double: 10.0
disp(-10) is
type: Fix_5_0, binary: 10110, double: -10.0
disp(a) is
type: Fix_11_7, binary: 0000.0000000, double: 0.000000
disp(a == b)
type: Bool, binary: 1, double: 1

• error() :

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 589Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=589

Displays message and abort function. See MATLAB help on this function for more detailed
information. Message formatting is not supported by the MCode block. For example:

if latency <=0
 error('latency must be a positive');
end

• isnan() :

Returns true for Not-a-Number. isnan(X) returns true when X is Not-a-Number. X must be
a scalar value of double or Xilinx fixed-point number. This function is not supported for
vectors or matrices. For example:

if isnan(incr) & incr == 1
 cnt = cnt + 1;
end

• NaN() :

The NaN() function generates an IEEE arithmetic representation for Not-a-Number. A NaN is
obtained as a result of mathematically undefined operations like 0.0/0.0 and inf-inf. NaN(1,N)
generates a 1-by-N vector of NaN values. Here are examples of using NaN.

if x < 0
 z = NaN;
else
 z = x + y;
end

• num2Str() :

Converts a number to a string. num2str(X) converts the X into a string. X can be a scalar
value of double, a Xilinx fixed-point number, or a vector state variable. The default number of
digits is based on the magnitude of the elements of X. Here's an example of num2str:

if opcode <=0 | opcode >= 10
 error(['opcode is out of range: ', num2str(opcode)]);
end

• ones():

The ones() function generates a specified number of one values. ones(1,N) generates a 1-
by-N vector of ones. ones(M,N) where M must be 1. It's usually used with xl_state()
function call. For example, the following line creates a 1-by-4 vector state variable initialized
to [1, 1, 1, 1].

persitent m, m = xl_state(ones(1, 4), proto)

• zeros() :

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 590Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=590

The zeros() function generates a specified number of zero values. zeros(1,N) generates
a 1-by-N vector of zeros. zero(M,N) where M must be 1. It's usually used with xl_state()
function call. For example, the following line creates a 1-by-4 vector state variable initialized
to [0, 0, 0, 0].

persitent m, m = xl_state(zeros(1, 4), proto)

• FOR Loop:

FOR statement is fully unrolled. The following function sums n samples.

function q = sum(din, n)
 persistent regs, regs = xl_state(zeros(1, 4), din);
 q = reg(0);
 for i = 1:n-1
 q = q + reg(i);
 end
 regs.push_front_pop_back(din);

The following function does a bit reverse.

function q = bitreverse(d)
 q = xl_slice(d, 0, 0);
 for i = 1:xl_nbits(d)-1
 q = xl_concat(q, xl_slice(d, i, i));
 end

• Variable Availability :

MATLAB code is sequential (for example, statements are executed in order). The MCode block
requires that every possible execution path assigns a value to a variable before it is used
(except as a left-hand side of an assignment). When this is the case, we say the variable is
available for use. The MCode block will throw an error if its M-code function accesses
unavailable variables.

Consider the following M-code:

function [x, y, z] = test1(a, b)
 x = a;
 if a>b
 x = a + b; y = a;
 end
 switch a
 case 0
 z = a + b;
 case 1
 z = a - b;
 end

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 591Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=591

Here a, b, and x are available, but y and z are not. Variable y is not available because the if
statement has no else, and variable z is not available because the switch statement has no
otherwise part.

DEBUG MCode

There are two ways to debug your MCode. One is to insert disp() functions in your code
and enable printing; the other is to use the MATLAB debugger. For usage of the disp()
function, see the disp() section in this topic.

If you want to use the MATLAB debugger, you need to check the Enable MATLAB debugging
option on the Advanced tab of the MCode block parameters dialog box. Then you can open
your MATLAB function with the MATLAB editor, set break points, and debug your M-
function. Just be aware that every time you modify your script, you need to execute a clear
functions command in the MATLAB console.

To start debugging your M-function, you need to first check the Enable MATLAB debugging
check box on the Advanced tab of the MCode block parameters dialog, then click the OK or
Apply button.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 592Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=592

Figure 341: Enable MATLAB Debugging

Now you can edit the M-file with the MATLAB editor and set break points as needed.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 593Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=593

Figure 342: Set Break Points

During the Simulink simulation, the MATLAB debugger will stop at the break points you set
when the break points are reached.

Figure 343: Stopping at Break Point

When debugging, you can also examine the values of the variables by typing the variable
names in the MATLAB console.

Figure 344: Examining Variable

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 594Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=594

There is one special case to consider when the function for an MCode block is executed from
the MATLAB debugger. A switch/case expression inside an MCode block must be type
xfix, however, executing a switch/case expression from the MATLAB console requires
that the expression be a double or char. To facilitate execution in the MATLAB console, a
call to double() must be added. For example, consider the following:

switch i
 case 0
 x = 1
 case 1
 x = 2
 end

where i is type xfix. To run from the console this code must changed to

switch double(i)
 case 0
 x = 1
 case 1
 x = 2
end

The double() function call only has an effect when the M code is run from the console. The
MCode block ignores the double() call.

• Passing Parameters:

It is possible to use the same M-function in different MCode blocks, passing different
parameters to the M-function so that each block can behave differently. This is achieved by
binding input arguments to some values. To bind the input arguments, select the Interface tab
on the block GUI. After you bind those arguments to some values, these M-function
arguments will not be shown as input ports of the MCode block.

Consider for example, the following M-function:

function dout = xl_sconvert(din, nbits, binpt)
proto = {xlSigned, nbits, binpt};
dout = xfix(proto, din);

The following figures shows how the bindings are set for the din input of two separate
xl_sconvert blocks.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 595Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=595

Figure 345: din Bindings, Example 1

Figure 346: din Bindings, Example 2

The following figure shows the block diagram after the model is compiled.

Figure 347: Block Diagram

The parameters can only be of type double or they can be logical numbers.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 596Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=596

• Optional Input Ports:

The parameter passing mechanism allows the MCode block to have optional input ports.
Consider for example, the following M-function:

function s = xl_m_addsub(a, b, sub)
 if sub
 s = a - b;
 else
 s = a + b;
 end

If sub is set to be false, the MCode block that uses this M-function will have two input
ports a and b and will perform full precision addition. If it is set to an empty cell array {}, the
block will have three input ports a, b, and sub and will perform full precision addition or
subtraction based on the value of input port sub.

The following figure shows the block diagram of two blocks using the same xl_m_addsub
function, one having two input ports and one having three input ports.

Figure 348: Two Blocks Using Same xl_m_addsub Function

• Constructing a State Machine:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 597Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=597

There are two ways to build a state machine using an MCode block. One way is to specify a
stateless transition function using a MATLAB function and pair an MCode block with one or
more state register blocks. Usually the MCode block drives a register with the value
representing the next state, and the register feeds back the current state into the MCode
block. For this to work, the precision of the state output from the MCode block must be static,
that is, independent of any inputs to the block. Occasionally you might find you need to use
xfix() conversions to force static precision. The following code illustrates this:

function nextstate = fsm1(currentstate, din)
 % some other code
 nextstate = currentstate;
 switch currentstate
 case 0, if din==1, nextstate = 1; end
 end
 % a xfix call should be used at the end
 nextstate = xfix({xlUnsigned, 2, 0}, nextstate);

Another way is to use state variables. The above function can be re-written as follows:

function currentstate = fsm1(din)
 persistent state, state=xl_state(0,{xlUnsigned,2,0});
 currentstate = state;
 switch double(state)
 case 0, if din==1; state = 1; end
 end

• Reset and Enable Signals for State Variables:

The MCode block can automatically infer register reset and enable signals for state variables
when conditional assignments to the variables contain two or fewer branches.

For example, the following M-code infers an enable signal for conditional assignment of
persistent state variable r1:

function myFn = aFn(en, a)
 persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
 myFn = r1;
 if en
 r1 = r1 + a
 else
 r1 = r1
 end

There are two branches in the conditional assignment to persistent state variable r1. A
register is used to perform the conditional assignment. The input of the register is connected
to r1 + a, the output of the register is r1. The register's enable signal is inferred; the enable
signal is connected to en, when en is asserted. Persistent state variable r1 is assigned to r1
+ a when en evaluates to false, the enable signal on the register is de-asserted resulting in
the assignment of r1 to r1.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 598Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=598

The following M-code will also infer an enable signal on the register used to perform the
conditional assignment:

function myFn = aFn(en, a)
 persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
 myFn = r1;
 if en
 r1 = r1 + a
 end

An enable is inferred instead of a reset because the conditional assignment of persistent state
variable r1 is to a non-constant value, r1 + a.

If there were three branches in the conditional assignment of persistent state variable r1, the
enable signal would not be inferred. The following M-code illustrates the case where there are
three branches in the conditional assignment of persistent state variable r1 and the enable
signal is not inferred:

function myFn = aFn(en, en2, a, b)
 persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
 if en
 r1 = r1 + a
 elseif en2
 r1 = r1 + b
 else
 r1 = r1
 end

The reset signal can be inferred if a persistent state variable is conditionally assigned to a
constant; the reset is synchronous. Consider the following M-code example which infers a
reset signal for the assignment of persistent state variable r1 to init, a constant, when rst
evaluates to true and r1 + 1 otherwise:

function myFn = aFn(rst)
 persistent r1, r1 = xl_state(0, {xlUnsigned, 4, 0});
 myFn = r1;
 init = 7;
 if (rst)
 r1 = init
 else
 r1 = r1 + 1
 end

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 599Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=599

The M-code example above which infers reset can also be written as:

function myFn = aFn(rst)
 persistent r1, r1 = xl_state(0, {xlUnsigned,4,0});
 init = 1;
 myFn = r1;
 r1 = r1 +1
 if (rst)
 r1 = init
 end

In both code examples above, the reset signal of the register containing persistent state
variable r1 is assigned to rst. When rst evaluates to true, the register's reset input is
asserted and the persistent state variable is assigned to constant init. When rst evaluates
to false, the register's reset input is de-asserted and persistent state variable r1 is assigned
to r1 + 1. Again, if the conditional assignment of a persistent state variable contains three or
more branches, a reset signal is not inferred on the persistent state variable's register.

It is possible to infer reset and enable signals on the register of a single persistent state
variable. The following M-code example illustrates simultaneous inference of reset and enable
signals for the persistent state variable r1:

function myFn = aFn(rst,en)
 persistent r1, r1 = xl_state(0, {xlUnsigned, 4, 0});
 myFn = r1;
 init = 0;
 if rst
 r1 = init
 else
 if en
 r1 = r1 + 1
 end
 end

The reset input for the register of persistent state variable r1 is connected to rst; when rst
evaluates to true, the register's reset input is asserted and r1 is assigned to init. The
enable input of the register is connected to en; when en evaluates to true, the register's
enable input is asserted and r1 is assigned to r1 + 1. It is important to note that an inferred
reset signal takes precedence over an inferred enable signal regardless of the order of the
conditional assignment statements. Consider the second code example above; if both rst and
en evaluate to true, persistent state variable r1 would be assigned to init.

Inference of reset and enable signals also works for conditional assignment of persistent state
variables using switch statements, provided the switch statements contain two or less
branches.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 600Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=600

The MCode block performs dead code elimination and constant propagation compiler
optimizations when generating code for the FPGA. This can result in the inference of reset
and/or enable signals in conditional assignment of persistent state variables, when one of the
branches is never executed. For this to occur, the conditional must contain two branches that
are executed after dead code is eliminated, and constant propagation is performed.

• Inferring Registers :

Registers are inferred in hardware by using persistent variables, however, the right coding
style must be used. Consider the two code segments in the following function:

function [out1, out2] = persistent_test02(in1, in2)
persistent ff1, ff1 = xl_state(0, {xlUnsigned, 2, 0});
persistent ff2, ff2 = xl_state(0, {xlUnsigned, 2, 0});
%code segment 1
out1 = ff1; %these two statements infer a register for ff1
ff1 = in1;
%code segment 2
ff2 = in2; %these two statements do NOT infer a register for ff2
out2 = ff2;
end

In code segment 1, the value of persistent variable ff1 is assigned to out1. Since ff1 is
persistent , it is assumed that its current value was assigned in the previous cycle. In the next
statement, the value of in1 is assigned to ff1 so it can be saved for the next cycle. This infers a
register for ff1.

In code segment 2, the value of in2 is first assigned to persistent variable ff2, then assigned to
out2. These two statements can be completed in one cycle, so a register is not inferred. If you
need to insert delay into combinational logic, refer to the next topic.

• Pipelining Combinational Logic :

The generated FPGA bitstream for an MCode block might contain many levels of
combinational logic and hence a large critical path delay. To allow a downstream logic
synthesis tool to automatically pipeline the combinational logic, you can add delay blocks
before the MCode block inputs or after the MCode block outputs. These delay blocks should
have the parameter Implement using behavioral HDL set, which instructs the code generator
to implement delay with synthesizable HDL. You can then instruct the downstream logic
synthesis tool to implement register re-timing or register balancing. As an alternative
approach, you can use the vector state variables to model delays.

• Shift Operations with Multiplication and Division:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 601Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=601

The MCode block can detect when a number is multiplied or divided by constants that are
powers of two. If detected, the MCode block will perform a shift operation. For example,
multiplying by 4 is equivalent to left shifting 2 bits and dividing by 8 is equivalent to right
shifting 3 bits. A shift is implemented by adjusting the binary point, expanding the xfix
container as needed. For example, a Fix_8_4 number multiplied by 4 will result in a
Fix_8_2 number, and a Fix_8_4 number multiplied by 64 will result in a Fix_10_0
number.

• Using the xl_state Function with Rounding Mode:

The xl_state function call creates an xfix container for the state variable. The container's
precision is specified by the second argument passed to the xl_state function call. If
precision uses xlRound for its rounding mode, hardware resources is added to accomplish
the rounding. If rounding the initial value is all that is required, an xfix call to round a
constant does not require additional hardware resources. The rounded value can then be
passed to the xl_state function. For example:

init = xfix({xlSigned,8,5,xlRound,xlWrap}, 3.14159);
persistent s, s = xl_state(init, {xlSigned, 8, 5});

Block Parameters

The block parameters dialog box can be invoked by double-clicking the block icon in a Simulink®

model.

Figure 349: Block Parameters

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 602Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=602

As described earlier in this topic, the MATLAB function parameter on an MCode block tells the
name of the block's function, and the Interface tab specifies a list of constant inputs and their
values.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Questa

The HDL Black Box block provides a way to incorporate existing HDL files into a model. When
the model is simulated, co-simulation can be used to allow black boxes to participate. The Questa
HDL co-simulation block configures and controls co-simulation for one or several black boxes.

During a simulation, each Questa block spawns one copy of Questa, and therefore uses one
Questa license. If licenses are scarce, several black boxes can share the same block.

In detail, the Questa block does the following:

• Constructs the additional VHDL and Verilog needed to allow black box HDL to be simulated
inside Questa.

• Spawns a Questa session when a Simulink simulation starts.

• Mediates the communication between Simulink and Questa.

• Reports if errors are detected when black box HDL is compiled.

• Terminates Questa, if appropriate, when the simulation is complete.

Note: The Questa block only supports symbolic radix in the Questa tool. In symbolic radix, Questa displays
the actual values of an enumerated type. and also converts an object's value to an appropriate
representation for other radix forms. Please refer to the Questa documentation for more information on
symbolic radix.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Run co-simulation in directory:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 603Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=603

Questa is started in the directory named by this field. The directory is created if necessary.
All black box files are copied into this directory, as are the auxiliary files Model Composer
produces for co-simulation. Existing files are overwritten silently. The directory can be
specified as an absolute or relative path. Relative paths are interpreted with respect to the
directory in which the Simulink .mdl file resides.

• Open waveform viewer:

When this checkbox is selected, the Questa waveform window opens automatically,
displaying a standard set of signals. The signals include all inputs and outputs of all black
boxes and all clock and clock enable signals supplied by Model Composer. The signal
display can be customized with an auxiliary tcl script. To specify the script, select Add
Custom Scripts and enter the script name (e.g., myscript.do) in the Script to Run After vsim
field.

• Leave Questa open at end of simulation:

When this checkbox is selected, the Questa session is left open after the Simulink
simulation has finished.

• Skip compilation (use previous results):

When this checkbox is selected, the Questa compilation phase is skipped in its entirety for
all black boxes that are using the Questa block for HDL co-simulation. To select this option
is to assert that: (1) underneath the directory in which Questa will run, there exists a
Questa work directory, and (2) that the work directory contains up-to-date Questa
compilation results for all black box HDL. Selecting this option can greatly reduce the time
required to start-up the simulation, however, if it is selected when inappropriate, the
simulation can fail to run or run but produce false results.

• Advanced tab: Parameters specific to the Advanced tab are as follows.

• Include Verilog unisim library:

Selecting this checkbox ensures that Questa includes the Verilog UniSim library during
simulation. Note: the Verilog unisim library must be mapped to UNISIMS_VER in Questa. In
addition, selecting this checkbox ensures the "glbl.v" module is compiled and invoked
during simulation.

• Add custom scripts:

The term “script” refers to a Tcl macro file (DO file) executed by Questa. Selecting this
checkbox activates the fields Script to Run Before Starting Compilation, Script to Run in
Place of "vsim", and Script to Run after "vsim". The DO file scripts named in these fields
are not run unless this checkbox is selected.

• Script to run before starting compilation:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 604Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=604

Enter the name of a Tcl macro file (DO file) that is to be executed by Questa before
compiling black box HDL files.

Note: For information on how to write a Questa macro file (DO file) refer to the Tcl and macros (DO
files) section in the Vitis Model Composer User Guide (UG1483).

• Script to run in place of "vsim":

Questa uses the Tcl (tool command language) as the scripting language for controlling and
extending the tool. Enter the name of a Questa Tcl macro file (DO file) that is to be
executed by the Questa do command at the point when Model Composer would ordinarily
instruct Questa to begin a simulation. To start the simulation after the macro file starts
executing, you must place a vsim command inside the macro file.

Normally, if this parameter is left blank, or Add custom scripts is not selected, then Model
Composer instructs Questa to execute the default command vsim $toplevel -title
{System Generator Co-Simulation (from block $blockname} Here
$toplevel is the name of the top level entity for simulation (e.g.,
work.my_model_mti_block) and $blockname is the name of the Questa block in the
Simulink model associated with the current co-simulation. To avoid problems, certain
characters in the block name (e.g., newlines) are sanitized.

If this parameter is not blank and Add custom scripts is selected, then Model Composer
instead instructs Questa to execute do $* $toplevel $blockname. Here
$toplevel and $blockname are as above and $* represents the literal text entered in
the field. If, for example the literal text is 'foo.do', then Questa executes foo.do. This
macro file can then reference $toplevel and $blockname as $1 and $2, respectively.
Thus, the command vsim $1 inside of the macro file foo.do runs vsim on topLevel.

• Script to run after "vsim":

Enter the name of a Tcl macro file (DO file) that is to be executed by Questa after all the
HDL for black boxes has been successfully compiled, and after the Questa simulation has
completed successfully. If the Open Waveform Viewer checkbox has been selected, Model
Composer issues all commands it ordinarily uses to open and customize the waveform
viewer before running this script. This allows you to customize the waveform viewer as
desired (either by adding signals to the default viewer or by creating a fully custom viewer).
The black box tutorial includes an example that customizes the waveform viewer.

It is often convenient to use relative paths in a custom script. Relative paths are interpreted
with respect to the directory that contains the model's MDL file. A relative path in the Run
co-simulation in directory field is also interpreted with respect to the directory that
contains the model's MDL file. Thus, for example, if Run co-Simulation in directory
specifies ./questa as the directory in which Questa should run, the relative path ../foo.do
in a script definition field refers to a file named foo.do in the directory that contains
the .mdl.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 605Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=605

Fine Points

The time scale in Questa matches that in Simulink. For example, one second of Simulink
simulation time corresponds to one second of Questa simulation time. This makes it easy to
compare times at which events occur in the two settings. The typically large Simulink time scale
is also useful because it allows Model Composer to schedule events without running into
problems related to the timing characteristics of the HDL model. You need not worry too much
about the details of Model Composer event scheduling in co-simulation models.

The following example is offered to illustrate the broader points.

Figure 350: Example Model

When the above model is run, the following waveforms are displayed by Questa:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 606Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=606

Figure 351: Example Time Scale

At the time scale presented here (the above shows a time interval of six seconds), the rising clock
edge at three seconds and the corresponding transmission of data through each of the two black
boxes appear simultaneous, much as they do in the Simulink simulation. Looking at the model,
however, it is clear that the output of the first black box feeds the second black box. Both of the
black boxes in this model have combinational feed-throughs, for example, changes on inputs
translate into immediate changes on outputs. Zooming in toward the three second event reveals
how Model Composer has resolved the dependencies. Note the displayed time interval has
shrunk to ~20 ms.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 607Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=607

Figure 352: Resolved Dependencies

The above figure reveals that Model Composer has shifted the rising clock edge so it occurs
before the input value is collected from Simulink and presented to the first of the black boxes. It
then allows the value to propagate through the first black box and presents the result to the
second at a slightly later time. Zooming in still further shows that the HDL model for the first
black box includes a propagation delay which Model Composer has effectively abstracted away
through the use of large time scales. The actual delay through the first black box (exactly 1 ns)
can be seen in the figure below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 608Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=608

Figure 353: Delay Through the First Black Box

In propagating data through black box components, Model Composer allocates 1/ 1000 of the
system clock period down to 1us, then shrinks the allocation to 1/100 of the system clock period
down to 5 ns, and below that threshold resorts to delta-delay stepping, for example, issuing "run
0 ns" commands to Questa. If the HDL includes timing information (e.g,. transport delays) and the
Simulink System Period is set too low, then the simulation results are incorrect. The above model
begins to fail when the Simulink system period setting is reduced below 5e-7, which is the point
at which Model Composer resorts to delta-delay stepping of the black boxes for data
propagation.

Mult

The Xilinx Mult block implements a multiplier. It computes the product of the data on its two
input ports, producing the result on its output port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 609Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=609

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating point output always has Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point output type:

• Arithematic Type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Quantization:

Refer to the Overflow and Quantization section in the Common Options in Block
Parameter Dialog Boxes topic.

• Overflow:

Refer to the Overflow and Quantization section in the Common Options in Block
Parameter Dialog Boxes topic.

• Optional Port: Provide enable port

• Latency: This defines the number of sample periods by which the block's output is delayed.

Note: Only when latency of the Mult block is set to 4 in Model Composer, are all three pipeline
stages used in the generated Multiplier IP.

• Implementation tab: Parameters specific to the Implementation tab are as follows.

• Use behavioral HDL (otherwise use core):

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 610Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=610

The block is implemented using behavioral HDL. This gives the downstream logic synthesis
tool maximum freedom to optimize for performance or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

• Core Parameters:

• Optimize for Speed|Area: Directs the block to be optimized for either Speed or Area.

• Use embedded multipliers: This field specifies that if possible, use the XtremeDSP slice
(DSP48 type embedded multiplier) in the target device.

• Test for optimum pipelining: Checks if the Latency provided is at least equal to the
optimum pipeline length. Latency values that pass this test imply that the core produced
is optimized for speed.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE™ Documentation

LogiCORE IP Multiplier v12.0

LogiCORE IP Floating-Point Operator v7.1

MultAdd

The Xilinx MultAdd block performs both fixed-point and floating-point multiply and addition with
the a and b inputs used for the multiplication and the c input for addition or subtraction.

If the MultAdd inputs are floating point, then inputs a,b, and c must be of the same data type. If
the inputs are fixed point, then the port c binary point must be aligned to the sum of the port a
and port b binary points.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 611Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=611

• Basic tab: Parameters specific to the Basic tab are as follows.

• Operation:

• Addition: Specifies that an addition will be performed after multiplication.

• Subtraction: Specifies that a subtraction will be performed after multiplication.

• Addition or subtraction: Adds a subtract port to the block, which controls whether the
operation following multiplication is addition or subtraction (subtract High =
subtraction, subtract Low = addition).

• Optional Ports:

• Provide enable port: Adds an active-High enable port to the block interface.

• Latency:

• Latency:

This defines the number of sample periods by which the block's output is delayed. The
latency values you can set depend on whether you are performing fixed point or floating
point arithmetic:

• For fixed point arithmetic, you can only specify a latency of 0 (for no latency) or -1
(for maximum/optimal latency). If you have added an enable port to the block
interface, you can only specify a latency of -1 for fixed point arithmetic.

• For floating point arithmetic, you can only specify a latency of 0 (for no latency) or a
positive integer. If you have added an enable port to the block interface, you can only
specify a positive integer for floating point arithmetic.

See the LogiCORE IP Multiply Adder v3.0 Product Guide for details on latency in the
block.

• Output tab:

Parameters specific to the Output tab are as follows.

• Precision: This parameter allows you to specify the output precision for fixed-point
arithmetic. Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type: Arithmetic type

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 612Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xbip_multadd/v3_0/pg192-multadd.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=612

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Multiply Adder v3.0

LogiCORE IP Floating-Point Operator v7.1

Mux

The Xilinx Mux block implements a multiplexer. The block has one select input (type unsigned)
and a user-configurable number of data bus inputs, ranging from 2 to 32.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

• Number of inputs: specify a number between 2 and 32.

• Optional Ports: Other parameters used by this block are explained in the topic Common
Options in Block Parameter Dialog Boxes.

• Output tab:

• Precision: This parameter allows you to specify the output precision for fixed-point
arithmetic. Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 613Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xbip_multadd/v3_0/pg192-multadd.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=613

• Fixed-point output type:

• Arithmetic type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Number of bits: Specifies the bit location of the binary point of the output number
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Quantization:

Refer to the section Overflow and Quantization in the topic Common Options in Block
Parameter Dialog Boxes.

• Overflow:

Refer to the section Overflow and Quantization in the topic Common Options in Block
Parameter Dialog Boxes.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Natural Logarithm

The Xilinx Natural Logarithm block produces the natural logarithm of the input.

Block Parameters Dialog Box

• Basic tab: Parameters specific to the Basic tab are as follows.

• Flow Control Options:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 614Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=614

• Blocking: In this mode, the block waits for data on the input, as indicated by TREADY,
which allows back-pressure.

• NonBlocking: In this mode, the block operates every cycle in which the input is valid, no
back-pressure.

• Optional Ports tab:

Parameters specific to the Basic tab are as follows.

• Input Channel Ports:

• Has TLAST: Adds a tlast input port to the block.

• Has TUSER: Adds a tuser input port to the block.

• Control Options:

• Provide enable port: Adds an enable port to the block interface.

• Has Result TREADY: Adds a TREADY port to the output channel.

• Exception Signals::

• INVALID_OP: Adds an output port that serves as an invalid operation flag.

• DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Negate

The Xilinx Negate block computes the arithmetic negation of its input.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 615Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=615

• Basic tab: Parameters specific to the Basic tab are as follows.

• Precision: This parameter allows you to specify the output precision for fixed-point
arithmetic. Floating point output always has Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-Point Output Type:

Arithmetic Type

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Quantization: Refer to the section Overflow and Quantization in the topic Common
Options in Block Parameter Dialog Boxes.

• Overflow: Refer to the section Overflow and Quantization in the topic Common Options in
Block Parameter Dialog Boxes.

• Optional Port: Provide enable port

• Latency: This defines the number of sample periods by which the block's output is delayed.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Opmode

The Xilinx Opmode block generates a constant that is a DSP48E, DSP48E1, or DSP48E2
instruction. It is a 15-bit instruction for DSP48E, a 20-bit instruction for DSP48E1, and a 22-bit
instruction for DSP48E2. The instruction consists of the opmode, carry-in, carry-in select,
alumode, and (for DSP48E1 and DSP48E2) the inmode bits.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 616Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=616

The Opmode block is useful for generating DSP48E, DSP48E1, or DSP48E2 control sequences.
The figure below shows an example. The example implements a 35x35-bit multiplier using a
sequence of four instructions in a DSP48E block. The Opmode blocks supply the desired
instructions to a multiplexer that selects each instruction in the desired sequence.

Figure 354: DSP48E Block

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Opmode tab:

Parameters specific to the Opmode tab are as follows.

• Instruction:

• Device: Specifies whether to generate an instruction for the DSP48E, DSP48E1, or
DSP48E2 device.

• DSP Instruction:

• Operation: Displays the instruction that is generated by the block. This instruction is
also displayed on the block in the Simulink model.

• Operation select: Selects the instruction.

• Preadder output: Allows you to select the equation for the DSP48E1 Preadder.

• DSP Primitive Configuration:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 617Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=617

• Multiplier Output: Allows you to select the Multiplier Output of DSP58 to be
normal or negated.

• Preadder/Mult Function: Allows you to select the function performed by the
DSP48E2 Preadder/Multiplier.

• PREADDINSEL: Displays the setting of the PREADDINSEL static control bits that
are part of the instruction generated by the Opmode block. In the DSP48E2 slice,
the PREADDDINSEL setting (A or B) selects the input to be added with the D
input in the pre-adder.

• AMULTSEL: Displays the setting of the AMULTSEL static control bits that are part
of the instruction generated by the Opmode block. In the DSP48E2 slice, the
AMULTSEL setting (A or AD) selects the input to the 27-bit A input of the
multiplier.

• BMULTSEL: Displays the setting of the BMULTSEL static control bits that are part
of the instruction generated by the Opmode block. In the DSP48E2 slice, the
BMULTSEL setting (B or AD) selects the input to the 18-bit B input of the
multiplier.

• A register configuration: Allows you to select the A register configuration for the
DSP48E2. Select either A1 or A2.

• B register configuration: Allows you to select the B register configuration for the
DSP48E1 or DSP48E2. Select either B1 or B2.

• Custom Instruction:

Note: The Custom Instruction field is activated when you select “Custom” in the Operation select
field.

• Instruction: Allows you to select the instruction for the DSP48E, DSP48E1, or
DSP48E2.

• Z mux: Specifies the 'Z' source to the add/sub/logic unit to be one of {'0', 'C', 'PCIN',
'P','C', 'PCIN>>17',' P>>17'}.

• XY muxes: Specifies the 'XY' source to the DSP48's adder to be one of {'0','P', 'A:B', 'A*B',
'C', 'P+C', 'A:B+C' }. 'A:B' implies that A is concatenated with B to produce a value to be
used as an input to the add/sub/logic unit.

• W mux: Specifies the 'W' source to the DSP48E2’s adder to be one of {'0','P', 'RND', 'C' }.

• Carry input: Specifies the 'carry' source to the DSP48's add/sub/logic unit to be one of
{'0', '1', 'CIN', 'Round PCIN towards infinity', 'Round PCIN towards zero', 'Round P towards
infinity', 'Round P towards zero', 'Larger add/sub/acc (parallel operation)', 'Larger
add/sub/acc (sequential operation)', 'Round A*B'}.

For a description of any of the Custom Instruction options, see the following manuals:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 618Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=618

• DSP48E: Virtex-5 FPGA XtremeDSP Design Considerations (UG193)

• DSP48E1: 7 Series DSP48E1 Slice User Guide (UG479)

• DSP48E2: UltraScale Architecture DSP Slice User Guide (UG579)

Xilinx LogiCORE

The Opmode block does not use a Xilinx LogiCORE.

DSP48E Control Instruction Format

DSP48E Instruction

Operation select Notes
C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

DSP48E Custom Instruction

Instruction Field Name Location Mnemonic Notes
XY muxes op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is
MSB)

A*B Multiplication of inputs A
and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C
register

Z mux op[6:4 0 0

PCIN DSP48 cascaded input from
PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted
by 17

P>>17 DSP48 output register
downshifted by 17

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 619Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug193.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug579-ultrascale-dsp.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=619

Instruction Field Name Location Mnemonic Notes
Alumode op[10:7] X+Z Add

Z-X Subtract

Carry input op[14:12] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source. This
adds a CIN port to the
Opmode block whose value
is inserted into the
mnemonic at bit location 11.

Round PCIN toward infinity

Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc (parallel
operation)

Larger add/sub/acc
(sequential operation)

Round A*B

DSP48E1 Control Instruction Format

DSP48E1 Instruction

Operation select Notes
C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

Preadder output Notes
Zero

A2

A1

D + A2

D + A1

D

-A2

-A1

D - A2

D - A1

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 620Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=620

B register configuration Notes
B1

B2

DSP48E1 Custom Instruction

Instruction Field Name Location Mnemonic Notes
Instruction X + Z

X +NOT(Z)

NOT(X+Z)

Z - X

X XOR Z

X XNOR Z

X AND Z

X OR Z

X AND NOT(Z)

X OR NOT (Z)

X NAND Z

Z mux op[6:4] 0 0

PCIN DSP48 cascaded input from
PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted
by 17

P>>17 DSP48 output register
downshifted by 17

Operand: (Alumode) op[10:7] X+Z Add

Z-X Subtract

XY muxes op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is
MSB)

A*B Multiplication of inputs A
and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C
register

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 621Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=621

Instruction Field Name Location Mnemonic Notes
Carry input op[14:12] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source. This
adds a CIN port to the
Opmode block whose value
is inserted into the
mnemonic at bit location 11.

Round PCIN toward infinity

Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc (parallel
operation)

Larger add/sub/acc
(sequential operation)

Round A*B

DSP48E2 Control Instruction Format

DSP48E2 Instruction

Operation select Notes
C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

Preadder/Mult Function Notes
Zero

A*B

(D+A)*B

(D-A)*B

(D+A)**2

(D-A)**2

D**2

A**2

-(A**2)

(D+A)*A

(D-A)*A

(D+B)*A

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 622Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=622

Preadder/Mult Function Notes
(D-B)*A

D*A

B*A

-B*A

(D+B)**2

(D-B)**2

B**2

-(B**2)

(D+B)*B

(D-B)*B

A register configuration Notes
A1

A2

B register configuration Notes
B1

B2

DSP48E2 Custom Instruction

Instruction Field Name Location Mnemonic Notes
XY muxes op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is
MSB)

A*B Multiplication of inputs A
and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C
register

Z mux op[6:4] 0 0

PCIN DSP48 cascaded input from
PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted
by 17

P>>17 DSP48 output register
downshifted by 17

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 623Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=623

Instruction Field Name Location Mnemonic Notes
W mux op[8:7] 0

P DSP48 output register

RND Rounding Constant into W
mux

C DSP48 input C

ALU mode (Instruction) op[12:9] X + W + Z

X +W + NOT(Z)

NOT(X + W + Z)

Z - (X+W)

X XOR Z

X XNOR Z

X AND Z

X OR Z

X AND NOT(Z)

X OR NOT (Z)

X NAND Z

X NOR Z

NOT (X) OR Z

NOT (X) AND Z

Carry input op[16:13] 0 or 1 Set carry in to 0 or 1

CIN Select CIN as source. This
adds a CIN port to the
Opmode block whose value
is inserted into the
mnemonic at bit location 11.

Round PCIN toward infinity

Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc (parallel
operation)

Larger add/sub/acc
(sequential operation)

Round A*B

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 624Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=624

Instruction Field Name Location Mnemonic Notes
Pre-Adder/Mult Function op[21:17] Zero

A * B

(D + A) * B

(D - A) * B

(D + A)**2

(D - A)**2

D**2

A**2

-(A**2)

(D + A) * A

(D - A) * A

(D + B) * A

(D - B) * A

D * A

B * A

-B * A

(D + B)**2

(D - B)**2

B**2

-(B**2)

(D + B) * B

(D - B) * B

DSPCPLX Control Instruction Format

The OpMode block, when configured with a DSPCPLX device, outputs 18-bit wide data to drive
the consolidated control port of the DSPCPLX block. The DSPCPLX block internally feeds the
same setting to respective individual Real and Imaginary control input ports.

Table 57: DSPCPLX Instruction

Operation Select Notes
A*B

Custom Use the equation described in the Custom Instruction Field.

Table 58: DSPCPLX Custom Instruction

Instruction
Field Name Location Mnemonic Notes

XY Muxes op[3:0] A*B Multiplication of inputs A and B

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 625Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=625

Table 58: DSPCPLX Custom Instruction (cont'd)

Instruction
Field Name Location Mnemonic Notes

Z mux op[6:4] 0 0

PCIN DSPCPLX cascaded input from PCOUT

P DSPCPLX output register

C DSPCPLX C input

W mux op[8:7] 0

RND Rounding constant into W mux

ALU mode
(Instruction)

op[12:9] X + W + Z

Carry input op[16:13] 0 or 1 Set carry in to 0 or 1

CIN Select CIN as source. This adds a CIN port to the Opmode
block whose value is inserted into the mnemonic at bit
location 11.

Conjugate A Input op[17] 0 or 1 Select to complex conjugate the input A value

Conjugate B Input op[18] 0 or 1 Select to complex conjugate the input B value

DSP58 Control Instruction Format

DSP58 Instruction

Operation select Notes
C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

Preadder/Mult Function Notes
Zero

±A*B

±(D±A)*B

±(D±A)**2

±(D)**2

±(A)**2

±(D±A)*A

±(D±B)*A

±D*A

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 626Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=626

Preadder/Mult Function Notes
±(D±B)**2

±(B)**2

±(D±B)*B

A register configuration Notes
A1

A2

B register configuration Notes
B1

B2

DSP58 Custom Instruction

Instruction Field Name Location Mnemonic Notes
XY muxes op[3:0] 0 0

P DSP58 output register

A:B Concat inputs A and B (A is
MSB)

A*B Multiplication of inputs A
and B

C DSP58 input C

P+C DSP58 input C plus P

A:B+C Concat inputs A and B plus C
register

Z mux op[6:4] 0 0

PCIN DSP58 cascaded input from
PCOUT

P DSP58 output register

C DSP58 C input

PCIN>>17 Cascaded input downshifted
by 17

P>>17 DSP58 output register
downshifted by 17

W mux op[8:7] 0

P DSP58 output register

RND Rounding Constant into W
mux

C DSP58 input C

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 627Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=627

Instruction Field Name Location Mnemonic Notes
ALU mode (Instruction) op[12:9] X + W + Z

X +W + NOT(Z)

NOT(X + W + Z)

Z - (X+W)

X XOR Z

X XNOR Z

X AND Z

X OR Z

X AND NOT(Z)

X OR NOT (Z)

X NAND Z

X NOR Z

NOT (X) OR Z

NOT (X) AND Z

Carry input op[16:13] 0 or 1 Set carry in to 0 or 1

CIN Select CIN as source. This
adds a CIN port to the
Opmode block whose value
is inserted into the
mnemonic at bit location 11.

Round PCIN toward infinity

Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc (parallel
operation)

Larger add/sub/acc
(sequential operation)

Round A*B

Pre-Adder/Mult Function op[21:17] Zero

±A*B

±(D±A)*B

±(D±A)**2

±(D)**2

±(A)**2

±(D±A)*A

±(D±B)*A

±D*A

±(D±B)**2

±(B)**2

±(D±B)*B

Negate op[24:22] 0 or 1 Select Negate to negate the
Multiplier output

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 628Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=628

Parallel to Serial

The Parallel to Serial block takes an input word and splits it into N time-multiplexed output words
where N is the ratio of number of input bits to output bits. The order of the output can be either
least significant bit first or most significant bit first.

The following waveform illustrates the block's behavior:

Figure 355: Block Behavior

This example illustrates the case where the input width is 4, output word size is 1, and the block
is configured to output the most significant word first.

Block Interface

The Parallel to Serial block has one input and one output port. The input port can be any size.
The output port size is indicated on the block parameters dialog box.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Output order: Most significant word first or least significant word first.

• Type: Signed or unsigned.

• Number of bits: Output width. Must divide Number of Input Bits evenly.

• Binary Point: Binary point location.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 629Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=629

The minimum latency of this block is 0.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Product

The Xilinx Product block implements a scalar or complex multiplier. It computes the product of
the data on its two input channels, producing the result on its output channel. For complex
multiplication the input and output have two components: real and imaginary.

The Product block is ideal for generating a simple scalar or complex multiplier. If your
implementation will use more complicated features such as AXI4 ports or a user-specified
precision, use the Xilinx Complex Multiplier 6.0 block (if you are configuring a complex multiplier)
or Xilinx Mult block (if you are configuring a scalar multiplier) in your design instead of the
Product block.

In the Vivado® design flow, the Product block is inferred as "LogiCORE™ IP Complex Multiplier"
(if you have configured the Product block for complex multiplication) or “LogiCORE IP Multiplier”
(if you have configured the Product block for scalar multiplication) for code generation. Refer to
the LogiCORE IP Complex Multiplier v6.0 Product Guide or the LogiCORE IP Multiplier v12.0
Product Guide for details about these LogiCORE IP.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the block are as follows.

• Complex Multiplication: Specifies mode of operation: scalar multiplier (Complex
Multiplication deselected) or complex multiplier (Complex Multiplication selected).

• Optimize for: Specifies whether your design will be optimized for Performance or for
Resources when it is implemented in the Xilinx FPGA or SoC device.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 630Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=630

Based on the settings for Complex Multiplication and Optimize for, and rate and type
propagation (from the input data width), the latency value of the block will be derived
automatically for a fully pipelined circuit. This latency value will be displayed on the block in the
Simulink model.

LogiCORE Documentation

LogiCORE IP Complex Multiplier v6.0

LogiCORE IP Multiplier v12.0

Puncture

The Xilinx Puncture block removes a set of user-specified bits from the input words of its data
stream.

Based on the puncture code parameter, a binary vector that specifies which bits to remove, it
converts input data of type UFixN_0 (where N is equal to the length of the puncture code) into
output data of type UFixK_0 (where K is equal to the number of ones in the puncture code). The
output rate is identical to the input rate.

This block is commonly used in conjunction with a convolution encoder to implement punctured
convolution codes as shown in the figure below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 631Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v6_0/pg104-cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=631

Figure 356: Implementing Punctured Convolution Codes

The system shown implements a rate ½ convolution encoder whose outputs are punctured to
produce four output bits for each three input bits. The top puncture block removes the center bit
for code 0 ([1 0 1]) and bottom puncture block removes the least significant bit for code 1 ([1 1
0]), producing a 2-bit punctured output. These data streams are serialized into 1-bit in-phase
and quadrature data streams for baseband shaping.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the block are as follows:

• Puncture Code: The puncture pattern represented as a bit vector, where a zero in position i
indicates bit i is to be removed.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Reciprocal

The Xilinx Reciprocal block performs the reciprocal on the input. Currently, only the floating-
point data type is supported.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 632Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=632

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Flow Control:

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel
does block the execution of an operation if data is received on another input channel.

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another
input channel.

• Optional ports:

• Input Channel Ports:

• Has TLAST: Adds a TLAST port to the Input channel.

• Has TUSER: Adds a TUSER port to the Input channel.

• Provide enable port: Adds an enable port to the block interface.

• Has Result TREADY: Adds a TREADY port to the Result channel.

• Exception Signals:

• UNDERFLOW: Adds an output port that serves as an underflow flag.

• DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Reciprocal SquareRoot

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 633Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=633

The Xilinx Reciprocal SquareRoot block performs the reciprocal squareroot on the input.
Currently, only the floating-point data type is supported.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Flow Control:

• Blocking: Selects Blocking mode. In this mode, the lack of data on one input channel
does block the execution of an operation if data is received on another input channel.

• NonBlocking: Selects Non-Blocking mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another
input channel.

• Optional ports:

• Input Channel Ports:

• Has TLAST: Adds a TLAST port to the Input channel.

• Has TUSER: Adds a TUSER port to the Input channel.

• Provide enable port: Adds an enable port to the block interface.

• Has Result TREADY: Adds a TREADY port to the Result channel.

• Exception Signals:

• INVALID_OP: Adds an output port that serves as an invalid operation flag.

• DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 634Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=634

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Reed-Solomon Decoder 9.0
Note: This block goes into the FPGA fabric and is a Licensed Core. Please visit the Xilinx web site to
purchase the appropriate core license.

The Reed-Solomon (RS) codes are block-based error correcting codes with a wide range of
applications in digital communications and storage.

They are used to correct errors in many systems such as digital storage devices, wireless/ mobile
communications, and digital video broadcasting.

The Reed-Solomon decoder processes blocks generated by a Reed-Solomon encoder, attempting
to correct errors, and recover information symbols. The number and type of errors that can be
corrected depend on the characteristics of the code.

Reed-Solomon codes are Bose-Chaudhuri-Hocquenghem (BCH) codes, which in turn are linear
block codes. An (n,k) linear block code is a k-dimensional sub-space of an n-dimensional vector
space over a finite field. Elements of the field are called symbols. For a Reed-Solomon code, n
ordinarily is 2s-1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The decoder handles both full length and shortened codes. It is also able to handle
erasures, that is, symbols that are known with high probability to contain errors.

When the decoder processes a block, there are three possibilities:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 635Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=635

1. The information symbols are recovered. This is the case provided 2p+r <= n-k, where p is
the number of errors, and r is the number of erasures.

2. The decoder reports it is unable to recover the information symbols.

3. The decoder fails to recover the information symbols but does not report an error.

The probability of each possibility depends on the code and the nature of the communications
channel. Simulink® provides excellent tools for modeling channels and estimating these
probabilities.

Block Interface Channels and Pins

This Xilinx Reed-Solomon Decoder block is AXI4 compliant. The following describes the standard
AXI channels and pins on the interface:

• input Channel:

• input_tvalid: TVALID for the input channel.

• input_tdata_erase: Added to the channel when you select Erase on the Optional Pins tab.
It indicates the symbol currently presented on data_in should be treated as an erasure.
The signal driving this pin must be Bool.

• input_tdata_data_in: Presents blocks of n symbols to be decoded. This signal must have
type UFIX_s_0, where s is the width in bits of each symbol.

• input_tlast: Marks the last symbol of the input block. Only used to generate event outputs.
Can be tied low or high if event outputs are not used.

• input_tready: TREADY for the input channel.

• input_tuser_mark_in: marker bits for tagging data on data_in. Added to the channel when
you select Marker Bits from the Optional Pins tab.

• output Channel:

• output_tready: TREADY for the output channel.

• output_tvalid: TVALID for the output channel.

• output_tdata_data_out: Produces the information and parity symbols resulting from
decoding. The type of data_out is the same as that for data_in.

• output_tlast: Goes high when the last symbol of the last block is on tdata_data_out.
output_tlast produces a signal of type UFIX_1_0.

• output_tuser_mark_out: mark_in tagging bits delayed by the latency of the LogiCORE™.
Added to the channel when you select Marker Bits on the Optional Pins tab.

• output_tdata_info: Added to the channel when you select Info on the Optional Pins tab.
The signal marks the last information symbol of a block on tdata_data_out.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 636Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=636

• output_tdata_data_del: Added to the channel when you select Original Delayed Data on
the Optional Pins tab. The signal marks the last information symbol of a block on
tdata_data_out.

• stat Channel:

• stat_tready: TREADY for the stat channel.

• stat_tvalid: TVALID for the stat channel. You should tie this signal high if the downstream
slave is always able to accept data or if the stat channel is not used.

• stat_tdata_err_cnt: Presents a value at the time data_out presents the last symbol of the
block. The value is the number of errors that were corrected. err_cnt must have type
UFIX_b_0 where b is the number of bits needed to represent n-k.

• stat_tdata_err_found: presents a value at the time output_tdata_data_out presents
the last symbol of the block. The value 1 if the decoder detected any errors or erasures
during decoding. err_found must have type UFIX_1_0.

• stat_tdata_fail: Presents a value at the time output_tdata_data_out presents the last
symbol of the block. The value is 1 if the decoder was unable to recover the information
symbols, and 0 otherwise. This signal must be of type UFIX_1_0.

• stat_tdata_erase_cnt: Only available when erasure decoding is enabled. Presents a value at
the time dout presents the last symbol of the block. The value is the number of erasures
that were corrected This signal must be of type UFIX_b_0 where b is the number of bits
needed to represent n. Added to the channel when you select Erase from the Optional Pins
tab.

• stat_tdata_bit_err_1_to_0: Number of bits received as 1 but corrected to 0. Added to the
channel when you select Error Statistics from the Optional Pins tab. The element width is
the number of binary bits required to represent ((n-k) * Symbol_Width).

• stat_tdata_bit_err_0_to_1: Number of bits received as 0 but corrected to 1. Added to the
channel when you select Error Statistics from the Optional Pins tab. The element width is
the number of binary bits required to represent ((n-k) * Symbol_Width).

• stat_tlast: Added when Number of Channels parameter is greater than 1. Indicates that
status information for the last channel is present on output_tdata.

• event Channel:

• event_s_input_tlast_missing: This output flag indicates that the input_tlast was not
asserted when expected. You should leave this pin unconnected if it is not required.

• event_s_input_tlast_unexpected: This output flag indicates that the input_tlast was
asserted when not expected. You should leave this pin unconnected if it is not required.

• event_s_ctrl_tdata_invalid: This output flag indicates that values provided on ctrl_tdata
were illegal. The block must be reset if this is asserted. You should leave this pin
unconnected if it is not required.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 637Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=637

• ctrl Channel: This channel is only present when variable block length, number of check
symbols or puncture is selected as a block parameter.

• ctrl_tready: TREADY for the ctrl channel.

• ctrl_tvalid_r_in: TVALID for the ctrl channel.

• ctrl_tdata: This input contains the block length, the number of check symbols and puncture
select, if applicable.

• Other Optional Pins:

• aresetn:

Resets the decoder. This pin is added to the block when you specify Synchronous Reset on
the Optional Pins tab. The signal driving rst must be Bool.

aresetn must be asserted high for at least 1 sample period before the decoder can start
decoding code symbols.

• aclken: Carries the clock enable signal for the decoder. The signal driving aclken must be
Bool. Added to the block when you select the optional pin Clock Enable.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Attributes 1 tab: Parameters specific to the Attributes 1 tab are as follows.

• Code Block Specification:

• Code specification: Specifies the type of RS Decoder desired. The choices are as
follows.

• Custom: Allows you to set all the block parameters.

• DVB: Implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.

• ATSC: Implements ATSC (Advanced Television Systems Committee) standard (207,
187) shortened RS code.

• G.709: Implements G.709 Optical Transport Network standard.

• CCSDS: Implements CCSDS (Consultative Committee for Space Data Systems)
standard (255, 223) full length RS code.

• IESS-308 (All): Implements IESS-308 (INTELSAT Earth Station Standard) specification
(all) shortened RS code.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 638Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=638

• IESS-308 (126): Implements IESS-308 (INTELSAT Earth Station Standard)
specification (126, 112) shortened RS code.

• IESS-308 (194): Implements IESS-308 specification (194, 178) shortened RS code.

• IESS-308 (208): Implements IESS-308 specification (208, 192) shortened RS code.

• IESS-308 (219): Implements IESS-308 specification (219, 201) shortened RS code.

• IESS-308 (225): Implements IESS-308 specification (225, 205) shortened RS code.

• IEEE-802.16: Implements IEEE-802.16 specification (255, 239) full length RS code.

• Symbol width: Tells the width in bits for symbols in the code. The encoder support
widths from 3 to 12 (default 8).

• Field polynomial: Specifies the polynomial from which the symbol field is derived. It
must be specified as a decimal number. This polynomial must be primitive. A value of
zero indicates the default polynomial should be used. Default polynomials are listed
in the table below.

Table 59: Field Polynomials

Symbol Width Default Polynomials Array Representation
3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179

• Scaling Factor (h): (represented in the previous formula as h) specifies the scaling
factor for the code. Ordinarily, h is 1, but can be as large as 2S - 1 where s is the
symbol width. The value must be chosen so that αh is primitive. That is, h must be
relatively prime to 2S - 1.

• Generator Start: specifies the first root r of the generator polynomial. The generator
polynomial g(x), is given by:

g(x) =
n-k-1

j=0
(x- h(+j))

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 639Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=639

where α is a primitive element of the symbol field, and the scaling factor is described
below.

• Variable Block Length: When checked, the block is given a ctrl input channel.

• Symbols Per Block(n): Tells the number of symbols in the blocks the encoder
produces. Acceptable numbers range from 3 to 2S -1, where s denotes the symbol
width.

• Data Symbols(k): Tells the number of information symbols each block contains.
Acceptable values range from max(n - 256, 1) to n - 2.

• Variable Check Symbol Options:

• Variable Number of Check Symbols (r):

• Define Supported R_IN Values:

If only a subset of the possible values that could be sampled on R_IN is actually
required, then it is possible to reduce the size of the core slightly. For example, for
the Intelsat standard, the R_IN input is 5 bits wide but only requires r values of 14,
16, 18, and 20. The core size can be slightly reduced by defining only these four
values to be supported. If any other value is sampled on R_IN, the core will not
decode the data correctly.

• Number of Supported R_IN Values: Specify the number of supported R_IN values.

• Supported R_IN Definition File: This is a COE file that defines the R values to be
supported. It has the following format: radix=10; legal_r_vector=14,16,18,20; The
number of elements in the legal_r_vector must equal the specified Number of
Supported R_IN Values.

• Attributes 2 tab:

• Implementation:

• State Machine:

• Self Recovering: When checked, the block synchronously resets itself if it enters an
illegal state.

• Memory Style: Select between Distributed, Block and Automatic memory choices.

• Number Of Channels: Specifies the number of separate time division multiplexed
channels to be processed by the encoder. The encoder supports up to 128 channels.

• Output check symbols: If selected, then the entire n symbols of each block are output
on the output channel. If not selected, then only the k information symbols are output.

• Puncture Options:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 640Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=640

• Number of Puncture Patterns: Specifies how many puncture patterns the LogiCORE
needs to handle. It is set to 0 if puncturing is not required.

• Puncture Definition File: Specifies the pathname of the puncture definition file that is
used to define the puncture patterns.

A relative pathname can be specified for a COE file in the current working directory.
For example, the syntax is [cwd ‘/ieee802_16d_puncturing.coe’].

• Optional pins tab:

• Clock Enable: Adds a aclken pin to the block. This signal carries the clock enable and must
be of type Bool.

• Info: Adds the output_tdata_info pin. Marks the last information symbol of a block on
tdata_data_out.

• Synchronous Reset: Adds a aresetn pin to the block. This signal resets the block and must
be of type Bool. The signal must be asserted for at least 2 clock cycles, however, it does
not have to be asserted before the decoder can start decoding.

• Original Delayed Data: When checked, the block is given a tdata_data_del output.
Indicates that a DAT_DEL field is in the output_tdata output.

• Erase: When checked, the block is given an input_tdata_erase input pin.

• Error Statistics: adds the following error statistics outputs:

• bit_err_0_to_1: Number of bits received as 1 but corrected to 0.

• bit_err_1_to_0: Number of bits received as 0 but corrected to 1.

• Marker Bits: Adds the following pins to the block:

• input_tuser_mark_in: Carries marker bits for tagging data on input_tdata_
data_in.

• output_tuser_mark_out: Mark_in tagging bits delayed by the latency of the LogiCORE.

• Number of Marker Bits: Specifies the number of marker bits.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Reed-Solomon Decoder v9.0

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 641Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/rs_decoder/v9_0/pg107-rs-decoder.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=641

Reed-Solomon Encoder 9.0
Note: This block goes into the FPGA fabric and is a Licensed Core. Please visit the Xilinx web site to
purchase the appropriate core license.

The Reed-Solomon (RS) codes are block-based error correcting codes with a wide range of
applications in digital communications and storage. This block adheres to the AMBA® AXI4-
StreamAXI4-Stream standard.

They are used to correct errors in many systems such as digital storage devices, wireless or
mobile communications, and digital video broadcasting.

The Reed-Solomon encoder augments data blocks with redundant symbols so that errors
introduced during transmission can be corrected. Errors can occur for a number of reasons (noise
or interference, scratches on a CD, etc.). The Reed-Solomon decoder attempts to correct errors
and recover the original data. The number and type of errors that can be corrected depends on
the characteristics of the code.

A typical system is shown below:

Figure 357: Typical System

Digital
Source

RS
Encoder

Communication
Channel

RS
Encoder

Dig
Sig

X23235-091919

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 642Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=642

Reed-Solomon codes are Bose-Chaudhuri-Hocquenghem (BCH) codes, which in turn are linear
block codes. An (n, k) linear block code is a k-dimensional sub space of an n-dimensional vector
space over a finite field. Elements of the field are called symbols. For a Reed-Solomon code, n
ordinarily is 2S -1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The encoder handles both full length and shortened codes.

The encoder is systematic. This means it constructs code blocks of length n from information
blocks of length k by adjoining n-k parity symbols.

Figure 358: Systematic Encoder

n

k n - k

DATA PARITY
X23234-091919

A Reed-Solomon code is characterized by its field and generator polynomials. The field
polynomial is used to construct the symbol field, and the generator polynomial is used to
calculate parity symbols. The encoder allows both polynomials to be configured. The generator
polynomial has the form:

g(x)=(x-αj)(x-αj+1...(x-αi+n-k-1)

where α is a primitive element of the finite field having n + 1 elements.

Block Interface Channels and Pins

The Xilinx Reed-Solomon Decoder 8.0 block is AXI4 compliant. The following describes the
standard AXI channels and pins on the interface:

• input Channel:

• input_tvalid: TVALID for the input channel.

• input_tdata_data_in: Presents blocks of n symbols to be decoded. This signal must have
type UFIX_s_0, where s is the width in bits of each symbol.

• input_tlast: Marks the last symbol of the input block. Only used to generate event outputs.
Can be tied low or high if event outputs are not used.

• input_tready: TREADY for the input channel.

• input_tuser_marker: Marker bits for tagging data on input_tdata_data_in. Added to the
channel when you select Marker Bits from the Detailed Implementation tab.

• output Channel:

• output_tready: TREADY for the output channel. Added to the channel when you select
Output TREADY from the Optional Pins tab.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 643Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=643

• output_tvalid: TVALID for the output channel.

• output_tdata_data_out: Produces the information and parity symbols resulting from
decoding. The type of data_out is the same as that for data_in.

• output_tlast: Goes high when the last symbol of the last block is on tdata_data_out.
output_tlast produces a signal of type UFIX_1_0.

• output_tuser_maker: This pin is available when user selects "Marker Bits" from the
Detailed Implementation tab.

• event Channel:

• event_s_input_tlast_missing: This output flag indicates that the input_tlast was not
asserted when expected. You should leave this pin unconnected if it is not required.

• event_s_input_tlast_unexpected: This output flag indicates that the input_tlast was
asserted when not expected. You should leave this pin unconnected if it is not required.

• event_s_ctrl_tdata_invalid: This output flag indicates that values provided on ctrl_tdata
were illegal. This pin is available when "Variable Block Length" or "Variable Number of
Check Symbols" are selected on the GUI.

• ctrl Channel: This channel is only present when variable block length or number of check
symbols is selected as a block parameter.

• ctrl_tvalid: TVALID for the ctrl channel.

• ctrl_tdata_n_in: This signal is only present if “Variable Block Length” is selected in the GUI.
This allows the block length to be changed every block. The ctrl_tdata_n_in signal must
have type UFIX_s_0, where s is the width in bits of each symbol. Unless there is an R_IN
field, the number of check symbols is fixed, so varying n automatically varies k.

• ctrl_tdata_r_in: This field is only present if “Variable Number of Check Symbols” is selected
in the GUI. It allows the number of check symbols to be changed every block. The new
block's length, r_block, is set to ctrl_tdata_r_in sampled. The ctrl_tdata_r_in signal must
have type UFIX_p_0, where p is the number of bits required to represent the parity bits (n-
k) in the default code word, n being the "Symbols Per Block" and k being "Data Symbols".
Selecting this input significantly increases the size of the core.

Other Optional Pins

• aresetn: Resets the encoder. This pin is added to the block when you specify ARESETn on the
Detailed Implementation tab. The signal driving ARESETn must be Bool.

aresetn must be asserted low for at least 2 clock periods and at least 1 sample period before the
decoder can start decoding code symbols.

• aclken: Carries the clock enable signal for the encoder. The signal driving aclken must be Bool.
Added to the block when you select the optional pin ACLKEN.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 644Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=644

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Attributes: Parameters specific to the Attributes tab are as follows.

• Code Block Specification:

• Code specification: specifies the encoder type desired. The choices are:

• Custom: Allows you to set all the block parameters.

• DVB: Implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.

• ATSC: Implements ATSC (Advanced Television Systems Committee) standard (207,
187) shortened RS code

• G_709: Implements G.709 Optical Transport Network standard.

• ETSI_BRAN: Implements the ETSI Project standard for Broadband Radio Access
Networks (BRAN).

• CCSDS: Implements CCSDS (Consultative Committee for Space Data Systems)
standard (255, 223) full length RS code.

• ITU_J_83_Annex_B: Implements International Telecommunication Union(ITU)-J.83
Annex B specification (128, 122) extended RS code.

• IESS-308 (126): Implements IESS-308 (INTELSAT Earth Station Standard)
specification (126, 112) shortened RS code.

• IESS-308 (194): Implements IESS-308 specification (194, 178) shortened RS code.

• IESS-308 (208): Implements IESS-308 specification (208, 192) shortened RS code.

• IESS-308 (219): Implements IESS-308 specification (219, 201) shortened RS code.

• IESS-308 (225): Implements IESS-308 specification (225, 205) shortened RS code.

• Variable Number of Check Symbols (r): False, true. When checked, the ctrl_tdata_r_in
and ctrl_tdata_n_in pins become available on the block.

• Variable Block Length: False, true. When checked, the ctrl_tdata_n_in pin becomes
available on the block.

• Symbol width: Tells the width in bits for symbols in the code. The encoder support
widths from 3 to 12 and the default value is 8.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 645Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=645

• Field polynomial: specifies the polynomial from which the symbol field is derived. It
must be specified as a decimal number. This polynomial must be primitive. A value of
zero indicates the default polynomial should be used. Default polynomials are listed in
the table below.

Table 60: Field Polynomials

Symbol Width Default Polynomials Array Representation
3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179

• Scaling Factor (h): (represented in the previous formula as h) specifies the scaling factor
for the code. Ordinarily, h is 1, but can be as large as 2S - 1 where s is the symbol width.
The value must be chosen so that αh is primitive. That is, h must be relatively prime to
2S - 1.

• Generator Start: Specifies the first root r of the generator polynomial. The generator
polynomial g(x), is given by:

g(x) =
n-k-1

j=0
(x- h(+j))

where α is a primitive element of the symbol field, and the scaling factor is described
below.

• Symbols Per Block(n): Tells the number of symbols in the blocks the encoder produces.
Acceptable numbers range from 3 to 2S -1, where s denotes the symbol width.

• Data Symbols(k): Tells the number of information symbols each block contains.
Acceptable values range from max(n - 256, 1) to n - 2.

• Detailed Implementation tab:

• Implementation:

• Check Symbol Generator Optimization: This option is available when "Variable Number
of Check Symbols" option is selected on the GUI.

• Fixed Architecture: The check symbol generator is implemented using a highly
efficient fixed architecture.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 646Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=646

• Area: The check symbol generator implementation is optimized for area and speed
efficiency. The range of input, ctrl_tdata_n_in, is reduced.

• Flexibility: The check symbol generator implementation is optimized to maximize the
range of input of ctrl_tdata_n_in.

• Memory Style: Select between Distributed, Block and Automatic memory choices. This
option is available only for CCSDS codes.

• Number Of Channels: Specifies the number of separate time division multiplexed
channels to be processed by the encoder. The encoder supports up to 128 channels.

• Optional Pins:

• ACLKEN: Adds a aclken pin to the block. This signal carries the clock enable and must
be of type Bool.

• Output TREADY: When selected, the output channels will have a TREADY and hence
support the AXI4handshake protocol with inherent back-pressure.

• ARESETn: Adds a aresetn pin to the block. This signal resets the block and must be of
type Bool. aresetn must be asserted low for at least 2 clock periods and at least 1
sample period before the decoder can start decoding code symbols.

• Info bit: Adds the output_tdata_info pin. Marks the last information symbol of a block
on tdata_data_out.

• Marker Bits: Adds the following pins to the block:

• input_tuser_user: Carries marker bits for tagging data on input_tdata_ data_in.

• output_tuser_user: mark_in tagging bits delayed by the latency of the LogiCORE.

• Number of Marker Bits: Specifies the number of marker bits.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Reed-Solomon Encoder v9.0

Register

The Xilinx Register block models a D flip-flop-based register, having latency of one sample
period.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 647Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/rs_encoder/v9_0/pg025_rs_encoder.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=647

Block Interface

The block has one input port for the data and an optional input reset port. The initial output
value is specified by you in the block parameters dialog box (below). Data presented at the input
will appear at the output after one sample period. Upon reset, the register assumes the initial
value specified in the parameters dialog box.

The Register block differs from the Xilinx Delay block by providing an optional reset port and a
user specifiable initial value.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Initial value: specifies the initial value in the register.

• Optional Ports:

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Xilinx LogiCORE

The Register block is implemented as a synthesizable VHDL module. It does not use a Xilinx
LogiCORE™.

Reinterpret

The Xilinx Reinterpret block forces its output to a new type without any regard for retaining the
numerical value represented by the input.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 648Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=648

The binary representation is passed through unchanged, so in hardware this block consumes no
resources. The number of bits in the output will always be the same as the number of bits in the
input.

The block allows for unsigned data to be reinterpreted as signed data, or, conversely, for signed
data to be reinterpreted as unsigned. It also allows for the reinterpretation of the data's scaling,
through the repositioning of the binary point within the data. The Xilinx Scale block provides an
analogous capability.

An example of this block's use is as follows: if the input type is 6 bits wide and signed, with 2
fractional bits and the output type is forced to be unsigned with 0 fractional bits, then an input of
-2.0 (1110.00 in binary, two's complement) would be translated into an output of 56 (111000 in
binary).

This block can be particularly useful in applications that combine it with the Xilinx Slice block or
the Xilinx Concat block. To illustrate the block's use, consider the following scenario:

Given two signals, one carrying signed data and the other carrying two unsigned bits (a
UFix_2_0), we want to design a system that concatenates the two bits from the second signal
onto the tail (least significant bits) of the signed signal.

We can do so using two Reinterpret blocks and one Concat block. The first Reinterpret block is
used to force the signed input signal to be treated as an unsigned value with its binary point at
zero. The result is then fed through the Concat block along with the other signal's UFix_2_0. The
Concat operation is then followed by a second Reinterpret that forces the output of the Concat
block back into a signed interpretation with the binary point appropriately repositioned.

Though three blocks are required in this construction, the hardware implementation is realized as
simply a bus concatenation, which has no cost in hardware.

Block Parameters

Parameters specific to the block are as follows.

• Force Arithmetic Type: When checked, the Output Arithmetic Type parameter can be set and
the output type is forced to the arithmetic type chosen according to the setting of the Output
Arithmetic Type parameter. When unchecked, the arithmetic type of the output is unchanged
from the arithmetic type of the input.

• Output Arithmetic Type: The arithmetic type (unsigned or signed, 2's complement, Floating-
point) to which the output is to be forced.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 649Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=649

• Force Binary Point: When checked, the Output Binary Point parameter can be set and the
binary point position of the output is forced to the position supplied in the Output Binary
Point parameter. When unchecked, the arithmetic type of the output is unchanged from the
arithmetic type of the input.

• Output Binary Point: The position to which the output's binary point is to be forced. The
supplied value must be an integer between zero and the number of bits in the input (inclusive).

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Relational

The Xilinx Relational block implements a comparator.

The supported comparisons are the following:

• equal-to (a = b)

• not-equal-to (a != b)

• less-than (a < b)

• greater-than (a > b)

• less-than-or-equal-to (a <= b)

• greater-than-or-equal-to (a >= b)

• The output of the block is a Bool.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

The only parameter specific to the Relational block is:

• Comparison: specifies the comparison operation computed by the block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 650Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=650

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Requantize

The Xilinx Requantize block requantizes and scales its input signals.

The Xilinx Requantize block requantizes each input sample to a number of a desired fixed point
precision output. For example, a fixed point signed (two's complement) or unsigned number can
be requantized to an output with lesser or greater number of bits and realign its binary point
precision.

This block also scales its input by a power of two. The power can be either positive or negative.
The scale operation has the effect of moving the binary point without changing the bits in the
container.

The Requantize block is used to requantize and scale its input signals. If you are only performing
one of these operations, but not both, you can use a different block in the HDL blockset to
perform that operation.

• To requantize your input without scaling, use the Convert block in the HDL blockset.

• To scale your input without requantizing, use the Scale block in the HDL blockset.

Quantization

Quantization errors occur when the number of fractional bits is insufficient to represent the
fractional portion of a value. This block uses symmetric round during quantization for any
insufficient input data.

Round (unbiased: +/- inf) is also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the MATLAB round() function. This method rounds
the value to the nearest desired bit away from zero. When there is a value at the midpoint
between two possible rounded values, the one with the larger magnitude is selected. For
example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is halfway between
01.01 and 01.10, and 01.10 is further from zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 651Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=651

Overflow

Overflow errors occur when a value lies outside the representable range. In case of data overflow
this block saturates the data to the largest positive/smallest negative value.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows.

• Scale factor s (scale output by 2^s): The scale factor can be a positive or negative integer. The
output of the block is i*2^k, where i is the input value and k is the scale factor. The effect of
scaling is to move the binary point, which in hardware has no cost (a shift, on the other hand,
might add logic).

• Fixed-point Precision:

• Number of bits: Specifies the total number of bits, including the binary point bit width.

• Binary point: Specifies the bit location of the binary point. Bit zero is the Least Significant
Bit.

Reset Generator

The Reset Generator block captures the user's reset signal that is running at the system sample
rate, and produces one or more downsampled reset signal(s) running at the rates specified on the
block.

The downsampled reset signals are synchronized in the same way as they are during startup. The
RDY output signal indicates when the downsampled resets are no longer asserted after the input
reset is detected.

Block Parameters

The block parameters dialog box shown below can be invoked by double-clicking the icon in your
Simulink® model.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 652Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=652

Figure 359: Block Parameters

You specify the design sample rates in MATLAB® vector format as shown above. Any number of
outputs can be specified.

ROM

The Xilinx ROM block is a single port read-only memory (ROM).

Values are stored by word and all words have the same arithmetic type, width, and binary point
position. Each word is associated with exactly one address. An address can be any unsigned
fixed-point integer from 0 to d-1, where d denotes the ROM depth (number of words). The
memory contents are specified through a block parameter. The block has one input port for the
memory address and one output port for data out. The address port must be an unsigned fixed-
point integer. The block has two possible Xilinx LogiCORE™ implementations, using either
distributed or block memory.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 653Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=653

Parameters specific to the Basic tab are as follows.

• Depth: Specifies the number of words stored; must be a positive integer.

• Initial value vector: Specifies the initial value. When the vector is longer than the ROM
depth, the vector's trailing elements are discarded. When the ROM is deeper than the
vector length, the ROM's trailing words are set to zero. The initial value vector is saturated
or rounded according to the data precision specified for the ROM.

• Memory Type: Specifies whether the ROM will be implemented using Distributed ROM or
Block ROM. Depending on your selection, the ROM will be inferred or implemented as
follows when the design is compiled:

• If the block will be implemented in Distributed memory, the Distributed Memory
Generator v8.0 LogiCORE IP will be inferred or implemented when the design is
compiled. This is described in Distributed Memory Generator LogiCORE IP Product Guide
(PG063).

• If the block will be implemented in block RAM, the XPM_MEMORY_SPROM (Single Port
ROM) macro will be inferred or implemented when the design is compiled. For
information on the XPM_MEMORY_SPROM Xilinx Parameterized Macro (XPM), refer to
UltraScale Architecture Libraries Guide (UG974).

• Optional Ports:

• Provide reset port for output register: When selected, allows access to the reset port
available on the output register of the Block ROM. The reset port is available only when
the latency of the Block ROM is set to 1.

• Initial value for output register: Specifies the initial value for output register. The initial
value is saturated and rounded according to the data precision specified for the ROM.

• Output tab: Parameters specific to the Output tab are as follows.

• Output Type: Specify the data type of the output.

• Boolean

• Fixed-point

• Floating-point

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Floating-point Precision:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 654Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=latest;d=pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=654

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Distributed Memory Generator v8.0

UltraScale Architecture Libraries Guide - XPM_MEMORY_SPROM Macro (UltraRAM)

For the block memory, the address width must be equal to ceil(log2(d)) where d denotes the
memory depth. The maximum width of data words in the block memory depends on the depth
specified; the maximum depth is depends on the device family targeted. The tables below
provide the maximum data word width for a given block memory depth.

Sample Time

The Sample Time block reports the normalized sample period of its input. A signal's normalized
sample period is not equivalent to its Simulink absolute sample period. In hardware, this block is
implemented as a constant.

Scalar2Vector
The Scalar2Vector block converts scalar type input to vector type output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 655Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=655

Description

The Xilinx® Scalar2Vector block slices the binary value of the input scalar based on the Width
parameter to produce a vector output. For example, if the input is 3720 (binary value 111 010
001 000) of type Ufix_12_0, SSR is 4, and the Width parameter value is 3, then this block
slices the input binary value into 4 groups, each of 3 bits, so that it produces the output [0 1 2 7].

Data Type Support

The input must be a Boolean or unsigned fixed-point signal. The output type is normally unsigned
with binary point at zero, but can be Boolean when the Width parameter is 1.

Block Parameters

Width: This parameter defines the number of bits for each element of output vector. This
parameter is decided by:

Width = Input data width (bits)/SSR

This formula must be satisfied when setting up the block parameters.

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control the
processing of multiple data samples on every sample period. This block enables 1-D vector
support for the primary block operation.

Scale

The Xilinx Scale block scales its input by a power of two. The power can be either positive or
negative. The block has one input and one output. The scale operation has the effect of moving
the binary point without changing the bits in the container

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 656Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=656

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

The only parameter that is specific to the Scale block is Scale factor s. It can be a positive or
negative integer. The output of the block is i*2^k, where i is the input value and k is the scale
factor. The effect of scaling is to move the binary point, which in hardware has no cost (a shift, on
the other hand, might add logic).

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Xilinx LogiCORE

The Scale block does not use a Xilinx LogiCORE.

Serial to Parallel

The Serial to Parallel block takes a series of inputs of any size and creates a single output of a
specified multiple of that size. The input series can be ordered either with the most significant
word first or the least significant word first.

The following waveform illustrates the block's behavior:

Figure 360: Serial to Parallel Behavior

This example illustrates the case where the input width is 1, output width is 4, word size is 1 bit,
and the block is configured for most significant word first.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 657Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=657

Block Interface

The Serial to Parallel block has one input and one output port. The input port can be any size.
The output port size is indicated on the block parameters dialog box.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Input order: Least or most significant word first.

• Arithmetic type: Signed or unsigned output.

• Number of bits: Output width which must be a multiple of the number of input bits.

• Binary point: Output binary point location

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

An error is reported when the number of output bits cannot be divided evenly by the number of
input bits. The minimum latency for this block is zero.

Shift

The Xilinx Shift block performs a left or right shift on the input signal. The result will have the
same fixed-point container as that of the input.

Block Parameters

Parameters specific to the Shift block are:

• Shift direction: specifies a direction, Left or Right. The Right shift moves the input toward the
least significant bit within its container, with appropriate sign extension. Bits shifted out of the
container are discarded. The Left shift moves the input toward the most significant bit within
its container with zero padding of the least significant bits. Bits shifted out of the container
are discarded.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 658Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=658

• Number of bits: specifies how many bits are shifted. If the number is negative, direction
selected with Shift direction is reversed.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Xilinx LogiCORE

The Shift block does not use a Xilinx LogiCORE™.

Sine Wave

The Xilinx Sine Wave block generates a sine wave, using simulation time as the time source.

The Xilinx Sine Wave block outputs a sinusoidal waveform. Outputs from the block can be a sine
wave, a cosine wave, or both. When implemented in a Xilinx FPGA or SoC, the Sine Wave block
optimizes the block parameters for your target device.

The output of the Sine Wave block is determined by this equation:

y = sin (2π(k+o)/p)

where

p = number of time samples per sine wave period

k = repeating integer value that ranges from 0 to p-1

o = offset (phase shift) of the signal

In this block, Model Composer sets k equal to 0 at the first time step and computes the block
output, using the formula above. At the next time step, Simulink increments k and re-computes
the output of the block. When k reaches p, Simulink resets k to 0 before computing the block
output. This process continues until the end of the simulation.

The output characteristic of the Sine Wave block is determined by:

Samples per period = 2π / (Frequency * Sample Time)

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 659Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=659

Number of offset samples = Phase Offset * Samples per period / 2π

The Sine Wave block is ideal for generating simple sine and cosine waves. If your sine wave
implementation will use more complicated features such as a phase generator, multiple channel
support, or AXI4 ports, use the Xilinx DDS Compiler 6.0 block in your design instead of the Sine
Wave block.

In the Vivado design flow, the Sine Wave block is inferred as "LogicCore IP DDS Compiler v6.0"
for code generation.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the block are as follows:

• System Parameters:

• Select the input format: Specifies whether the frequency and phase offset inputs are
entered as a Frequency (Hz) or an angular velocity (Radians) value.

• Frequency: Specifies the frequency, either in Hertz or radians. The default is 1.

• Phase Offset: Specifies the phase shift, either in Hertz or radians. The default is 0.

• Output Selection:

• Sine_and_Cosine: Places both a sine and cosine output port on the block.

• Sine: Places only a sine output port on the block.

• Cosine: Places only a cosine output port on the block.

• Spurious Free Dynamic Range (SFDR): Specifies the precision of the output produced by the
Sine Wave block. This sets the output width as well as internal bus widths, and controls
various implementation decisions.

• Explicit Sample Period: If checked, the Sine Wave block uses the explicit sample time
specified in the Sample Period box below. If not checked, the System Generator base period
will be used as block sample time.

• Sample Period: If Explicit Sample Period is selected, specifies the sample time for the block.

Example

A simple use case of generating sinusoidal signal using Sine Wave block is shown below.

To generate a 20 KHz sine wave with π/2 phase offset in a system running at sample period of
(1/1e6) or 1 MHz, use the following specification on the Sine Wave block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 660Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=660

Figure 361: Sine Wave Specifications

These settings generate this sine wave:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 661Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=661

Figure 362: Sine Wave Settings

Wavelength of sine wave = Simulink Sample Period / Frequency => 1MHz/20KHz = 0.5 * 10-4

The spectrum view of the sine wave is:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 662Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=662

Figure 363: Sine Wave Output

Also:

Number of Samples per period = (2π/(1/1e6 * 20e3))

= 50 (Total number of samples in a single cycle)

Number of offset samples = (π/2) * (50/2π) = 50/4

LogiCORE Documentation

LogiCORE IP DDS Compiler v6.0 Product Guide

Single Port RAM

The Xilinx Single Port RAM block implements a random access memory (RAM) with one data
input and one data output port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 663Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dds_compiler/v6_0/pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=663

Block Interface

The block has one output port and three input ports for address, input data, and write enable
(WE). Values in a Single Port RAM are stored by word, and all words have the same arithmetic
type, width, and binary point position.

A single-port RAM can be implemented using either block memory, distributed memory, or
UltraRAM resources in the FPGA. Each data word is associated with exactly one address that
must be an unsigned integer in the range 0 to d-1, where d denotes the RAM depth (number of
words in the RAM). An attempt to read past the end of the memory is caught as an error in the
simulation, though if a block memory implementation is chosen, it can be possible to read
beyond the specified address range in hardware (with unpredictable results). When the single-
port RAM is implemented in distributed memory or block RAM, the initial RAM contents can be
specified through the block parameters.

The write enable signal must be Bool, and when its value is 1, the data input is written to the
memory location indicated by the address input. The output during a write operation depends on
the choice of memory implementation.

The behavior of the output port depends on the write mode selected (see below). When the WE
is 0, the output port has the value at the location specified by the address line.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic Tab:

Parameters specific to the Basic tab are as follows.

• Depth: The number of words in the memory; must be a positive integer.

• Initial value vector:

The Initial value vector stores the initial contents of the memory. When the vector length
exceeds the memory depth, values with index higher than depth are ignored. When the
depth exceeds the vector length, memory locations with addresses higher than the vector
length are initialized to zero. Initialization values are saturated and rounded (if necessary)
according to the precision specified on the data port.

UltraRAM memory is initialized to all 0's during power up or device reset. If implemented in
UltraRAM, the Single Port RAM block cannot be initialized to user defined values.

• Memory Type: Option to select whether the single-port RAM will be implemented using
Distributed memory, Block RAM, or UltraRAM.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 664Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=664

Depending on your selection for Memory Type, the single-port RAM will be inferred or
implemented as follows when the design is compiled:

• If the block will be implemented in Distributed memory, the Distributed Memory
Generator v8.0 LogiCORE IP will be inferred or implemented when the design is
compiled. This LogiCORE IP is described in Distributed Memory Generator LogiCORE IP
Product Guide (PG063).

• If the block will be implemented in block RAM or UltraRAM, the
XPM_MEMORY_SPRAM (Single Port RAM) macro will be inferred or implemented when
the design is compiled. For information on the XPM_MEMORY_SPRAM Xilinx
Parameterized Macro (XPM), refer to UltraScale Architecture Libraries Guide (UG974).

• Write Mode: Specifies memory behavior when WE is asserted. Supported modes are: Read
after write, Read before write, and No read On write. Read after write indicates the output
value reflects the state of the memory after the write operation. Read before write
indicates the output value reflects the state of the memory before the write operation. No
read on write indicates that the output value remains unchanged irrespective of change of
address or state of the memory. There are device specific restrictions on the applicability of
these modes. Also refer to the Write Modes and Hardware Notes topics below for more
information.

• Provide reset port for output register: For block RAM or UltraRAM, exposes a reset port
controlling the output register of the RAM. This port does not reset the memory contents
to the initialization value.

Note: For Block RAM or UltraRAM, the reset port is available only when the latency of the Block
RAM is greater than or equal to 1.

• Initial value for output register:

for Block RAM, the initial value for the output register. The initial value is saturated and
rounded as necessary according to the precision specified on the data port of the Block
RAM.

For UltraRAM, the output register is initialized to all 0's. The UltraRAM output register
cannot be initialized to user defined values.

Other parameters used by this block are explained in the Common Options in Block Parameter
Dialog Boxes topic at the beginning of this chapter.

Write Modes

During a write operation (WE asserted), the data presented to the data input is stored in memory
at the location selected by the address input. You can configure the behavior of the data out port
A upon a write operation to one of the following modes:

• Read after write

• Read before write

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 665Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=latest;d=pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=665

• No read on write

These modes can be described with the help of the figure shown below. In the figure the memory
has been set to an initial value of 5 and the address bit is specified as 4. When using No read on
write mode, the output is unaffected by the address line and the output is the same as the last
output when the WE was 0. For the other two modes, the output is obtained from the location
specified by the address line, and hence is the value of the location being written to. This means
that the output can be either the old value (Read before write mode), or the new value (Read
after write mode).

Figure 364: Configuration for Read After Write

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 666Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=666

Figure 365: Write Output

Hardware Notes

The distributed memory LogiCORE™ supports only the Read before write mode. The Xilinx
Single Port RAM block also allows distributed memory with Write Mode option set to Read after
write when specified latency is greater than 0. The Read after write mode for the distributed
memory is achieved by using extra hardware resources (a MUX at the distributed memory output
to latch data during a write operation).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 667Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=667

LogiCORE and XPM Documentation

LogiCORE IP Distributed Memory Generator v8.0 (Distributed Memory)

UltraScale Architecture Libraries Guide - XPM_MEMORY_SPRAM Macro (UltraRAM)

Slice

The Xilinx Slice block allows you to slice off a sequence of bits from your input data and create a
new data value. This value is presented as the output from the block. The output data type is
unsigned with its binary point at zero.

The block provides several mechanisms by which the sequence of bits can be specified. If the
input type is known at the time of parameterization, the various mechanisms do not offer any
gain in functionality. If, however, a Slice block is used in a design where the input data width or
binary point position are subject to change, the variety of mechanisms becomes useful. The block
can be configured, for example, always to extract only the top bit of the input, only the integral
bits, or only the first three fractional bits. The following diagram illustrates how to extract all but
the top 16 and bottom 8 bits of the input.

Figure 366: Extracting Top 16 and Bottom 8 Bits

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the block are as follows.

• Width of slice (Number of bits): Specifies the number of bits to extract.

• Boolean output: Tells whether single bit slices should be type Boolean.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 668Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=668

• Specify range as: (Two bit locations | Upper bit location + width |Lower bit location + width).
Allows you to specify either the bit locations of both end-points of the slice or one end-point
along with number of bits to be taken in the slice.

• Offset of top bit: Specifies the offset for the ending bit position from the LSB, MSB or binary
point.

• Offset of bottom bit: Specifies the offset for the ending bit position from the LSB, MSB or
binary point.

• Relative to: Specifies the bit slice position relative to the Most Significant Bit (MSB), Least
Significant Bit (LSB), or Binary point of the top or the bottom of the slice.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

SquareRoot

The Xilinx SquareRoot block performs the square root on the input. Currently, only the floating-
point data type is supported.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Flow Control:

• Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel
does block the execution of an operation if data is received on another input channel.

• NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another
input channel.

• Optional ports:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 669Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=669

• Input Channel Ports:

• Has TLAST: Adds a TLAST port to the Input channel.

• Has TUSER: Adds a TUSER port to the Input channel.

• Provide enable port: Adds an enable port to the block interface.

• Has Result TREADY: Adds a TREADY port to the Result channel.

• Exception Signals:

• INVALID_OP: Adds an output port that serves as an invalid operation flag.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

System Generator
.

The System Generator token serves as a control panel for controlling system and simulation
parameters, and it is also used to invoke the code generator for netlisting. Every Simulink® model
containing any element from the HDL Blockset must contain at least one System Generator
token. Once a System Generator token is added to a model, it is possible to specify how code
generation and simulation should be handled.

Token Parameters

The parameters dialog box can be invoked by double-clicking the icon in your Simulink model.

• Compilation tab:

Parameters specific to the Compilation tab are as follows.

• Board:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 670Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=670

Specifies a Xilinx, Partner, or Custom board you will use to test your design. You can
specify a Board for any of the compilation targets you select with the Compilation setting
described below (IP Catalog, Hardware Co-Simulation, Synthesized Checkpoint, or HDL
Netlist).

When you select a Board, the Part field displays the name of the Xilinx device on the
selected Board, and this part name cannot be changed.

For a Partner board or a custom board to appear in the Board list, you must configure
Model Composer to access the board files that describe the board.

• Part: Defines the Xilinx FPGA or SoC part to be used. If you have selected a Board, the
Part field will display the name of the Xilinx device on the selected Board, and this part
name cannot be changed.

• Compilation:

Specifies the type of compilation result that should be produced when the code generator
is invoked. The default compilation type is IP Catalog.

The Settings button is activated when one of these compilation types is selected:

• IP Catalog compilation: The Settings button brings up a dialog box that allows you to
add a description of the IP that will be placed in the IP catalog.

• Hardware Co-Simulation (JTAG) compilation: The Settings button brings up a dialog box
that allows you to use burst data transfers to speed up JTAG hardware co-simulation.

• Hardware Description Language: Specifies the HDL language to be used for compilation of
the design. The possibilities are VHDL and Verilog.

• VHDL library: Specifies the name of VHDL work library for code generation. The default
name is xil_defaultlib.

• Use STD_LOGIC type for Boolean or 1 bit wide gateways: If your design's Hardware
Description Language (HDL) is VHDL, selecting this option will declare a Boolean or 1-bit
port (Gateway In or Gateway Out) as a STD-LOGIC type. If this option is not selected,
Model Composer will interpret Boolean or 1-bit ports as vectors.

• Target directory: Defines where Model Composer should write compilation results.
Because Model Composer and the FPGA physical design tools typically create many files, it
is best to create a separate target directory, for example, a directory other than the
directory containing your Simulink® model files.

• Synthesis strategy: Choose a Synthesis strategy from the pre-defined strategies in the
drop-down list.

• Implementation strategy: Choose an Implementation strategy from the pre-defined
strategies in the drop-down list.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 671Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=671

• Create interface document:

When this box is checked and the Generate button is activated for netlisting, Model
Composer creates an HTM document that describes the design being netlisted. This
document is placed in a “documentation” subfolder under the netlist folder.

Adding Designer Comments to the Generated Document: If you want to add personalized
comments to the auto-generated document, follow this procedure.

1. As shown below, double click the Simulink canvas at the top level and add a comment
that starts with Designer Comments:

Figure 367: Designer Comments

2. Double click on the System Generator token, click the Create interface document box
at the bottom of the Compilation tab, then click Generate.

3. When netlisting is complete, navigate to the documentation subfolder underneath the
netlist folder and double click on the HTM document. As shown below,

4. Designer Comments section is created in the document and your personalized
comments are included.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 672Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=672

Figure 368: Designer Comments Section

• Create testbench: This instructs Model Composer to create an HDL test bench. Simulating
the test bench in an HDL simulator compares Simulink simulation results with ones
obtained from the compiled version of the design. To construct test vectors, Model
Composer simulates the design in Simulink, and saves the values seen at gateways. The top
HDL file for the test bench is named <name>_testbench.vhd/.v, where <name> is a name
derived from the portion of the design being tested.

Note: Testbench generation is not supported for designs that have gateways (Gateway In or
Gateway Out) configured as an AXI4-Lite Interface

• Model Upgrade: Generates a Status Report that helps you identify and upgrade blocks that
are not the latest available.

• Clocking tab:

Parameters specific to the Clocking tab are as follows.

• Enable multiple clocks: Must be enabled in the top-level System Generator token of a
multiple clock design. This indicates to the Code Generation engine that the clock
information for the various Subsystems must be obtained from the System Generator
tokens contained in those Subsystems. If not enabled, then the design will be treated as a
single clock design where all the clock information is inherited from the top-level System
Generator token.

• FPGA clock period(ns): Defines the period in nanoseconds of the system clock. The value
need not be an integer. The period is passed to the Xilinx implementation tools through a
constraints file, where it is used as the global PERIOD constraint. Multicycle paths are
constrained to integer multiples of this value.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 673Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=673

• Clock pin location: Defines the pin location for the hardware clock. This information is
passed to the Xilinx implementation tools through a constraints file. This option should not
be specified if the Model Composer design is to be included as part of a larger HDL design.

• Provide clock enable clear pin: This instructs Model Composer to provide a ce_clr port
on the top-level clock wrapper. The ce_clr signal is used to reset the clock enable
generation logic. Capability to reset clock enable generation logic allows designs to have
dynamic control for specifying the beginning of data path sampling.

• Simulink system period (sec): Defines the Simulink System Period, in units of seconds. The
Simulink system period is the greatest common divisor of the sample periods that appear in
the model. These sample periods are set explicitly in the block dialog boxes, inherited
according to Simulink propagation rules, or implied by a hardware oversampling rate in
blocks with this option. In the latter case, the implied sample time is in fact faster than the
observable simulation sample time for the block in Simulink. In hardware, a block having an
oversampling rate greater than one processes its inputs at a faster rate than the data. For
example, a sequential multiplier block with an over-sampling rate of eight implies a
(Simulink) sample period that is one eighth of the multiplier block’s actual sample time in
Simulink. This parameter can be modified only in a master block.

• Perform analysis: Specifies whether an analysis (timing or resource) will or will not be
performed on the Model Composer design when it is compiled. If None is selected, no
timing analysis or resource analysis will be performed. If Post Synthesis is selected, the
analysis will be performed after the design has been synthesized in the Vivado® toolset. If
Post Implementation is selected, the analysis will be performed after the design is
implemented in the Vivado toolset.

• Analyzer type: Two selections are provided: Timing or Resource. After generation is
completed, a Timing Analyzer table or Resource Analyzer table is launched.

• Launch analyzer: Launches the Timing Analyzer or Resource Analyzer table, depending on
the selection of Analyzer type. This will only work if you already ran analysis on the
Simulink model and haven't changed the Simulink model since the last run.

• General tab:

Parameters specific to the General tab are as follows.

• Block icon display: Specifies the type of information to be displayed on each block icon in
the model after compilation is complete. The various display options are described below.

• Default: Displays the default block icon information on each block in the model. A
block’s default icon is derived from the xbsIndex library.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 674Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=674

Figure 369: Default Block Icon

• Normalized Sample Periods: Displays the normalized sample periods for all the input
and output ports on each block. For example, if the Simulink System Period is set to 4
and the sample period propagated to a block port is 4 then the normalized period that is
displayed for the block port is 1 and if the period propagated to the block port is 8 then
the sample period displayed would be 2 for example, a larger number indicates a slower
rate.

Figure 370: Normalized Sample Periods Icon

• Sample frequencies (MHz): Displays sample frequencies for each block.

• Pipeline stages: Displays the latency information from the input ports of each block. The
displayed pipeline stage might not be accurate for certain high-level blocks such as the
FFT, RS Encoder/ Decoder, Viterbi Decoder, etc. In this case the displayed pipeline
information can be used to determine whether a block has a combinational path from
the input to the output. For example, the Up Sample block in the figure below shows
that it has a combinational path from the input to the output port.

Figure 371: Sample Frequencies

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 675Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=675

• HDL port names: Displays the HDL port name of each port on each block in the model.

• Input data types: Displays the data type of each input port on each block in the model.

• Output data types: Displays the data type of each output port on each block in the
model.

• Remote IP cache:

If selected, your design will access an IP cache whenever a Model Composer compilation
performs Vivado synthesis as part of the compilation. If the compilation generates an IP
instance for synthesis, and the Vivado synthesis tool generates synthesis output products,
the tools create an entry in the cache area. If a new customization of the IP is created
which has the exact same properties, the tools will copy the synthesis outputs from the
cache to the design’s output directory instead of synthesizing the IP instance again.
Accessing the disk cache speeds up the iterative design process.

IP caching is described in Chapter 2: HDL Library.

• Clear cache: Clicking this button clears the remote IP cache. Clearing the cache saves disk
space, because the IP Cache can grow large, especially if your design uses many IP
modules.

Threshold

The Xilinx Threshold block tests the sign of the input number. If the input number is negative, the
output of the block is -1; otherwise, the output is 1. The output is a signed fixed-point integer
that is 2 bits long. The block has one input and one output.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

The block parameters do not control the output data type because the output is always a signed
fixed-point integer that is 2 bits long.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 676Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=676

Xilinx LogiCORE

The Threshold block does not use a Xilinx LogiCORE™.

Time Division Demultiplexer

The Xilinx Time Division Demultiplexer block accepts input serially and presents it to multiple
outputs at a slower rate.

Block Interface

The block has one data input port and a user-configurable number of data outputs, ranging from
1 to 32. The data output ports have the same arithmetic type and precision as the input data
port. The time division demultiplexer block also has optional input-valid port (vin) and output-
valid port (vout). Both the valid ports are of type Bool.

For single channel implementation, the time division demultiplexer block has one data input and
output port. Optional data valid input and output ports are also allowed. The length of the frame
sampling pattern establishes the length of the input data frame. The position of 1 indicates the
input value to be downsampled and the number of 1's correspond to the downsampling factor.
The behavior of the demultiplexer block in single channel mode can best be illustrated with the
help of the figure below. Based on the frame sampling pattern entered, the first and second input
values of every input data frame are sampled and presented to the output at the rate of 2.

Figure 372: Single Channel Implementation

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 677Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=677

For single channel implementation, the number of values to be sampled from a data frame should
evenly divide the size of the input frame. Every input data frame value can also be qualified by
using the optional valid port.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to this block are as follows.

• Frame sampling pattern: Specifies the size of the serial input data frame. The frame sampling
pattern must be a MATLAB® vector containing only 1's and 0's.

• Implementation: Specifies the demultiplexer behavior to be either in single or multiple
channel mode. The behaviors of these modes are explained above.

• Provide Valid Port: When selected, the demultiplexer has optional input and output valid
ports (vin / vout). The vin port allows to qualify every input data value as part of the serial
input data frame. The vout port marks the state of the output ports as valid or not.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Time Division Multiplexer

The Xilinx Time Division Multiplexer block multiplexes values presented at input ports into a
single faster rate output stream.

Block Interface

The block has two to 32 input ports and one output port. All input ports must have the same
arithmetic type, precision, and rate. The output port has the same arithmetic type and precision
as the inputs. The block has optional ports vin and vout that specify when input and output
respectively are valid. Both valid ports are of type Bool.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 678Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=678

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to the block are as follows.

• Number of inputs: Specifies the number of inputs (2 to 32).

• Provide valid port: When selected, the multiplexer is augmented with input and output valid
ports named vin and vout respectively. When the vin port indicates that input values are
invalid, the vout port indicates the corresponding output frame is invalid.

• Optimization Parameter: The Time Division Multiplexer block logic can be implemented in
fabric (optimizing for resource usage) or in DSP48E1/DSP48E2 primitives (optimizing for
speed). The default is Resource.

• Resource: Use combinatorial fabric (general interconnect) to implement the Time Division
Multiplexer in the Xilinx device.

• Speed: Use DSP48 primitives to implement the Time Division Multiplexer in the Xilinx device.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Up Sample

The Xilinx Up Sample block increases the sample rate at the point where the block is placed in
your design. The output sample period is l/n, where l is the input sample period, and n is the
sampling rate.

The input signal is up sampled so that within an input sample frame, an input sample is either
presented at the output n times if samples are copied, or presented once with (n-1) zeroes
interspersed if zero padding is used.

In hardware, the Up Sample block has two possible implementations. If the Copy Samples option
is selected on the block parameters dialog box, the Din port is connected directly to Dout and no
hardware is expended. Alternatively, if zero padding is selected, a mux is used to switch between
the input sample and inserted zeros. The corresponding circuit for the zero padding Up Sample
block is shown below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 679Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=679

Figure 373: Zero Padding Up Sample Circuit

Din

Src_CE

Dest_CE

D

CE

Q

1

0
Dout

‘1'

‘0'

X23241-091919

Block Interface

The Up Sample block receives two clock enable signals, Src_CE and Dest_CE. Src_CE is the clock
enable signal corresponding to the input data stream rate. Dest_CE is the faster clock enable,
corresponding to the output data stream rate. Notice that the circuit uses a single flip-flop in
addition to the mux. The flip-flop is used to adjust the timing of Src_CE, so that the mux switches
to the data input sample at the start of the input sample period, and switches to the constant
zero after the first input sample. It is important to notice that the circuit has a combinational path
from Din to Dout. As a result, an Up Sample block configured to zero pad should be followed by a
register whenever possible.

Figure 374: Up Sample Output

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Sampling rate (number of output samples per input sample): Must be an integer with a
value of 2 or greater. This is the ratio of the output sample period to the input, and is
essentially a sample rate multiplier. For example, a ratio of 2 indicates a doubling of the
input sample rate. If a non-integer ratio is desired, the Up Sample block can be used in
combination with the Down Sample block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 680Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=680

• Copy samples (otherwise zeros are inserted): Allows you to choose what to do with the
additional samples produced by the increased clock rate. By selecting Copy Samples, the
same sample is duplicated (copied) during the extra sample times. If this checkbox is not
selected, the additional samples are zero.

• Provide enable port: When checked, this option adds an en (enable) input port, if the
Latency is specified as a positive integer greater than zero.

• Latency: This defines the number of sample periods by which the block's output is delayed.
One sample period can correspond to multiple clock cycles in the corresponding FPGA
implementation (for example, when the hardware is over-clocked with respect to the
Simulink® model). The user defined sample latency is handled in the Upsample block by
placing shift registers that are clock enabled at the input sample rate, on the input of the
block. The behavior of an Upsample block with non-zero latency is similar to putting a
delay block, with equivalent latency, at the input of an Upsample block with zero latency.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Vector Absolute
The Vector Absolute block outputs the absolute value of the input of vector type.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control the
processing of multiple data samples on each sample period. This block enables 1-D vector
support for the primary block operation.

Block Parameters

Double-click the icon in your Simulink® model to open the Block Parameters dialog box.

• Basic tab :

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating-point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 681Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=681

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type:

Arithmetic type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Quantization:

Refer to the section Overflow and Quantization.

• Overflow:

Refer to the section Overflow and Quantization.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Vector AddSub Fabric
The Vector Adder/Subtracter Fabric block supports the Addition/Subtraction operation for
inputs of vector type.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on each sample period. This blocks enable 1-D vector support for the
primary block operation.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 682Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=682

Block Parameters

Double-click the icon in your Simulink® model to open the block parameters dialog box.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Operation: Specifies the block operation to be Addition, Subtraction, or Addition/
Subtraction. When Addition/Subtraction is selected, the block operation is determined by
the sub input port, which must be driven by a Boolean signal. When the sub input is 1, the
block performs subtraction. Otherwise, it performs addition.

• Optional Ports:

• Provide carry-in port: When selected, allows access to the carry-in port, cin. The carry-
in port is available only when User defined precision is selected and the binary point of
the inputs is set to zero.

• Provide carry-out port: When selected, allows access to the carry-out port, cout. The
carry-out port is available only when User defined precision is selected, the inputs and
output are unsigned, and the number of output integer bits equals x, where x = max
(integer bits a, integer bits b).

• Latency: The Latency value defines the number of sample periods by which the block's
output is delayed. One sample period might correspond to multiple clock cycles in the
corresponding FPGA implementation (for example, when the hardware is over-clocked with
respect to the Simulink model). Model Composer does not perform extensive pipelining
unless you select the Pipeline for maximum performance option (on the Implementation
tab, described below); additional latency is usually implemented as a shift register on the
output of the block.

• Output tab:

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• User-Defined Precision:

• Fixed-point Precision:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 683Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=683

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Quantization: Refer to the section Overflow and Quantization.

• Overflow: Refer to the section Overflow and Quantization.

• Implementation tab:

Parameters specific to the Implementation tab are as follows:

• Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL.
This gives the downstream logic synthesis tool maximum freedom to optimize for
performance or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

• Core Parameters:

• Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

• Pipeline for maximum performance:

The XILINX LogiCORE™ can be internally pipelined to optimize for speed instead of
area. Selecting this option puts all user defined latency into the core until the maximum
allowable latency is reached. If the Pipeline for maximum performance option is not
selected and latency is greater than zero, a single output register is put in the core and
additional latency is added on the output of the core.

The Pipeline for maximum performance option adds the pipeline registers throughout
the block, so that the latency is distributed, instead of adding it only at the end. This
helps to meet tight timing constraints in the design.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Adder/Subtractor v12.0

LogiCORE IP Floating-Point Operator v7.1

Vector Assert
The Vector Assert block asserts a user-defined sample rate and/or type on Vector inputs.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 684Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/addsub/v12_0/pg120-c-addsub.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=684

Hardware notes: In hardware this blocks costs nothing.

Description

Super Sample Rate (SSR): Use this configurable GUI parameter to control processing of multiple
data samples on every sample period. This block enables 1-D vector data support for the primary
block operation.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

Parameters specific to this block are as follows:

• Type:

• Assert type: Specifies whether or not the block will assert that the type at its input is the
same as the type specified. If the types are not the same, an error message is reported.

• Specify type: Specifies whether or not the type to assert is provided from a signal
connected to an input port named type or whether it is specified Explicitly from
parameters in the Assert block dialog box.

• Output Type: Specifies the data type of the output. Can be Boolean, Fixed-point, or
Floating-point.

• Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: This block is listed in the following: Activates the field below so you can
specify the Exponent width and the Fraction width.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 685Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=685

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Rate:

• Assert rate: specifies whether or not the block will assert that the rate at its input is the
same as the rate specified. If the rates are not the same, an error message is reported.

• Specify rate: Specifies whether or not the initial rate to assert is provided from a signal
connected to an input port named rate, or whether it is specified Explicitly from the
Sample rate parameter in the Assert block dialog box.

• Provide output port: Specifies whether or not the block will feature an output port. The type
and/or rate of the signal presented on the output port is the type and/or rate specified for
assertion.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

The Output type parameter in this block uses the same description as the Arithmetic Type
described in the topic Common Options in Block Parameter Dialog Boxes.

The Vector Assert block does not use a Xilinx LogiCORE™ and does not use resources when
implemented in hardware.

Vector Complex Mult
The Vector Complex Multiplier block supports multiplication of two complex input vectors.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector support for the
primary block operation.

Data Type Support

• Supports fixed and floating-point data type inputs on both port A and B.

• The number of bits on Input port A should be greater than or equal to 26.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 686Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=686

• The number of bits on Input port B should be greater than or equal to 17.

Vector Concat
The Vector Concat block concatenates two or more inputs of type vector. The output is cast to
an unsigned value with the binary point at zero.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector data support for
the primary block operation.

The Vector Reinterpret block provides capabilities that can extend the functionality of the Vector
Concat block.

Block Interface

The block has n input ports, where n is a value between 2 and 1024, inclusively, and one output
port. The first and last input ports are labeled hi and low, respectively. Input ports between
these two ports are not labeled. The input to the hi port occupies the most significant bits of the
output, and the input to the lo port occupies the least significant bits of the output.

Block Parameters

Double-click the icon in your Simulink® model to open the Block Parameter dialog box.

Parameters specific to this block are as follows:

• Number of Inputs: Specifies number of inputs, between 2 and 1024, inclusively, to
concatenate together.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

The Vector Concat block does not use a Xilinx LogiCORE™.

Vector Constant
The Vector Constant Block generates vector constant values.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 687Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=687

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector data support for
the primary block operation.

The Vector Constant block generates a constant that can be a fixed-point value, a Boolean value,
or a DSP48 instruction. This block is similar to the Simulink® Vector Constant block, but can be
used to directly drive the inputs on HDL blocks.

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Constant Value:

Specifies the value of the constant. When changed, the new value appears on the block
icon. If the constant data type is specified as fixed-point and cannot be expressed exactly in
the specified fixed-point type, its value is rounded and saturated as needed. A positive
value is implemented as an unsigned number, a negative value as signed.

• Output Type: Specifies the data type of the output.

• Boolean

• Fixed-point

• Floating-point

• Arithmetic Type: If the Output Type is specified as Fixed-point.

• Signed (2’s comp)

• Unsigned

• DSP48 instruction

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 688Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=688

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specifies the exponent width.

• Fraction width: Specifies the fraction width.

• Sample Period:

• Sampled Constant: Allows a sample period to be associated with the constant output
and inherited by blocks that the constant block drives. (This is useful mainly because the
blocks eventually target hardware and the Simulink sample periods are used to establish
hardware clock periods.)

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes

Vector Convert
The Vector Convert block supports Data Type Conversion feature for vector type inputs.

Hardware notes: Rounding and saturating require hardware resources; truncating and wrapping
do not.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector data support for
the primary block operation.

The Vector Convert block converts each input sample to a number of a desired arithmetic type.
For example, a number can be converted to a signed (two's complement) or unsigned value.

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic tab:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 689Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=689

Parameters specific to the Basic Tab are as follows:

• Output Type:

• Specify the output data type.

○ Boolean

○ Fixed-point

○ Floating-point

• Arithmetic Type: If the Output Type is specified as fixed-point, you can select Signed (two’s
comp) or Unsigned.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point, where bit zero is the least
significant bit

• Binary point: Specifies the bit location of the binary point, where bit zero is the least
significant bit.

• Floating-point Precision:

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Quantization:

Quantization errors occur when the number of fractional bits is insufficient to represent
the fractional portion of a value. The options are to Truncate (for example, to discard bits
to the right of the least significant representable bit), or to Round(unbiased: +/- inf) or
Round (unbiased: even values).

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the MATLAB round() function. This method
rounds the value to the nearest desired bit away from zero and when there is a value at the
midpoint between two possible rounded values, the one with the larger magnitude is
selected. For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is
exactly between 01.01 and 01.10 and the latter is further from zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 690Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=690

Round (unbiased: even values) also known as "Convergent Round (toward even)" or
"Unbiased Rounding". Symmetric rounding is biased because it rounds all ambiguous
midpoints away from zero which means the average magnitude of the rounded results is
larger than the average magnitude of the raw results. Convergent rounding removes this by
alternating between a symmetric round toward zero and symmetric round away from zero.
That is, midpoints are rounded toward the nearest even number. For example, to round
01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly between 01.01 and 01.10
and the latter is even. To round 01.1010 to a Fix_4_2, this yields 01.10, since 01.1010 is
exactly between 01.10 and 01.11 and the former is even.

• Overflow:

Overflow errors occur when a value lies outside the representable range. For overflow the
options are to Saturate to the largest positive/smallest negative value, to Wrap (for
example, to discard bits to the left of the most significant representable bit), or to Flag as
error (an overflow as a Simulink error) during simulation. Flag as error is a simulation only
feature. The hardware generated is the same as when Wrap is selected.

• Optional Ports:

Provide enable port: Activates an optional enable (en) pin on the block. When the enable
signal is not asserted the block holds its current state until the enable signal is asserted
again or the reset signal is asserted.

• Latency:

The Latency value defines the number of sample periods by which the block's output is
delayed. One sample period might correspond to multiple clock cycles in the corresponding
FPGA implementation (for example, when the hardware is over-clocked with respect to the
Simulink model). Model Composer will not perform extensive pipelining unless you select
the Pipeline for maximum performance option (described below); additional latency is
usually implemented as a shift register on the output of the block.

• Implementation tab:

Parameters specific to the Implementation tab are as follows:

• Performance Parameters:

• Pipeline for maximum performance:

The Xilinx LogiCORE™ can be internally pipelined to optimize for speed instead of area.
Selecting this option puts all user defined latency into the core until the maximum
allowable latency is reached. If the Pipeline for maximum performance option is not
selected and latency is greater than zero, a single output register is put in the core and
additional latency is added on the output of the core.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 691Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=691

The Pipeline for maximum performance option adds the pipeline registers throughout
the block, so that the latency is distributed, instead of adding it only at the end. This
helps to meet tight timing constraints in the design.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Vector DDFS
The Vector DDFS block generates Real and Imaginary vector output signals of desired frequency.

Description

The input port I is used for providing the desired output frequency value as a vector type.

The input port I value should be equal to:

(desired output Frequency * Sampling time *2^(Frequency Resolution))

The VI input port and VO output are used for synchronization purposes with the other blocks in
the design. The VO is just a delayed version of VI based on the block latency. The DITH input
port is used to turn on/off the phase noise dithering feature. The CONJ input port is set to '1' to
conjugate the complex exponential output. The output ports, O_RE and O_IM, generate Real and
Imaginary components of the desired vector output frequency signal.

Data Type Support

• The input port I should be a signed fixed-point data type.

• The input port VI, DITH, and CONJ should be Boolean data types.

Block Parameters

• Super Sample Rate (SSR):

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 692Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=692

This configurable GUI parameter is primarily used to control the processing of multiple data
samples on every sample period. This block enables 1-D vector support for the primary block
operation.

• Frequency Resolution (bits):

Defines the smallest incremental step in frequency that the block can output. This should be
an integer value.

• Sin/Cos Table Depth:

Defines the depth of the Sin/Cos Table and should be an integer value.

• Sin/Cos Table Width:

Defines the width of the Sin/Cos Table and should be an integer value.

Vector Delay
The Vector Delay block supports delay operation on vector type inputs.

Hardware notes: A delay line is a chain, each link of which is an SRL16 followed by a flip-flop.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Delay block implements a fixed delay of L cycles.

The delay value is displayed on the block in the form z-L, which is the Z-transform of the block’s
transfer function. Any data provided to the input of the block will appear at the output after L
cycles. The rate and type of the data of the output is inherited from the input. This block is used
mainly for matching pipeline delays in other portions of the circuit. The delay block differs from
the register block in that the register allows a latency of only 1 cycle and contains an initial value
parameter. The Vector Delay block supports a specified latency, but no initial value other than
zeros. The figure below shows the Vector Delay block behavior when L=4 and Period=1s.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 693Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=693

Figure 375: Vector Delay block behavior when L=4 and Period=1s

For delays that need to be adjusted during run-time, you should use the Addressable Shift
Register block. Delays that are not an integer number of clock cycles are not supported and such
delays should not be used in synchronous design (with a few rare exceptions).

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic tab:

Parameters specific to the Basic tab are as follows:

• Optional Ports:

• Provide synchronous reset port: Activates an optional reset (rst) pin on the block. When
the reset signal is asserted the block goes back to its initial state. Reset signal has
precedence over the optional enable signal available on the block. The reset signal has
to run at a multiple of the block's sample rate. The signal driving the reset port must be
Boolean.

• Provide enable port: Activates an optional enable (en) pin on the block. When the
enable signal is not asserted the block holds its current state until the enable signal is
asserted again or the reset signal is asserted. Reset signal has precedence over the
enable signal. The enable signal has to run at a multiple of the block 's sample rate. The
signal driving the enable port must be Boolean.

• Latency: Latency is the number of cycles of delay. The latency can be zero, provided that
the Provide enable port check box is not checked. The latency must be a non-negative
integer. If the latency is zero, the Vector Delay block collapses to a wire during logic
synthesis. If the latency is set to L=1, the block will generally be synthesized as a flip-flop
(or multiple flip-flops if the data width is greater than 1).

• Implementation tab:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 694Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=694

Parameters specific to the Implementation tab are as follows:

• Implement using behavioral HDL: Uses behavioral HDL as the implementation. This allows
the downstream logic synthesis tool to choose the best implementation.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Logic Synthesis using Behavioral HDL

This setting is recommended if you are using Synplify Pro as the downstream logic synthesis tool.
The logic synthesis tool will implement the delay as it desires, performing optimizations such as
moving parts of the delay line back or forward into blockRAMs, DSP48s, or embedded IOB flip-
flops; employing the dedicated SRL cascade outputs for long delay lines based on the
architecture selected; and using flip-flops to terminate either or both ends of the delay line based
on path delays. Using this setting also allows the logic synthesis tool, if sophisticated enough, to
perform retiming by moving portions of the delay line back into combinational logic clouds.

Logic Synthesis using Structural HDL

If you do not check the Implement using behavioral HDL box, then structural HDL is used. This is
the default setting and results in a known, but less-flexible, implementation which is often better
for use with Vivado® synthesis. In general, this setting produces structural HDL comprising an
SRL (Shift-Register LUT) delay of (L-1) cycles followed by a flip-flop, with the SRL and the flip-
flop getting packed into the same slice. For a latency greater than L=33, multiple SRL/flip-flop
sets are cascaded, albeit without using the dedicated cascade routes. For example, the following
is the synthesis result for a 1-bit wide Vector Delay block with a latency of L=64.

Vector Delay Delta
The Vector Delay Delta Block delays each vector element differently based on the given latency
and delay latency values.

Hardware notes: A delay line is a chain, each link of which is an SRL16 followed by a flip-flop.

Description

The delta latency parameter is used to generate each parallel path with different latency (for
example, [Latency + Delta Latency * (i-1)], where i represents the channel number in a range
from 1 to the SSR value).

The delta latency should be an integer and greater than or equal to -Latency/(SSR-1).

For example when SSR is set to '4', Latency is set to '1', and Delta Latency is set to '3' then the
four channels from 1 to 4 are delayed by 1,4,7, and 10 sample times respectively.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 695Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=695

Note: In the Vector Delay Delta block, all the parallel channels are delayed by an equal number of sample
times provided by Latency parameter.

The Vector Delay Delta block implements a fixed delay of L cycles.

Block Parameters

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector and/or complex
data support for the primary block operation.

See the Xilinx® Vector Delay block for further information on using this block.

Vector Down Sample
The Vector Down Sample block down samples input vector data.

Hardware notes: Sample and Latency controls determine the hardware implementation. The cost
in hardware of different implementations varies considerably.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector support for the
primary block operation.

The Vector Down Sample block reduces the sample rate at the point where the block is placed in
your design.

The input signal is sampled at even intervals, at either the beginning (first value), or end (last
value) of a frame. The sampled value is presented on the output port and held until the next
sample is taken.

A Vector Down Sample frame consists of l input samples, where l is sampling rate. An example
frame for a Vector Down Sample block configured with a sampling rate of 4 is shown below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 696Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=696

Figure 376: Vector Down Sample with Sampling Rate of 4

The Vector Down Sample block is realized in hardware using one of three possible
implementations that vary in terms of implementation efficiency. The block receives two clock
enable signals in hardware, Src_CE, and Dest_CE. Src_CE is the faster clock enable signal and
corresponds to the input data stream rate. Dest_CE is the slower clock enable, corresponding to
the output stream rate, for example, down sampled data. These enable signals control the
register sampling in hardware.

Zero Latency Vector Down Sample

The zero latency Vector Down Sample block must be configured to sample the first value of the
frame. The first sample in the input frame passes through the mux to the output port. A register
samples this value during the first sample duration and the mux switches to the register output at
the start of the second sample of the frame. The result is that the first sample in a frame is
present on the output port for the entire frame duration. This is the least efficient hardware
implementation as the mux introduces a combinational path from Din to Dout. A single bit
register adjusts the timing of the destination clock enable, so that it is asserted at the start of the
sample period, instead of the end. The hardware implementation is shown below.

Figure 377: Zero Latency Vector Down Sample

Din

Dest_CE

Src_CE

D

CE

Q

D

CE

Q

1

0
Dout

“1”

X23238-091919

Vector Down Sample with Latency

If the Vector Down Sample block is configured with latency greater than zero, a more efficient
implementation is used. One of two implementations is selected depending on whether the
Vector Down Sample block is set to sample the first or last value in a frame.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 697Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=697

If the block samples the first value in a frame, two registers are required to correctly sample the
input stream. The first register is enabled by the adjusted clock enable signal so that it samples
the input at the start of the input frame. The second register samples the contents of the first
register at the end of the sample period to ensure output data is aligned correctly.

Figure 378: Two Register Example

Din

Dest_CE

Src_CE

D

CE

Q

D

CE

Q Dout

“1”

D

CE

Q

X23239-091919

If the block samples the last value in a frame, a register samples the data input data at the end of
the frame. The sampled value is presented for the duration of the next frame. The most efficient
implementation is used when the Vector Down Sample block is configured to sample the last
value of the frame.

Figure 379: One Register Example

Din

Dest_CE

D

CE

Q Dout

X23240-091919

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

• Basic tab:

Basic tab parameters are as follows.

• Sampling Rate (number of input samples per output sample): Must be an integer greater or
equal to 2. This is the ratio of the output sample period to the input, and is essentially a
sample rate divider. For example, a ratio of 2 indicates a 2:1 division of the input sample
rate. If a non-integer ratio is desired, the Vector Up Sample block can be used in
combination with the Vector Down Sample block.

• Sample: The Vector Down Sample block can sample either the first or last value of a frame.
This parameter will determine which of these two values is sampled.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 698Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=698

Xilinx LogiCORE

The Vector Down Sample block does not use a Xilinx® LogiCORE™.

Vector FFT
The Vector FFT block supports the FFT operation for vector type inputs.

Description

The real part of the input data should be given to the in_re port, and the imaginary part should
be given to the in_im port.

When the in_valid is high it indicates that the input data is valid. When out_valid is high, it
indicates that the output data is valid. The in_scale input port is used if scaling is required.
And out_scale is used in if there is an internal overflow.

Data Type Support

• The number of in_scale bits must be equal to log2(FFT length).

• in_valid and out_valid are of Boolean data type.

Block Parameters

FFT length (N) is the size of the transformation, and should be powers of 2 in the range of 2^3 to
2^16. SSR is the super sample rate, the number of samples processed in parallel every clock.
Using a typical example with N=1024 and SSR=4, the core would compute one 1K FFT every
256 clock cycles, processing 4 input samples/clock.

The fixed-point output data size must be 27 bits or less, this is limited by the DSP48 multiplier A
port size.

BRAM_THRESHOLD is an implementation parameter with no functional implications, it controls
the use of distributed RAM vs BRAM when implementing delay lines. It can be used to trade
utilization numbers between these two types of resources. The higher the value, the more
distributed RAM will be used instead of BRAM. Typical values to try are 258, 514, and 1026.

• Scaling Ports:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 699Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=699

The scaling ports are called SI and SO. Their width matches the FFT size N, it is always
log2(N). There is one SI bit for every add/subtract stage, where internal overflows can occur. If
that bit is set to zero then no scaling happens and bit growth is addressed by increasing the
internal data sizes bit, one bit every stage. If the bit is set to 1 then the stage divides by 2, and
no internal data growth is required to prevent overflows.

Generally, if the output data size is log2(N) bits larger than the input size, no scaling is
required, and SI is set to all zeros. If the input and output data sizes are equal, then scaling on
every stage is needed and SI should be set to all ones. In reality, scaling is data dependent and
some combination of output size growth and non-zero SI bits are used. If partial scaling is
used, the non-zero bits of SI should be the MSB ones. SI should be static, it should not change
while data is being processed by the core (when VI is high).

Another important requirement to avoid internal overflows is to have one MSB margin bit at
the data inputs, that is the two MSBs of I.RE and I.IM should be the same. This prevents
overflows ink complex multipliers. If the two rules outlined above are followed, then internal
overflows are impossible by design.

The SO port is an indicator of internal overflows, it is not normally used, only attach an
unsigned signals of size log2(N) to it.

Vector FIR
The Vector FIR block supports FIR filtering for vector type inputs.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector support for the
primary block operation.

• If the filter type is Interpolation, the output vector size (SSR value on the output side) is equal
to the SSR value on the input side multiplied by Interpolation Rate Value.

• If the filter type is Decimation, the output vector size is equal to the SSR value on the input
side divided by Decimation Rate Value.

This Vector FIR Compiler block provides a way to generate highly parameterizable, area-efficient,
high-performance FIR filters with an AXI4-Stream-compliant interface.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 700Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=700

AXI Ports that are Unique to this Block

This block exposes the AXI CONFIG channel as a group of separate ports based on sub-field
names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

config_tdata_fsel A sub-field port that represents the fsel field in the Configuration Channel vector. fsel is
used to select the active filter set. This port is exposed when the number of coefficient sets
is greater than one. Refer to the FIR Compiler V7.2 Product Guide starting on page 5 for an
explanation of the bits in this field.

Block Parameters

Open the block parameters dialog box by double-clicking the icon in your Simulink® model.

• Filter Specification tab:

Parameters specific to the Filter Specification tab are as follows:

• Filter Coefficients:

• Coefficient Vector: Specifies the coefficient vector as a single MATLAB row vector. The
number of taps is inferred from the length of the MATLAB row vector. If multiple
coefficient sets are specified, then each set is appended to the previous set in the
vector. It is possible to enter these coefficients using the FDATool block as well.

• Number of Coefficients Sets: The number of sets of filter coefficients to be
implemented. The value specified must divide without remainder into the number of
coefficients.

• Use Reloadable Coefficients: Check to add the coefficient reload ports to the block. The
set of data loaded into the reload channel will not take action until triggered by a re-
configuration synchronization event. Refer to the FIR Compiler V7.2 Product Guide for a
more detailed explanation of the RELOAD Channel interface timing. This block supports
the xlGetReloadOrder function. See the Model Composer Utility function
xlGetReloadOrder for details.

• Filter Specification:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 701Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=701

• Filter Type:

• Single_Rate: The data rate of the input and the output are the same.

• Interpolation: The data rate of the output is faster than the input by a factor
specified by the Interpolation Rate value.

• Decimation: The data rate of the output is slower than the input by a factor specified
in the Decimation Rate Value.

• Rate Change Type: This field is applicable to Interpolation and Decimation filter types.
Used to specify an Integer or Fixed_Fractional rate change.

• Interpolation Rate Value: This field is applicable to all Interpolation filter types and
Decimation filter types for Fractional Rate Change implementations. The value provided
in this field defines the up-sampling factor, or P for Fixed Fractional Rate (P/Q)
resampling filter implementations.

• Decimation Rate Value: This field is applicable to the all Decimation and Interpolation
filter types for Fractional Rate Change implementations. The value provided in this field
defines the down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter
implementations.

• Zero pack factor: Allows you to specify the number of 0’s inserted between the
coefficient specified by the coefficient vector. A zero packing factor of k inserts k-1 0s
between the supplied coefficient values. This parameter is only active when the Filter
type is set to Interpolated.

• SSR: SSR value.

• Implementation tab:

Parameters specific to the Implementation tab are as follows:

• Coefficient Options:

• Coefficient Type: Specify Signed or Unsigned.

• Quantization: Specifies the quantization method to be used for quantizing the
coefficients. This can be set to one of the following:

• Integer_Coefficients

• Quantize_Only

• Maximize_Dynamic_Range

• Normalize_to_Centre_Coefficient

• Coefficient Width: Specifies the number of bits used to represent the coefficients.

• Best Precision Fractional Bits: When selected, the coefficient fractional width is
automatically set to maximize the precision of the specified filter coefficients.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 702Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=702

• Coefficient Fractional Bits: Specifies the binary point location in the coefficients
datapath options

• Coefficients Structure:

• Specifies the coefficient structure. Depending on the coefficient structure,
optimizations are made in the core to reduce the amount of hardware required to
implement a particular filter configuration. The selected structure can be any of the
following:

○ Inferred

○ Non-Symmetric

○ Symmetric

The vector of coefficients specified must match the structure specified unless Inferred
from coefficients is selected in which case the structure is determined automatically
from these coefficients.

• Datapath Options:

• Output Rounding Mode:

• Choose one of the following:

○ Full_Precision

○ Truncate_LSBs

○ Non_Symmetric_Rounding_Down

○ Non_Symmetric_Rounding_Up

○ Symmetric_Rounding_to_Zero

○ Symmetric_Rounding_to_Infinity

○ Convergent_Rounding_to_Even

○ Convergent_Rounding_to_Odd

• Output Width: Specify the output width. Edit box activated only if the Rounding mode
is set to a value other than Full_Precision.

• Detailed Implementation tab:

Parameters specific to the Detailed Implementation tab are as follows:

• Filter Architecture:

The following two filter architectures are supported.

• Systolic_Multiply_Accumulate

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 703Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=703

• Transpose_Multiply_Accumulate

Note: When selecting the Transpose Multiply-Accumulate architecture, these limitations apply:

○ Symmetry is not exploited. If the Coefficient Vector specified on the Filter
Specification tab is detected as symmetric, the FIR Compiler 7.2 block parameters
dialog box will not allow you to select Transpose Multiply Accumulate.

○ Multiple interleaved channels are not supported.

• Optimization Options: Specifies if the core is required to operate at maximum possible
speed (“Speed” option) or minimum area (“Area” option). The “Area” option is the
recommended default and will normally achieve the best speed and area for the design,
however in certain configurations, the “Speed” setting might be required to improve
performance at the expense of overall resource usage (this setting normally adds pipeline
registers in critical paths).

• Goal:

• Area

• Speed

• Custom

• List:

A comma delimited list that specifies which optimizations are implemented by the block.
The optimizations are as follows.

• Data_Path_Fanout: Adds additional pipeline registers on the data memory outputs to
minimize fan-out. Useful when implementing large data width filters requiring
multiple DSP slices per multiply-add unit.

• Pre-Adder_Pipeline: Pipelines the pre-adder when implemented using fabric
resources. This may occur when a large coefficient width is specified.

• Coefficient_Fanout: Adds additional pipeline registers on the coefficient memory
outputs to minimize fan-out. Useful for Parallel channels or large coefficient width
filters requiring multiple DSP slices per multiply-add unit.

• Control_Path_Fanout: Adds additional pipeline registers to control logic when Parallel
channels have been specified.

• Control_Column_Fanout: Adds additional pipeline registers to control logic when
multiple DSP columns are required to implement the filter.

• Control_Broadcast_Fanout: Adds additional pipeline registers to control logic for fully
parallel (one clock cycle per channel per input sample) symmetric filter
implementations.

• Control_LUT_Pipeline: Pipelines the Look-up tables required to implement the
control logic for Advanced Channel sequences.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 704Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=704

• No_BRAM_Read_First_Mode: Specifies that Block RAM READ-FIRST mode should
not be used.

• Increased speed: Multiple DSP slice columns are required for non-symmetric filter
implementations.

• Other: Miscellaneous optimizations.

Note: All optimizations maybe specified but are only implemented when relevant to the core
configuration.

• Memory Options:

The memory type for MAC implementations can either be user-selected or chosen
automatically to suit the best implementation options. Note that a choice of “Distributed”
might result in a shift register implementation where appropriate to the filter structure.
Forcing the RAM selection to be either Block or Distributed should be used with caution,
as inappropriate use can lead to inefficient resource usage - the default Automatic mode is
recommended for most applications.

• Data Buffer Type: Specifies the type of memory used to store data samples.

• Coefficient Buffer Type: Specifies the type of memory used to store the coefficients.

• Input Buffer Type: Specifies the type of memory to be used to implement the data input
buffer, where present.

• Output Buffer type: Specifies the type of memory to be used to implement the data
output buffer, where present.

• Preference for other storage: Specifies the type of memory to be used to implement
general storage in the datapath.

• DSP Slice Column Options:

• Multi-Column Support: For device families with DSP slices, implementations of large
high speed filters might require chaining of DSP slice elements across multiple columns.
Where applicable (the feature is only enabled for multi-column devices), you can select
the method of folding the filter structure across the multiple-columns, which can be
Automatic (based on the selected device for the project) or Custom (you select the
length of the first and subsequent columns).

• Inter-Column Pipe Length: Pipeline stages are required to connect between the
columns, with the level of pipelining required being depending on the required system
clock rate, the chosen device and other system-level parameters. The choice of this
parameter is always left for you to specify.

• Interface tab:

• Data Channel Options:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 705Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=705

• Output TREADY: This field enables the data_tready port. With this port enabled, the
block will support back-pressure. Without the port, back-pressure is not supported, but
resources are saved and performance is likely to be higher.

• Control Options:

• ACLKEN: Active-high clock enable. Available for MAC-based FIR implementations.

• ARESETn (active low): Active-low synchronous clear input that always takes priority
over ACLKEN. A minimum ARESETn active pulse of two cycles is required, since the
signal is internally registered for performance. A pulse of one cycle resets the control
and datapath of the core, but the response to the pulse is not in the cycle immediately
following.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP FIR Compiler v7.2

Vector Logical
The Vector Logical block supports logical operation for vector type inputs.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control the
processing of multiple data samples on every sample period. This blocks enable 1-D vector data
support for the primary block operation.

The Vector Logical Block performs bitwise logical operations on fixed-point numbers. Operands
are zero padded and sign extended as necessary to make binary point positions coincide. The
logical operation is performed and the result is delivered at the output port.

In hardware this block is implemented as synthesizable VHDL. If you build a tree of logical gates,
this synthesizable implementation is best as it facilitates logic collapsing in synthesis and
mapping.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 706Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=706

Block Parameters

Double-click the icon in your Simulink® model to open the Block Parameters dialog box.

• Basic tab : Parameters specific to the Basic tab are as follows:

• Logical function: Specifies one of the following bitwise logical operators: AND, NAND, OR,
NOR, XOR, XNOR.

• Number of inputs: Specifies the number of inputs (1 - 1024).

• Logical Reduction Operation:

When the number of inputs is specified as 1, a unary logical reduction operation performs a
bit-wise operation on the single operand to produce a single bit result. The first step of the
operation applies the logical operator between the least significant bit of the operand and
the next most significant bit. The second and subsequent steps apply the operator between
the one-bit result of the prior step and the next bit of the operand using the same logical
operator. The logical reduction operator implements the same functionality as that of the
logical reduction operation in HDLs. The output of the logical reduction operation is always
Boolean.

• Output Type tab :

Parameters specific to the Output Type tab are as follows:

• Align binary point: Specifies that the block must align binary points automatically. If not
selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Vector Mux
The Vector Multiplexer block supports the Multiplexing feature for input of vector types.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Mux block implements a multiplexer. The block has one select input (type unsigned)
and a user-configurable number of data bus inputs, ranging from 2 to 1024.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 707Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=707

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic tab :

• Number of inputs: Specify a number between 2 and 32.

• Optional Ports:

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

• Output tab :

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating-point arithmetic output will always be Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• Fixed-point Output Type:

• Arithmetic type:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Fixed-Point Precision:

• Number of bits: Specifies the bit location of the binary point of the output number
where bit zero is the least significant bit.

• Binary point: Position of the binary point. in the fixed-point output.

• Quantization:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 708Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=708

Refer to the section Overflow and Quantization in the topic Common Options in Block
Parameter Dialog Boxes.

• Overflow:

Refer to the section Overflow and Quantization in the topic Common Options in Block
Parameter Dialog Boxes.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Vector Real Gateway In
The Vector Real Gateway In block converts vector inputs of type Simulink® integer, single,
double, and fixed-point to Xilinx® fixed-point or floating-point data type.

Hardware notes: In hardware, these blocks become top level input ports.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Real Gateway In blocks are the inputs into the HDL portion of your Simulink design.
These blocks convert Simulink integer, double and fixed-point data types into the Model
Composer fixed-point type. Each block defines a top-level input port or interface in the HDL
design generated by System Generator.

Conversion of Simulink Data to System Generator Data

A number of different Simulink data types are supported on the input of Vector Real Gateway In.
The data types supported include int8, uint8, int16, uint16, in32, uint32, single, double, and
Simulink fixed-point data type(if Simulink fixed-point data type license is available). In all causes
the input data is converted to a double internal to gateway, and then converted to target data
type as specified on the Vector Real Gateway In block (Fixed-point, Floating-point or Boolean).
When converting to Fixed-point from the internal double representation, the Quantization, and
Overflow is further handled as specified in the Block GUI. For overflow, the options are to
saturate to the largest positive/smallest negative value, to wrap (for example, to discard bits to

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 709Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=709

the left of the most significant representable bit), or to flag an overflow as a Simulink error during
simulation. For quantization, the options are to round to the nearest representable value (or to
the value furthest from zero if there are two equidistant nearest representable values), or to
truncate (for example, to discard bits to the right of the least significant representable bit). It is
important to realize that conversion, overflow and quantization do not take place in hardware.
They take place only in the simulation model of the block.

Gateway Blocks

As listed below, the Xilinx Vector Real Gateway In block is used to provide a number of functions:

• Converting data from Simulink integer, double, and fixed-point type to the Model Composer
fixed-point type during simulation in Simulink.

• Defining top-level input ports or interface in the HDL design generated by Model Composer.

• Defining test bench stimuli when the Create Testbench box is checked in the System
Generator token. In this case, during HDL code generation, the inputs to the block that occur
during Simulink simulation are logged as a logic vector in a data file. During HDL simulation,
an entity that is inserted in the top level test bench checks this vector, and the corresponding
vectors produced by Vector Real Gateway Out blocks against expected results.

• Naming the corresponding port in the top level HDL entity.

Block Parameters

Open the Block Parameters dialog box double-clicking the icon in your Simulink model.

• Basic Tab :

Parameters specific to the Basic Tab are as follows:

• Output Type:

Specifies the output data type. Can be Boolean, Fixed-point, or Floating-point.

• Arithmetic Type:

If the Output Type is specified as Fixed-point, you can select Signed (2’s comp) or Unsigned as
the Arithmetic Type.

• Fixed-point Precision:

• Number of bits: Specifies the bit location of the binary point, where bit zero is the least
significant bit.

• Binary point: Specifies the bit location of the binary point, where bit zero is the least
significant bit.

• Floating-point Precision:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 710Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=710

• Single: Specifies single precision (32 bits).

• Double: Specifies double precision (64 bits).

• Custom: Activates the field below so you can specify the Exponent width and the Fraction
width.

• Exponent width: Specify the exponent width.

• Fraction width: Specify the fraction width.

• Quantization:

Quantization errors occur when the number of fractional bits is insufficient to represent the
fractional portion of a value. The options are to Truncate (for example, to discard bits to the
right of the least significant representable bit), or to Round(unbiased: +/- inf) or Round
(unbiased: even values).

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the MATLAB round() function. This method
rounds the value to the nearest desired bit away from zero and when there is a value at the
midpoint between two possible rounded values, the one with the larger magnitude is selected.
For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly
between 01.01 and 01.10 and the latter is further from zero.

• Overflow:

Overflow errors occur when a value lies outside the representable range. For overflow the
options are to Saturate to the largest positive/smallest negative value, to Wrap (for example,
to discard bits to the left of the most significant representable bit), or to Flag as error (an
overflow as a Simulink error) during simulation. Flag as error is a simulation only feature. The
hardware generated is the same as when Wrap is selected.

• Implementation Tab:

Parameters specific to the Implementation Tab are as follows:

• Interface Options:

• Interface:

• None: Implies that during HDL Netlist generation, this Vector Real Gateway In is
translated as an Input Port at the top level.

• AXI4-Lite: Implies that during HDL Netlist generation, an AXI4-Lite interface will be
created, and this Vector Real Gateway In is mapped to one of the registers within the
AXI4-Lite interface.

• Auto assign address offset:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 711Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=711

If the Vector Real Gateway In is configured to be an AXI4-Lite interface, this option
allows an address offset to be automatically assigned to the register within the AXI4-
Lite interface that the Vector Real Gateway In is mapped to.

• Address offset:

If Auto assign address offset is not checked, then this entry box allows you to explicitly
specify an address offset to use. Must be a multiple of 4.

• Interface Name:

If the Vector Real Gateway In is configured to be an AX4-Lite interface, assigns a unique
name to this interface. This name can be used to differentiate between multiple AXI4-
Lite interfaces in the design. When using the IP catalog flow, you can expect to see an
interface in the IP that Model Composer creates with the name
<design_name>_<interface_name>_ s_axi.

IMPORTANT! The Interface Name must be composed of alphanumeric characters (lowercase
alphabetic) or an underscore (_) only, and must begin with a lowercase alphabetic character.
axi4_lite1 is acceptable, 1AXI4-Lite is not.

• Description:

Additional designer comments about this Vector Real Gateway In that is captured in the
interface documentation.

• Default value:

• Constraints:

• IOB Timing Constraint:

In hardware, a Vector Real Gateway In is realized as a set of input/output buffers (IOBs).
There are three ways to constrain the timing on IOBs. They are None, Data Rate, and Data
Rate, Set 'FAST' Attribute.

• If None is selected, no timing constraints for the IOBs are put in the user constraint file
produced by Model Composer. This means the paths from the IOBs to synchronous
elements are not constrained.

• If Data Rate is selected, the IOBs are constrained at the data rate at which the IOBs
operate. The rate is determined by System Clock Period provided on the System
Generator token and the sample rate of the Gateway relative to the other sample
periods in the design.

• If Data Rate, Set 'FAST' Attribute is selected, the constraints described above are
produced. In addition, a FAST slew rate attribute is generated for each IOB. This reduces
delay but increases noise and power consumption.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 712Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=712

• Specify IOB location constraints: Checking this option allows IOB location constraints and
I/O standards to be specified.

• IOB pad locations, e.g. {'MSB', ..., 'LSB'}: IOB pin locations can be specified as a cell array of
strings in this edit box. The locations are package-specific.IO Standards, e.g. {'MSB', ...,
'LSB'}

• IO Standards, e.g. {'MSB', ..., 'LSB'}: I/O standards can be specified as a cell array of strings
in this edit box. The locations are package-specific.

Vector Real Gateway Out
The Vector Real Gateway Out block converts Xilinx® fixed-point or floating-point type vector
inputs into vector outputs of type Simulink® integer, single, double, or fixed-point.

Hardware notes: In hardware these blocks become top level output ports or are discarded
depending on how they are configured.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector support for the
primary block operation.

Vector Real Gateway Out blocks are the outputs from the HDL portion of your Simulink design.
This block converts theModel Composer fixed-point or floating-point data type into a
SimulinkSimulink integer, single, double, or fixed-point data type.

According to its configuration, the Vector Real Gateway Out block can either define an output
port for the top level of the HDL design generated by Model Composer, or be used simply as a
test point that is trimmed from the hardware representation

Gateway Blocks

As listed below, the Vector Real Gateway Out block is used to provide the following functions:

• Convert data from a Model Composer fixed-point or floating-point data type into a Simulink
integer, single, double, or fixed-point data type.

• Define I/O ports for the top level of the HDL design generated by Model Composer. A Vector
Real Gateway Out block defines a top-level output port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 713Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=713

• Define test bench result vectors when the Model Composer Create Testbench box is checked.
In this case, during HDL code generation, the outputs from the block that occur during
Simulink simulation are logged as logic vectors in a data file. For each top level port, an HDL
component is inserted in the top-level test bench that checks this vector against expected
results during HDL simulation.

• Name the corresponding output port on the top-level HDL entity.

Block Parameters

• Basic Tab :

Parameters specific to the Basic Tab are as follows.

• Propagate data type to output: This option is useful when you instantiate a Model
Composer design as a sub-system into a Simulink design. Instead of using a Simulink double
as the output data type by default, the Model Composer data type is propagated to an
appropriate Simulink data type according to the following table:

Table 61: System Generator Data Type Propagation

System Generator Data Type Simulink Data Type
XFloat_8_24 single

XFloat_11_53 double

Custom floating-point precision data type exponent
width and fraction width less than those for single
precision

single

Custom floating-point precision data type with exponent
width or fraction width greater than that for single
precision

double

XFix_<width>_<binpt> sfix<width>_EN<binpt>

UFix_<width>_<binpt> ufix<width>_EN<binpt>

XFix_<width>_0 where width is 8, 16 or 32 int<width> where width is 8, 16 or 32

UFix_<width>_0 where width is 8, 16 or 32 uint<width> where width is 8, 16 or 32

XFix_<width>_0 where width is other than 8, 16 or 32 sfix<width>

UFix_<width>_0 where width is other than 8, 16 or 32 ufix<width>

• Translate into Output Port: Having this box unchecked prevents the gateway from
becoming an actual output port when translated into hardware. This checkbox is on by
default, enabling the output port. When this option is not selected, the Vector Real
Gateway Out block is used only during debugging, where its purpose is to communicate
with Simulink Sink blocks for probing portions of the design. In this case, the Vector Real
Gateway Out block turns gray in color, indicating that the gateway will not be translated
into an output port.

• Implementation Tab : Parameters specific to the Implementation Tab are as follows.

• Interface Options:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 714Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=714

• None: During HDL Netlist generation, this Vector Real Gateway Out will be translated
as an Output Port at the top level.

• AXI4-Lite: During HDL Netlist Generation, an AXI4-Lite interface will be created, and
the Vector Real Gateway Out will be mapped to one of the registers within the AXI4-
Lite interface.

• Interrupt: During an IP catalog Generation, this Vector Real Gateway Out is tagged as an
Interrupt output port when the Model Composer design is packaged into an IP module
that can be included in the Vivado® IP catalog.

• Auto assign address offset:

If a Vector Real Gateway Out is configured to be an AXI4-Lite interface, this option allows
an address offset to be automatically assigned to the register within the AXI4-Lite interface
that the Vector Real Gateway Out is mapped to.

• Address offset:

If Auto assign address offset is not checked, then this entry box allows you to explicitly
specify a address offset to use. Must be a multiple of 4.

• Interface Name:

If the Vector Real Gateway Out is configured to be an AX4-Lite interface, assigns a unique
name to this interface. This name can be used to differentiate between multiple AXI4-Lite
interfaces in the design. When using the IP catalog flow, you can expect to see an interface
in the IP that Model Composer creates with the name
<design_name>_<interface_name>_ s_axi.

IMPORTANT! The Interface Name must be composed of alphanumeric characters (lowercase
alphabetic) or an underscore (_) only, and must begin with a lowercase alphabetic character.
axi4_lite1  is acceptable, 1AXI4-Lite is not.

• Description:

Additional designer comments about this Vector Real Gateway Out that is captured in the
interface documentation.

• Constraints:

• IOB Timing Constraint:

In hardware, a Vector Real Gateway Out is realized as a set of input/output buffers (IOBs).
There are three ways to constrain the timing on IOBs. They are None, Data Rate, and Data
Rate, Set 'FAST' Attribute.

• None: No timing constraints for the IOBs are put in the user constraint file produced by
Model Composer. This means the paths from the IOBs to synchronous elements are not
constrained.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 715Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=715

• Data Rate:

The IOBs are constrained at the data rate that the IOBs operate. The rate is determined by
System Clock Period provided on the System Generator token and the sample rate of the
Gateway relative to the other sample periods in the design. For example, the following
OFFSET = OUT constraints are generated for a Vector Real Gateway Out named 'Dout'
that is running at the system period of 10 ns:

Offset out constraints
NET "Dout(0)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(1)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(2)" OFFSET = OUT : 10.0 : AFTER "clk";

• Specify IOB Location Constraints: Checking this option allows IOB location constraints
to be specified.

• IOB Pad Locations, e.g. {'MSB', ..., 'LSB'}: IOB pin locations can be specified as a cell
array of strings in this edit box. The locations are package-specific.

• Data Rate, Set 'FAST' Attribute:

The OFFSET = OUT constraints described above are produced. In addition, a FAST slew
rate attribute is generated for each IOB. This reduces delay but increases noise and power
consumption. For the previous example, the following additional attributes are added to
the constraints file

NET "Dout(0)" FAST;
NET "Dout(1)" FAST;
NET "Dout(2)" FAST;

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Vector Real Mult
The Vector Real Multiplier block supports the multiplication feature for vector type inputs.

Hardware notes: To check for the optimum internal pipeline stages of the dedicated multiplier
select 'Test for optimum pipelining'.

Optimization Goal: For implementation into device fabric (LUTs), the Speed or Area optimization
takes effect only if it is supported by IP for the particular device family. Otherwise, the results
will be identical regardless of the selection.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 716Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=716

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Real Mult block implements a multiplier. It computes the product of the data on its
two input ports, producing the result on its output port.

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic tab:

Parameters specific to the Basic tab are as follows.

• Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic.
Floating-point output always has Full precision.

• Full: The block uses sufficient precision to represent the result without error.

• User Defined: If you do not need full precision, this option allows you to specify a
reduced number of total bits and/or fractional bits.

• User-Defined Precision:

• Fixed-point Precision:

• Signed (2’s comp): The output is a Signed (2’s complement) number.

• Unsigned: The output is an Unsigned number.

• Number of bits: Specifies the bit location of the binary point of the output number,
where bit zero is the least significant bit.

• Binary point: Position of the binary point in the fixed-point output.

• Quantization: Refer to the Overflow and Quantization section in the Common Options in
Block Parameter Dialog Boxes topic.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 717Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=717

• Overflow:

Refer to the Overflow and Quantization section inthe Common Options in Block Parameter
Dialog Boxes topic.

• Optional Port: Provide enable port.

• Latency: This defines the number of sample periods by which the block's output is delayed.

• Saturation and Rounding of User Data Types in a Multiplier: When saturation or rounding is
selected on the user data type of a multiplier, latency is also distributed so as to pipeline the
saturation/rounding logic first, and then additional registers are added to the core. For
example, if a latency of three is selected, and rounding/saturation is selected, then the first
register is placed after the rounding or saturation logic, and two registers are placed to
pipeline the core. Registers are added to the core until optimum pipelining is reached and then
further registers are placed after the rounding/saturation logic. However, if the data type you
select does not require additional saturation/rounding logic, then all the registers are used to
pipeline the core.

• Implementation tab :

Parameters specific to the Implementation tab are as follows:

• Use behavioral HDL (otherwise use core):

The block is implemented using behavioral HDL. This gives the downstream logic synthesis
tool maximum freedom to optimize for performance or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

• Core Parameters:

• Optimize for Speed|Area: Directs the block to be optimized for either Speed or Area.

• Use embedded multipliers: This field specifies that if possible, use the XtremeDSP
slice (DSP48 type embedded multiplier) in the target device.

• Test for optimum pipelining: Checks if the Latency provided is at least equal to the
optimum pipeline length. Latency values that pass this test imply that the core
produced is optimized for speed.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE™ Documentation

LogiCORE IP Multiplier v12.0

LogiCORE IP Floating-Point Operator v7.1

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 718Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=718

Vector Register
The Vector Register block supports vector type inputs.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Register block models a D flip-flop-based register, having latency of one sample
period.

Block Interface

The block has one input port for the data and an optional input reset port. The initial output
value is specified by you in the block parameters dialog box (below). Data presented at the input
will appear at the output after one sample period. Upon reset, the register assumes the initial
value specified in the parameters dialog box.

The Vector Register block differs from the Xilinx Delay block by providing an optional reset port
and a user specifiable initial value.

Block Parameters

Open the block parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic Tab:

Parameters specific to the Basic tab are as follows.

• Initial value: Specifies the initial value in the register.

• Optional Ports:

• Provide synchronous reset port.

• Provide enable port.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 719Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=719

Xilinx LogiCORE

The Vector Register block is implemented as a synthesizable VHDL module. It does not use a
Xilinx LogiCORE™.

Vector Reinterpret
The Vector Reinterpret block changes the vector input signal type without altering the binary
representation. You can change the signal between signed and unsigned, and relocate the binary
point.

Hardware notes: In hardware this block costs nothing.

Example: The input is 6 bits wide, signed with 2 fractional bits, and the output is forced to
unsigned with 0 fractional bits. Then an input of -2.0 (1110.00 in binary 2's complement)
becomes an output of 56 (111000 in binary).

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector data support for
the primary block operation.

The Vector Reinterpret block forces its output to a new type without any regard for retaining the
numerical value represented by the input.

The binary representation is passed through unchanged, so in hardware this block consumes no
resources. The number of bits in the output will always be the same as the number of bits in the
input.

The block allows for unsigned data to be reinterpreted as signed data, or, conversely, for signed
data to be reinterpreted as unsigned. It also allows for the reinterpretation of the data's scaling,
through the repositioning of the binary point within the data. The Xilinx Scale block provides an
analogous capability.

An example of this block's use is as follows: if the input type is 6 bits wide and signed, with 2
fractional bits, and the output type is forced to be unsigned with 0 fractional bits, then an input
of -2.0 (1110.00 in binary, two's complement) would be translated into an output of 56 (111000
in binary).

This block can be particularly useful in applications that combine it with the Xilinx Slice block or
the Xilinx Concat block. To illustrate the block's use, consider the following scenario:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 720Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=720

Given two signals, one carrying signed data, and the other carrying two unsigned bits (a
UFix_2_0), we want to design a system that concatenates the two bits from the second signal
onto the tail (least significant bits) of the signed signal.

We can do so using two Vector Reinterpret blocks and one Vector Concat block. The first Vector
Reinterpret block is used to force the signed input signal to be treated as an unsigned value with
its binary point at zero. The result is then fed through the Vector Concat block along with the
other signal's UFix_2_0. The Concat operation is then followed by a second Vector Reinterpret
that forces the output of the Vector Concat block back into a signed interpretation with the
binary point appropriately repositioned.

Though three blocks are required in this construction, the hardware implementation is realized as
simply a bus concatenation, which has no cost in hardware.

Block Parameters

Parameters specific to the block are as follows.

• Force Arithmetic Type: When checked, the Output Arithmetic Type parameter can be set and
the output type is forced to the arithmetic type chosen according to the setting of the Output
Arithmetic Type parameter. When unchecked, the arithmetic type of the output is unchanged
from the arithmetic type of the input.

• Output Arithmetic Type: The arithmetic type (unsigned or signed, 2's complement, Floating-
point) to which the output is to be forced.

• Force Binary Point: When checked, the Output Binary Point parameter can be set and the
binary point position of the output is forced to the position supplied in the Output Binary
Point parameter. When unchecked, the arithmetic type of the output is unchanged from the
arithmetic type of the input.

• Output Binary Point: The position to which the output's binary point is to be forced. The
supplied value must be an integer between zero and the number of bits in the input (inclusive).

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Vector Relational
The Vector Relational block implements comparator for vector inputs.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 721Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=721

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector data support for
the primary block operation.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink®

model.

The only parameter specific to the Vector Relational block is:

• Comparison: specifies the comparison operation computed by the block.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Floating-Point Operator v7.1

Vector Slice
The Vector Slice block supports vector type inputs.

Extracts a given range of bits from each sample of input vector and presents it at the output. The
output type is ordinarily unsigned with binary point at zero, but can be Boolean when the slice is
one bit wide.

Hardware notes: In hardware this block costs nothing.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

The Vector Slice block allows you to slice off a sequence of bits from your input data and create a
new data value. This value is presented as the output from the block. The output data type is
unsigned with its binary point at zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 722Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=722

The block provides several mechanisms by which the sequence of bits can be specified. If the
input type is known at the time of parameterization, the various mechanisms do not offer any
gain in functionality. If, however, a Vector Slice block is used in a design where the input data
width, or binary point position are subject to change, the variety of mechanisms becomes useful.
The block can be configured, for example, always to extract only the top bit of the input, or only
the integral bits, or only the first three fractional bits. The following diagram illustrates how to
extract all but the top 16 and bottom 8 bits of the input.

Figure 380: Extracting Top 16 and Bottom 8 Bits

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

Parameters specific to the block are as follows.

• Width of slice (Number of bits): Specifies the number of bits to extract.

• Boolean output: Tells whether single bit slices should be type Boolean.

• Specify range as: (Two bit locations | Upper bit location + width |Lower bit location + width).
Allows you to specify either the bit locations of both end-points of the slice, or one end-point
along with number of bits to be taken in the slice.

• Offset of top bit: Specifies the offset for the ending bit position from the LSB, MSBm. or
binary point.

• Offset of bottom bit: Specifies the offset for the ending bit position from the LSB, MSBm, or
binary point.

• Relative to: Specifies the bit slice position relative to the MSB, LSB, or binary point of the top
or the bottom of the slice.

Other parameters used by this block are explained in the topic Common Options in Block
Parameter Dialog Boxes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 723Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=723

Vector Up Sample
The Vector Up Sample block up samples input vector data. Inserted values can be zeros or copies
of the most recent input sample.

Hardware notes: No hardware is needed if inserted values are copies of the input sample.
Otherwise, a mux, and single bit flip-flop are used.

Description

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This blocks enable 1-D vector support for the
primary block operation.

The Vector Up Sample block increases the sample rate at the point where the block is placed in
your design. The output sample period is l/n, where l is the input sample period, and n is the
sampling rate.

The input signal is up sampled so that within an input sample frame, an input sample is either
presented at the output n times if samples are copied, or presented once with (n-1) zeroes
interspersed if zero padding is used.

In hardware, the Vector Up Sample block has two possible implementations. If the Copy Samples
option is selected on the block parameters dialog box, the Din port is connected directly to Dout
and no hardware is expended. Alternatively, if zero padding is selected, a mux is used to switch
between the input sample, and inserted zeros. The corresponding circuit for the zero padding
Vector Up Sample block is shown below.

Figure 381: Zero Padding Up Sample Circuit

Din

Src_CE

Dest_CE

D

CE

Q

1

0
Dout

‘1'

‘0'

X23241-091919

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 724Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=724

Block Interface

The Vector Up Sample block receives two clock enable signals, Src_CE, and Dest_CE. Src_CE is
the clock enable signal corresponding to the input data stream rate. Dest_CE is the faster clock
enable, corresponding to the output data stream rate. Notice that the circuit uses a single flip-
flop in addition to the mux. The flip-flop is used to adjust the timing of Src_CE, so that the mux
switches to the data input sample at the start of the input sample period, and switches to the
constant zero after the first input sample. It is important to notice that the circuit has a
combinational path from Din to Dout. As a result, a Vector Up Sample block configured to zero
pad should be followed by a register whenever possible.

Figure 382: Up Sample Output

Block Parameters

Open the Block Parameters dialog box by double-clicking the icon in your Simulink® model.

• Basic tab: Parameters specific to the Basic tab are as follows.

• Sampling rate (number of output samples per input sample): Must be an integer with a
value of 2 or greater. This is the ratio of the output sample period to the input, and is
essentially a sample rate multiplier. For example, a ratio of 2 indicates a doubling of the
input sample rate. If a non-integer ratio is desired, the Vector Up Sample block can be used
in combination with the Vector Down Sample block.

• Copy samples (otherwise zeros are inserted): Allows you to choose what to do with the
additional samples produced by the increased clock rate. By selecting Copy Samples, the
same sample is duplicated (copied) during the extra sample times. If this checkbox is not
selected, the additional samples are zero.

• Provide enable port: When checked, this option adds an en (enable) input port, if the
Latency is specified as a positive integer greater than zero.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 725Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=725

• Latency: This defines the number of sample periods by which the block's output is delayed.
One sample period can correspond to multiple clock cycles in the corresponding FPGA
implementation (for example, when the hardware is over-clocked with respect to the
Simulink model). The user defined sample latency is handled in the Vector Up Sample block
by placing shift registers that are clock enabled at the input sample rate, on the input of the
block. The behavior of a Vector Up Sample block with non-zero latency is similar to putting
a delay block, with equivalent latency, at the input of an Vector Up Sample block with zero
latency.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Vector2Scalar
The Vector2Scalar block converts vector type input to scalar type output.

Description

The Vector2Scalar block does the bit level concatenation of all the elements of the input vector
to produce a scalar output.

For example, if the input vector is [0 1 2 7] of type Ufix_3_0, and the SSR parameter is 4, it
produces Scalar output 3720 of type Ufix_12_0, whose binary value is 111 010 001 000. This
value represents input vector when we split it into four groups each of 3 bits.

Data Type Support

• The inputs must be Boolean or unsigned fixed-point signal.

• All inputs must have binary set to 0.

Parameters

Super Sample Rate (SSR): This configurable GUI parameter is primarily used to control processing
of multiple data samples on every sample period. This block enables 1-D vector support for the
primary block operation.

Vitis HLS

The Xilinx Vitis™ HLS block allows the functionality of a Vitis HLS design to be included in a
Model Composer design. The Vitis HLS design can include C, C++ and System C design sources.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 726Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=726

There are two steps to the method of including a Vitis HLS design into Model Composer. The
first step is to use the Vitis HLS RTL Packaging feature to package the design files into a Solution
directory. (Refer to Vitis HLS documentation for more information regarding RTL Packaging.) The
second step is to place the Vitis HLS block in your Model Composer design and specify the Vitis
HDL Solution directory as the target.

Block Parameters Dialog Box

Figure 383: Block Parameters Dialog Box

• Solution: The path to the Solution space directory containing RTL packaged for Model
Composer. This path is usually the path to a directory contained in a Vivado® HLS project. The
path must be included in single quotes and must evaluate to a string.

• Browse: A standard directory browse button.

• Refresh: Updates the block ports to the latest package contained in the solution space.

• Edit: Opens the Vitis HLS project associated with solution space.

• Use C simulation model if available: Use the C simulation model if it is available in the Vitis
HLS package. As shown below, the simulation model being used is shown on the Vitis HLS
block. In this case, an RTL-model is used because a C simulation model is not available.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 727Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=727

• Display signal types: Signal types to be used to drive input ports and emanating from output
ports are displayed on the block icon when checked.

• Output Sample Times: Select either the Simulink system period or the GCD of the inputs
period.

Data Type Translation

Data Type Translation
C/C++ Data Type System Generator for DSP Data Type

float XFloat_32_23

double XFloat_64_52

bool UFix_1_0

(unsigned) char (U)Fix_8_0

(unsigned) short (U)Fix_16_0

(unsigned) int (U)Fix_32_0

(unsigned) long (U)FIX_<PlatformDependent>_0

(unsigned) long long (U)Fix_64_0

ap_(u)fix<N,M> (U)Fix_<N>_<N-M>

ap_(u)int<N> (U)Fix_N_0

Known Issues

• It is not possible to include a purely combinational design from Vitis HLS. The design must
synthesize into an RTL design that contains a Clock and a Clock Enable input.

• The top-level module cannot contain C/C++ templates.

• Composite ports will be represented as UFix_<N>_0 only where N is the width of the port.

• The current C simulation model only supports fixed latency and interval designs. The latency
and interval numbers are obtained from the synthesis engine.

• The current C simulation model supports the default block-level communication protocol
(ap_hs).

• The current C simulation model does not support the ‘ap_memory’ and ‘ap_bus’ interfaces.

• Vitis HLS block does not support combinational designs due to performance considerations. In
the current implementation, Model Composer updates each HLS input port multiple times
every clock cycle. So it is very costly to evaluate the DUT whenever inputs changes.

• The output values match RTL simulation results only when corresponding control signals
indicate data are valid. So test bench and downstream blocks should read/observe data based
on the communication protocol and control signals.

• Because the Vitis HLS block has to use the GCC shipped in the Vivado Design Suite to
compile dll on Win-64 platform, users cannot use arbitrary bitwidth integers in C designs on
win-64 systems.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 728Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=728

Viterbi Decoder 9.1

Note: This block goes into the FPGA fabric and is a Licensed Core. Please visit the Xilinx web site to
purchase the appropriate core license.

Data encoded with a convolution encoder can be decoded using the Xilinx Viterbi decoder block.
This block adheres to the AXI4-Stream standard.

There are two steps to the decode process. The first weighs the cost of incoming data against all
possible data input combinations; either a Hamming or Euclidean metric can be used to
determine the cost. The second step traces back through the trellis and determines the optimal
path. The length of the trace through the trellis can be controlled by the traceback length
parameter.

The decoder achieves minimal error rates when using optimal convolution codes; the table below
shows various optimal codes. For correct operation, convolution codes used for encoding must
match with that for decoding.

Table 62: Convolution Codes

Constraint Length Optimal Convolution Codes for
1/2 rate (octal)

Optimal Convolution Codes for
1/3 Rate (octal)

3 [7 5] [7 7 5]

4 [17 13] [17 13 15]

5 [37 33] [37 33 25]

6 57 65] [57 65 71]

7 [117 127] [117 127 155]

8 [357 233] [357 233 251]

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 729Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=729

Table 62: Convolution Codes (cont'd)

Constraint Length Optimal Convolution Codes for
1/2 rate (octal)

Optimal Convolution Codes for
1/3 Rate (octal)

9 [755 633] [755 633 447]

Block Interface

The Xilinx Viterbi Decoder 9.1 block is AXI4 compliant. The following describes the standard AXI
channels and pins on the interface.

• S_AXIS_DATA Channel:

• s_axis_data_tvalid: TVALID for S_AXIS_DATA channel. Input pin, always available. This port
indicates the values presents on the input data ports are valid.

• s_axis_data_tready: TREADY for S_AXIS_DATA. Output pin, always available. This port
indicates that the core is ready to accept data.

• s_axis_data_tdata: Input TDATA. Different input data ports are available depending on the
Viterbi Type selected on Page1 tab of block-GUI.

When Trellis Mode is selected, 5 input data pins become available – these are
s_axis_data_tdata_tcm00, s_axis_data_tdata_tcm01, s_axis_data_tdata_tcm10,
s_axis_data_tdata_tcm11 and s_axis_data_tdata_sector.

The width of the Trellis mode inputs (s_axis_data_tdata_tcm**) can range from 4 to 6
corresponding to a data width (Soft_Width value on Page2 tab) of 3 to 5.
s_axis_data_tdata_sector is always 4-bit wide. The decoder always functions as a rate 1/2
decoder when Trellis mode is selected.

For any other Viterbi Type (Standard/Multi-Channel/Dual Decoder), the Decoder supports
rates from 1/2 to 1/7. Therefore, the block can have 2 to 7 input data ports labeled
s_axis_data_tdata_data_in0 s_axis_data_tdata_data_in6. Hard Coding requires each
tdata_data_in<n> port to be 1 bit wide. Soft Coding allows these widths to be between 3 to 5
bits (inclusive).

• s_axis_data_tuser: TUSER for S_AXIS_DATA. These ports are only present if External
Puncturing is selected or it is a Dual Decoder or Block Valid signal is used with the core.

• s_axis_data_tuser_erase: Port becomes available, when External Puncturing is selected
(on Page2 tab). This input bus is used to indicate the presence of a null-symbol on the
corresponding data_in buses. For e.g. tuser_erase(0) corresponds to data_in0,
tuser_erase(1) corresponds to data_in1 etc. If an erase bit is high, the data on the
corresponding data_in bus is treated as a null-symbol internally to the decoder. The
width of the erase bus is equal to the output rate of the decoder with a maximum value
of 7.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 730Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=730

• s_axis_data_tuser_sel: Port becomes available when Dual Decoder is selected. This is
used to select the correct set of convolution codes for the decoding of the input data
symbols in the dual decoder case. When SEL is low, the input data is decoded using the
first set of convolution codes. When it is high, the second set of convolution codes is
applied.

• s_axis_data_tuser_block_in: Port becomes available when Block Valid option is selected
on Page 5 tab.

• M_AXIS_DATA Channel:

• m_axis_data_tvalid: TVALID for M_AXIS_DATA channel. Output pin, always available. It
indicates whether the output data is valid or not.

• m_axis_data_tready: TREADY for M_AXIS_DATA channel. Do not enable or tie high if
downstream slave is always able to accept data. It becomes available when TREADY option
is selected on Page 5 tab.

• m_axis_data_tdata: Decoded TDATA for output data channel.

• m_axis_data_tdata_data: Port represents the decoded output data and it is always 1 bit
wide.

• m_axis_data_tdata_sector: Port becomes available for Trellis Mode decoder. This port is
always 4-bit wide. The output SECTOR is a delayed version of the input SECTOR bus.
Both buses have a fixed width of 4 bits. The delay equals the delay through the Trellis
Mode decoder.

• m_axis_data_tuser: TUSER for M_AXIS_DATA channel. These ports are only present if the
block is a Dual Decoder or it has normalization signal present or it has Block Valid option
checked.

• m_axis_data_tuser_sel: Port becomes available when the block is configured as a Dual
Decoder. This signal is a delayed version of the input s_axis_data_tuser_sel signal. The
delay equals to the delay through the Dual Decoder.

• m_axis_data_tuser_norm: Port becomes available when NORM option is checked on
Page 5 tab. This port indicates when normalization has occurred within the core. It gives
an immediate indication of the rate of errors in the channel.

• m_axis_data_tuser_block_out: Port becomes available when Block Valid option is
checked on Page 5 tab. This signal is a delayed version of the input
s_axis_data_tuser_block_in signal. The BLOCK_OUT signal shows the decoded data
corresponding to the original BLOCK_IN set of data points. The delay equals the delay
through the decoder.

• S_AXIS_DSTAT Channel:

Note: These ports become available when Use BER Symbol Count is selected on Page 5 tab.

• s_axis_dstat_tvalid: TVALID for S_AXIS_DSTAT channel.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 731Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=731

• s_axis_dstat_tready: TREADY for S_AXIS_DSTAT channel. Indicates that the core is ready
to accept data. Always high, except after a reset if there is not a TREADY on the output.

• s_axis_dstat_tdata_ber_range: TDATA for S_AXIS_DSTAT channel. This is the number of
symbols over which errors are counted in the BER block.

• M_AXIS_DSTAT Channel:

Note: These ports become available when Use BER Symbol Count is selected on Page 5 tab.

• m_axis_dstat_tvalid: TVALID for M_AXIS_DSTAT channel.

• m_axis_dstat_tready: TREADY for M_AXIS_DSTAT channel. Do not enable or tie high if
downstream slave is always able to accept data. It becomes available when TREADY option
is selected on Page 5 tab.

• m_axis_dstat_tdata_ber: TDATA for M_AXIS_DSTAT channel. The Bit Error Rate (BER) bus
output (fixed width 16) gives a measurement of the channel bit error rate by counting the
difference between the re-encoded DATA_OUT and the delayed DATA_IN to the decoder.

• Other Optional Pins:

• aresetn: The synchronous reset (aresetn) input can be used to re-initialize the core at any
time, regardless of the state of aclken signal. aresetn needs to be asserted low for at least
two clock cycles to initialize the circuit. This pin becomes available if ARESETN option is
selected on the Page 5 tab. It must be of type Bool. If this pin is not selected, Model
Composer ties this pin to inactive (high) on the core.

• aclken: Carries the clock enable signal for the decoder. The signal driving aclken must be
Bool. This pin becomes available if ACLKEN option is selected on Page 5 tab.

Block Parameters

• Page1 tab:

Parameters specific to the Page1 tab are as follows.

• Viterbi Type:

• Number of Channels: Used with the Muli-Channel selection, the number of channels to
be decoded can be any value between 2 and 32.

• Standard: This type is the basic Viterbi Decoder.

• Multi-Channel: This type allows many interlaced channels of data to be decoded using a
single Viterbi Decoder.

• Trellis Mode: This type is a trellis mode decoder using the TCM and SECTOR_IN inputs.

• Dual Decoder: When selected, the block behaves as a dual decoder with two sets of
convolutional codes. This makes the sel input port available.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 732Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=732

• Decoder Options:

• Use Reduced Latency: The latency of the block depends on the traceback length and
the constraint length. If this reduced latency option is selected, then the latency of the
block is approximately halved and the latency is only 2 times the traceback length.

• Constraint length: Equals n+1, where n is the length of the constraint register in the
encoder.

• Traceback length: Length of the traceback through the Viterbi trellis. Optimal length is 5
to 7 times the constraint length.

• Page2 tab:

• Architecture:

• Parallel: Large but fast Viterbi Decoder.

• Serial: Small but processes the input data in a serial fashion. The number of clock cycles
needed to process each set of input symbols depends on the output rate and the soft
width of the data.

• Best State:

• Use Best State: Gives improved BER performance for highly punctured data.

• Best State Width: Indicates how many of the least significant bits to ignore when saving
the cost used to determine the best state.

• Puncturing:

• None: Input data has not been punctured.

• External (Erased Symbols): When selected an erase port is added to the block. The
presence of null-symbols (that is, symbols which have been deleted prior to transmission
across the channel) is indicated using the erasure input erase.

• Coding:

• Soft Width: The input width of soft-coded data can be anything in the range 3 to 5.
Larger widths require more logic. If the block is implemented in serial mode, larger soft
widths also increase the serial processing time.

• Soft Coding: Uses the Euclidean metric to cost the incoming data against the branches
of the Viterbi trellis.

• Hard Coding: Uses the Hamming difference between the input data bits and the
branches of the Viterbi trellis. Hard coding is only available for the standard parallel
block.

• Data Format:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 733Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=733

• Signed Magnitude:

• Offset Binary (available for soft coding only):

See Table 1 in the associated LogiCORE™ Product Specification for the Signed Magnitude and
Offset-Binary data format for Soft Width 3.

• Page3 tab:

• Convolution 0:

• Output Rate 0: Output Rate 0 can be any value from 2 to 7.

• Convolution Code 0 Radix: The convolutional codes can be input and viewed in binary,
octal, or decimal.

• Convolution Code Array (0-6): First array of convolution codes. Output rate is derived
from the array length. Between 2 and 7 (inclusive) codes can be entered. When dual
decoding is used, a value of 0 (low) on the sel port corresponds to this array.

• Page4 tab:

The options on this tab are activated when you select Dual Decoder as the Viterbi Type on
the Page1 tab.

• Convolution 1:

• Output Rate 1: Output Rate 1 can be any value from 2 to 7. This is the second output
rate used if the decoder is dual. The incoming data is decoded at this rate when the SEL
input is high. Output Rate 1 is not used for the non-dual decoder.

• Convolution Code 1 Radix: The convolutional codes can be input and viewed in binary,
octal, or decimal.

• Page5 tab:

• BER Options:

• Use BER Symbol Count: This bit-error-rate (BER) option monitors the error rate on the
transmission channel.

• Optional Pins:

• NORM: Indicates when normalization has taken place internal to the Add Compare
Select module.

• Block Valid: Check this box if BLOCK_IN and BLOCK_OUT signals are required. These
signals track the movement of a block of data through the decoder. BLOCK_OUT
corresponds to BLOCK_IN delayed by the decoder latency.

• TREADY: Selecting this option makes m_axis_data_tready and m_axis_dstat_tready pins
available on the block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 734Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=734

• ACLKEN: Carries the clock enable signal for the block The signal driving aclken must be
Bool.

• ARESETN: Adds a aresetn pin to the block. This signal resets the block and must be of
type Bool. aresetn must be asserted low for at least 2 clock periods and at least 1
sample period before the decoder can start decoding code symbols.

Common Parameters used by this block, such as Display shortened port names, are explained in
the topic Common Options in Block Parameter Dialog Boxes.

LogiCORE Documentation

LogiCORE IP Viterbi Decoder v9.1

HLS Blockset
The Vitis Model Composer HLS block library includes the following blocks. The content shown
here can also be accessed from the Help command for the block within the HLS block library in
Simulink.

Abs
Compute element-wise absolute value of input signal

Library

Math Functions/Math Operations

Description

The Abs block computes element-wise absolute value on the input data.

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector, or matrix.

• Data Types: Input supports signals of integer type, floating point data type (double, single, and
half), and signed and unsigned fixed point type.

• Complex Numbers Support: Yes.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 735Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/viterbi/v9_1/pg027_viterbi_decoder.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=735

Output has the same dimension and data type as the input. Output of the Abs block is always
real.

Parameters

The Abs block has no parameters to set.

atan
Compute element-wise arctangent function of an argument.

Library

Math Functions / Math Operations

Description

The atan block returns the output of the atan (x) function for each element in array x.

Data Type Support

Data types accepted at the inputs of the block are:

• Dimension: Input can be scalar, vector, or matrix.

• Data Types: Input supports signals of integer type, floating point type (double, single and half)
and fixed point type.

• Complex Number Support: No

Output has the same dimension and type as the input. However, If the data type of the input is a
fixed point type, the data type of the output is fixed point type with integer width fixed as 2. The
reason for this is that the output of the atan function is between -π/2 and π/2. Use the atan2
function if you need the output of the function to be between -π and π.

Parameters

The Atan block has no parameters to set.

atan2
Compute element-wise four-quadrant inverse tangent of input signal.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 736Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=736

Library

Math Functions / Math Operations

Description

The atan2 block returns the output of the function atan2(y,x).

Data Type Support

Data types accepted at the inputs of the block are:

• Dimension: Inputs can be scalar, vector, or matrix. If one of the inputs is scalar and the other is
a vector or matrix then the scalar input is expanded to match the other input dimension, and
operation will be performed element wise. If both inputs are non-scalar, then they must match
in dimension.

• Data Types: Input supports signals of integer type, floating point type (double, single, and half)
and signed and unsigned fixed point type. Both inputs must be of the same data type.

• Complex Number Support: No

Except for fixed-point input data type, output has the same data type as the input. For fixed point
input, the output data type will be signed fixed-point with a 3-bit integer width, to be able to
represent numbers between –π and π.

Parameters

The atan2 block has no parameters to set.

Bit Concat
Perform bitwise concatenation of input values into a single output value

Library

Logic and Bit Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 737Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=737

Description

Starting from the input with the highest order (the first input at the top in normal block
orientation) the bit values of all input ports are concatenated into a single output bit vector. For
multidimensional inputs the dimensions of all inputs must match and concatenation proceeds
element-wise as it would in the scalar case. A scalar value on one input is automatically expanded
to match the dimensions of the other input.

Data Type Support

Data type support for the Bit Concat block is:

• All integer types (including Boolean) and fixed-point types are supported. Floating point types
are not supported.

• All inputs must be of real numeric type. Complex types are not supported.

• Scalars, Vectors and 2-D Matrices are supported. Unless an input is a scalar, the dimensions of
all inputs must agree.

• The output type is always an unsigned fixed-point type without fractional bits.

Parameters

Number of inputs

Sets the number of inputs to be concatenated. The minimum number of inputs is 2, the maximum
is 128. The sum of all input bit widths shall not exceed 1024 bits.

Bit Slice
Extract a range of bits from a value

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 738Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=738

Library

Logic and Bit Operations

Description

The Bit Slice block allows the element-wise extraction of a contiguous set of bits from the input
values. The extracted bits are returned as unsigned fixed point values of an all-integer range, and
you specify the width of the specified extraction range. The block dialog box allows you to
specify the range of bits using one of these methods:

• Bottom bit + width - You specify the bottom bit and the number of bits to be extracted (Slice
width).

• Top bit + width - You specify the top bit and the number of bits to be extracted (Slice width).

• Top and bottom bit - You specify the top and bottom bits and the number of bits to be
extracted is implied.

The top and bottom bit specifications have multiple ways of specifying the position in relation to
either the Least Significant Bit (LSB), the Binary Point of a fixed-point value, or the Most
Significant Bit (MSB). In case of integer inputs the Binary Point and Least Significant Bit options
are equivalent. Offsets to specify the position relative to these anchors can be positive or
negative. However, an error will occur during simulation and/or code generation if the extraction
range lies outside of the input type bit range.

Data Type Support

The Bit Slice block accepts any real-valued integer or fixed-point type of any dimension N ≤ 2.
Floating point values and complex numeric types are not supported.

The output data type is always a real-valued unsigned fixed-point type with integer-only range.
The output data has the same width as the extraction range you specify.

The output dimensions are the same as the input dimensions.

Parameters

Specify range as

The Specify range as parameter specifies the extraction range.

• If you select Bottom bit + width, parameters in the Bottom of bit range section are enabled
and parameters in the Top of bit range section are disabled.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 739Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=739

• If you select Top bit + width, parameters in the Top of bit range section are enabled and
parameters in the Bottom of bit range section are disabled.

• If you select Top and Bottom bit, parameters in both the Top of bit range section and the
Bottom of bit range section are enabled, and the Slice width parameter is disabled.

Following are the settings for the Specify range as parameter.

Table 63: Specify Range As Parameter

Setting Description
Bottom bit + width The width specifies the number of bits to extract. The Bottom bit of the range

specifies the offset at which the range begins (offset of the least significant bit to
be extracted).

Top bit + width The width specifies the number of bits to extract. The Top bit of the range
specifies the offset at which the range begins (offset of the most significant bit to
be extracted).

Top and bottom bit The Top bit of the range specifies the offset of the most significant bit to be
extracted. The bottom bit of the range gives the offset of the least significant bit
to be extracted. The width of the extracted range is given implicitly.

Slice width

Specifies the width of the bit range to be extracted. Slice width is only enabled if the Specify
range as parameter is set to Top bit + width or Bottom bit + width.

Enter a scalar positive integer value for Slice width.

Bit position relative to

Defines the basis for offset specifications in both Top of bit range and Bottom of bit range
sections of the block dialog box.

Following are the settings for the Bit position relative to parameter.

Table 64: Bit Position Relative To Parameter

Setting Description
Least Significant Bit Defines the offset parameter as counting from the LSB of

the input value, with offset 0 denoting the LSB, offset 1
denoting the bit to the left of the LSB, etc. If the Least
Significant Bit setting is selected, the With offset
parameter cannot specify a negative offset.

Binary point Defines the offset parameter as counting from the binary
point of a fixed point value, with offset 0 denoting the least
significant integer bit. A negative offset denotes a range
starting in the fractional bits with offset -1 being the most
significant fractional bit. A positive offset denotes a range
starting in the integer portion of the value.

Most Significant Bit Defines the offset parameter as counting from the MSB of
the input value, with offset 0 denoting the MSB, offset -1
denoting the bit to the right of the MSB, etc. If the Most
Significant Bit stetting is selected, the With offset
parameter cannot specify a positive offset.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 740Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=740

With offset

Specifies the offset to be applied to the basis specified by the corresponding Bit position relative
to parameter. The With offset parameter is available in both Top of bit range and Bottom of bit
range sections of the block dialog box.

Negative offsets specify bit positions to the right of the anchor (zero offset basis). Positive offsets
specify bit positions to the left of the anchor.

Bitwise AND
Perform element and bitwise Boolean AND operation on the inputs

Library

Logic and Bit Operations

Description

The Bitwise AND block has two input signals and one output signal. The block performs element
and bit-wise Boolean AND operation on the inputs. The first input corresponds to the top input
port and the second input to the bottom input port. Both input ports must have the same data
type. The dimension of the output signal matches the dimensions of the input signals. Unless an
input is a scalar, the dimensions of all inputs must agree. A scalar value on one input is
automatically expanded to match the dimension of the other input.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 741Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=741

Figure 384: Bitwise AND

Data Type Support

The block accepts integer, fixed-point, and Boolean types of real numeric type. It does not
support floating point input types. Complex signals are not supported for this operation.

Parameters

The Bitwise AND block has no parameters to set.

Bitwise NOT
Perform element and bit-wise Boolean NOT operation on the input

Library

Logic and Bit Operations

Description

The Bitwise NOT block has one input signal and one output signal. It performs element and bit-
wise Boolean NOT operation on the input. The dimension of the output signals matches the
dimension of the input signals.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 742Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=742

Figure 385: Bitwise NOT

Data Type Support

The Bitwise NOT block accepts integer, fixed-point, and Boolean types of real numeric type. The
block does not support floating point input types. Complex signals are not supported.

Parameters

The Bitwise NOT block has no parameters to set.

Bitwise OR
Perform element and bitwise Boolean OR operation on the inputs

Library

Logic and Bit Operations

Description

The Bitwise OR block has two input signals and one output signal. The block performs element
and bit-wise boolean OR operation on the inputs. The first input corresponds to the top input
port and the second input to the bottom input port. The dimension of the output signal matches
the dimensions of the input signals.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 743Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=743

Data Type Support

The Bitwise OR block supports native and fixed-point types except the floating point types
(double, single, and half). If one of the inputs is scalar, the output dimension is non-scalar. If both
inputs are non-scalar, they must have the same dimension. The dimension can be scalar, vector,
or matrix.

Parameters

The Bitwise OR block has no parameters to set.

Bitwise XOR
Perform element and bit-wise Boolean XOR operation on the inputs

Library

Logic and Bit Operations

Description

The Bitwise XOR block has two input signals and one output signal. The block performs element
and bit-wise Boolean XOR operation on the inputs. The first input corresponds to the upper
input port and the second input to the lower input port. The dimension of the output signal
matches the dimensions of the input signals.

Data Type Support

If one of the inputs is scalar, the output dimension is non-scalar. If both inputs are non-scalar,
they must have the same dimension. The dimension can be scalar, vector, or matrix.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 744Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=744

Figure 386: Bitwise XOR

Parameters

The Bitwise XOR block has no parameters to set.

Complex to Polar
Perform an element-wise conversion of complex input signals into magnitude and radiant phase
angle

Library

Math Functions / Math Operations

Description

The Complex to Polar block accepts a complex-valued signal of floating point data types such as
double, single and half. It outputs the magnitude and phase angle of the input signal. The outputs
are real values of the same data type as the block input. The input can be a scalar, vector or
matrix of complex signals, in which case the output signals are also scalar, vector or matrix. The
magnitude signal array contains the magnitudes of the corresponding complex input elements.
The angle output similarly contains the angles of the input elements in radian.

Data Type Support

Data type support for the input port is:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 745Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=745

• Dimension: The input can be scalar, vector or matrix. If the input is not scalar then the outputs
have the same dimension as the input.

• Data Types: Input supports complex signal of floating point data type such as double, single,
and half.

The outputs are always real-valued signals of floating point data type such as double, single, and
half.

Parameters

The Complex to Polar block has no parameters to set.

Complex to Real-Imag
Computes the real and imaginary components of the input

Library

Math Functions / Math Operations

Description

The Complex to Real-Imag block accepts a complex or real signal of any valid data type and
outputs the real and/or imaginary components of the input signal. The outputs are real-valued
signals of the same data type as the block input. The input can be a scalar, vector, or matrix. The
outputs have the same dimensions as that of the input.

Data Type Support

Data type support for the input port is:

• Supports real or complex input of any valid data type. The outputs are real-valued signals of
the same data type as the block input.

• The input can be a scalar, vector, or matrix. The outputs have the same dimensions as that of
the input.

Parameters

• Output:

This parameter specifies the kind of output the block produces.

Settings for the Output parameter are:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 746Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=746

Table 65: Output Parameters

Setting Description
Real and imag Outputs real and imaginary parts of the input signal as Re

and Im outputs of the block, respectively.

Real Outputs the real part of the input signal as Re output of
the block.

Imag Outputs imaginary part of the input signal as Im output of
the block. If the input is real, the Im output is zero valued.

Conditional
Pass through input T when control input C satisfies a selected criteria; otherwise, pass through
input F. The first and third input ports are data ports, and the second input port is the control
port.

Library

Signal Routing

Description

The Conditional block passes through input T when control input C satisfies the selected criteria;
otherwise, it passes through input F. The first and third input ports are data ports, and the second
(or middle) input port is the control port.

Data Type Support

Data type support for the Conditional block is:

• Inputs T and F should either be both complex or real, and can be scalar, vector, or matrix. For
non fixed-point data types, inputs T and F do not necessarily have the same data type. But, for
fixed point data types, both these inputs should be of fixed-point type. In that case the output
data type will be fixed-point, and the number of integer and fractional bits will be set to
accommodate both inputs without loss of precision. For example, if one of the inputs is
x_sfix16_En10 (1 signed bit, 5 integer bits and 10 fractional bits), and the other is
x_sfix16_En5 (1 signed bit, 10 integer bits, and 5 fractional bits), the output will be
x_sfix21_En10 (1 signed bit, 10 integer bits, and 10 fractional bits).

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 747Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=747

• Input C can be a scalar, vector, or matrix if inputs T and F are scalars and Threshold parameter
is scalar. In this case, the output dimension matches with the input C dimension. Input C must
match the dimension of input T and F if they are non scalars. Input C should be real and can
be of any data type..

Parameters

• Criteria for passing first input:

This parameter is used to select the condition under which the block passes the first input (T).
If the control input C meets the condition set in the Criteria for passing first input parameter,
the block passes the first input (T). Otherwise, the block passes the third input (F).

Settings for the Criteria for passing first input parameter are:

Table 66: Criteria for Passing First Input Settings

Setting Description
C >= Threshold Select input T if control input C is greater than or equal to

the Threshold parameter.

C > Threshold Select input T if control input C is greater than the
Threshold parameter.

C ~= 0 Select input T if control input C is not equal to 0. Selecting
C ~= 0 disables the Threshold parameter.

• Threshold:

This parameter assigns the switch threshold that determines which input the block passes to
the output. Threshold parameter is rounded to the same data type as that of the C input.

• Settings:

Table 67: Supported Threshold Settings

Settings Description
0 default value

real number, vector, or matrix any real scalar, vector or matrix

TIP:

To specify a non-scalar threshold, use brackets. For example, the following entries are valid: [1 3 5].

For a non-scalar threshold, the inputs must be scalars. In that case, the output dimension is the same
as the threshold dimension, and input 2 is compared to each element of the threshold, and depending
on the criteria, either T or F is selected to populate the output signal.

• Dependencies: Setting Criteria for passing first input to C ~= 0 disables this parameter.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 748Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=748

Conjugate
Apply element-wise complex conjugate operation to the input signal

Library

Math Functions / Math Operations

Description

The Conjugate block applies element-wise complex conjugate operation to the input signal.

The conjugate of a complex number is the number with equal real part, where the imaginary part
is equal in magnitude but opposite in sign. The complex conjugate of a+bi is a-bi.

Data Type Support

Data type support for the input is:

• The input signals can be signed integer, fixed-point, or floating-point data type.

• Boolean and unsigned data types are not supported.

• The input signals can be a scalars, vectors, or matrices.

• The input signal supports complex type.

The data type and dimension of the output signal are the same as those of input signal. For
complex type input, only the magnitude of the imaginary part changes.

Parameters

The Conjugate block has no parameters to set.

Constant
Provides constant value as a source.

Library

Source

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 749Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=749

Description

The Constant block generates a constant output of the value specified by the Constant value
parameter. If you select Interpret vector parameters as 1-D parameter and specify the constant
value as a scalar, row matrix, or column matrix, then the output is a 1-D array. Otherwise, the
output is always two-dimensional. The Constant block supports real or complex constant values.

Data Type Support

By default, the Constant block outputs a signal with double data type and the same complexity
as the Constant value parameter. However, you can specify the output to be any data type that
Model Composer supports, including fixed-point and half data types by selecting the Output
data type parameter.

Parameters

• Constant value:

The Constant value parameter specifies the constant value output of the block.

You can enter any expression that MATLAB® evaluates as a scalar or matrix.

Table 68: Settings

Choices Description
1.0 Constant Value

• Interpret vector parameters as 1-D:

Specifies whether the constant value should be interpreted as a 1-D array.

Table 69: Settings

Choices Description
On If the specified constant value is a scalar, row matrix, or

column matrix, then the output is a 1-D array. Otherwise,
the output is a 2-D matrix.

Off The output is a 2-D scalar or matrix.

• Sample time:

Specifies block sample time as a numerical value. The sample time of a block indicates when,
during simulation, the block generates outputs or updates its internal state.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 750Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=750

The block allows you to specify a block sample time directly as a numerical value. For
example, to generate output at every two seconds, you can directly set the discrete sample
time by specifying the numerical value of 2 as the Sample time parameter.

Settings for Sample time are:

Table 70: Sample Time Parameter

Sample Time Type Sample Time
Supported Description Supported?

Discrete Ts Generates output at
discrete samples Ts.
Discrete sample time is
supported with the initial
time offset value fixed to 0.
The initial offset value is not
configurable.

Yes

Continuous 0 Generate output
continuously by dividing the
sample hits into major time
steps and minor time steps.
The Simulink ODE solver
you choose integrates all
continuous states from the
simulation start time to a
given major or minor time
step.

No

Inherited -1 The sample time value is
inherited from other
sources. It is determined by
applying a set of heuristics
and based on the context of
the block within the model
by Simulink.
Allowing a design to inherit
sample time maximizes its
reuse potential. For
example, a design might fix
the data types and
dimensions of all its input
and output signals. But you
could reuse the design with
different sample times (for
example, discrete at 0.1 or
discrete at 0.2, triggered,
and so on).

Yes

Constant inf Constant sample time.
Same as inherited sample
time for HLS blocks.

Yes

Variable -2 Variable Sample time. No

Triggered -1 (implicit) Execute the block upon
some implicit condition
when it is inside a
subsystem like triggered,
function call, or iterator
subsystem.

Yes

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 751Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=751

For additional details for simulating sample time, see Types of Sample time in the Simulink
documentation.

• Output data type:

This parameter specifies the data type of the output signal.

If the output data type is one of the integer types, then the Constant value is rounded off as
explained below.

A value with the fractional part less than 0.5 is rounded towards zero, the fractional part more
than 0.5 is rounded away from zero.

In case of a tie (fractional part is 0.5), the Constant value is rounded up, i.e. the negative
Constant value, is rounded towards zero and the positive Constant value is rounded away
from zero.

• Settings:

The following data types are supported:

Table 71: Output Data Type Parameter

Setting Description
double, single, and half Floating point data types.

int8, uint8, int16, uint16, int32, uint32 Signed and unsigned integer data types.

Logical Boolean data type.

Fixed point data type
• Fixed-point arithmetic data type with configurable

output data type attributes like signedness, word
length, fractional length.

• Constant value conversion attributes rounding and
overflow for reading constant value parameter.

Data type Expression A string that specifies the output data type. See "Working
with Data Type Expression" in the Vitis Model Composer
User Guide (UG1483).

cosh
Element-wise computation of the hyperbolic cosine for a given argument

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 752Send Feedback

https://in.mathworks.com/help/simulink/ug/types-of-sample-time.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=752

Description

The cosh block returns the output of the function cosh(x), which is the hyperbolic cosine, for
each element in array x.

The hyperbolic cosine of x is:

cosh(x) = e
x + e-x

2

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector, or matrix.

• Data Types: Input supports signals of integer type, floating point data types (double, single,
and half) and fixed point type.

• Complex Numbers: Complex numbers are not supported.

Output has the same dimension and data type as the input.

Parameters

The cosh block has no parameters to set.

Cosine
Computes cosine value for the input.

Library

Math Functions / Math Operations

Description

The Cosine block returns the output of the function cos(x) for each element in array x.

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector, or matrix.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 753Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=753

• Data Types: Input supports signal of floating-point data types (double, single, and half), and
signed fixed point type. It does not support integer, Boolean, and unsigned fixed point data
types.

• Complex Numbers: Complex numbers are not supported.

Output has the same dimension and data type as the input. However, if the data type of the
input is a fixed point type, the data type of the output is fixed point type with integer width fixed
as 2.

Parameters

The Cosine block has no parameters to set.

Cumulative Sum
Compute the cumulative sum along the specified dimension of the input

Library

Math Functions / Math Operations

Description

The Cumulative Sum block computes the cumulative sum of the input signal along the specified
dimension or across time (running sum). The output signal has the same dimensions, data type
and complexity as the input signal.

Summing is performed in this way:

• Summing along Rows: If the block is configured for cumulative sum along rows, each element
in the output signal is the sum of the corresponding element in the input and all of the
elements in the same row and to the left of that element. If the input is 1-dimensional, each
element in the output signal is the sum of the corresponding element in the input and all of
the preceding elements.

• Summing along Columns: If the block is configured for cumulative sum along columns, each
element in the output signal is the sum of the corresponding element in the input and all of
the elements in the same column and above of that element. If the input is 1-dimensional,
each element in the output signal is the sum of the corresponding element in the input and all
of the preceding elements.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 754Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=754

• Running sum: If the block is configured for running sum, each element in the output signal is
the sum of the corresponding element in the input signal over time. In this case you can
specify an optional reset port and restart the running sum when the reset signal is asserted.

Data Type Support

Data type support is:

• Data input: The data In input is the data signal to be summed. It supports integer, fixed point
and floating-point data types but not boolean. The signal can be complex or real. The signal
can be a scalar, vector or matrix.

• Reset: The Reset input is applicable only for running sum with non-default reset type. The
reset signal must be scalar and real, and its data type must be integer or floating-point. Fixed
point data type is not supported.

• Output: The data type, dimension and complexity of the output signal are the same as those
of input signal.

Parameters

Sum input along

This parameter specifies the dimension along which sum elements are computed.

Settings for the Sum input along parameter are:

Table 72: Sum Input Along Parameter

Setting Description
Columns The block computes the cumulative sum of each column of

the input.

Rows The block computes the cumulative sum of each row of the
input.

Channels (running sum) The block computes a running sum for each element of the
input across time. When you select the Channels (running
sum) option, you will also have to specify a Reset port
parameter.

Reset port

This parameter applies only to running sum. The Reset port parameter appears if you select
Channels (running sum) for the Sum input along parameter.

Settings for the Reset port parameter are:

Table 73: Reset Port Paremeter

Setting Description
None Omits the Reset port.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 755Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=755

Table 73: Reset Port Paremeter (cont'd)

Setting Description
Non-zero sample Triggers a reset operation at each sample time that the

Reset input is not zero.

Data Type Conversion
Convert the input to the data type of the output.

The block warns or errors out when an integer or fixed-point output overflows during simulation.
To configure, select Configuration Parameters → Diagnostics → Data Validity. In the Data Validity
pane, set Wrap or Saturate to Overflow.

Library

Signal Attributes

Description

The Data Type Conversion block has one input and one output. It converts the value of the input
signal to the data type of the output. This conversion tries to preserve the mathematical value of
the input signal. The data type of the output is specified via the mask dialog. The conversion is
governed by the following rules:

• Conversions where the output data type is fixed-point, first select the nearest number that
can be represented, taking into account the overflow mode. In case of a tie, the rounding
mode breaks the tie.

• Conversions where the output data type is integer are performed as in the C language.
Overflow is handled via truncation.

○ As per IEEE Standard for Floating-point Arithmetic (IEEE Standard 754, Section-7.2),
conversion from floating-point to integral is an invalid operation, when the floating-point
value is outside the range of the destination integer data type. In this case, the output
integer value depends upon the implementation of a C compiler. Hence, the results from
the HLS Data Type Conversion block may differ from the results from Simulink® Data Type
Conversion block.

○ When the floating-point input value is outside the range of the integer data type, the
simulation results between Model Composer and RTL co-simulation in Vitis HLS may also
differ.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 756Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=756

○ During simulation, to check whether the input floating-point value goes outside the range
of the destination integer type, in Simulink select Model Configuration Parameters → 
Diagnostics → Data Validity . Then set Saturate on overflow to either warning or error.

• Conversions where the output data type is floating point follow the rules implemented in the
C language.

Data Type Support

The input signal can be double, single, an integer, boolean, Xilinx supported half or Xilinx
supported fixed-point data type.

The data type of the output is specified the mask parameters.

The input can be real or complex, and scalar, vector, or matrix. The output signal has the same
complexity and dimensions as the input signal.

Parameters

• Output data type:

This parameter specifies the data type of the output signal. If fixed is specified, more
parameters are available.

Settings for the Output data type parameter are as follows.

Table 74: Output Data Type Parameter

Setting Description
double double precision floating point

single single precision floating point

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

logical boolean

fixed Xilinx supported fixed-point

half Xilinx supported half precision floating point

data type expression A string that specifies the output data type. See "Working with Data Type
Expression" in the Vitis Model Composer User Guide (UG1483).

• Signedness:

If the Output data type is set to fixed, the Signedness parameter specifies whether the output
is a signed fixed-point or unsigned fixed-point data type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 757Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=757

Settings for the Signedness parameter are as follows.

Table 75: Signedness Parameter

Setting Description
Signed The output type contains both positive and negative numbers.

Unsigned The output type contains only non-negative numbers.

This parameter is available only if fixed is selected as the setting for parameter Output data
type.

• Word length:

If the Output data type is set to fixed, the Word length parameter specifies the number of
bits used to represent it.

Table 76: Word Length Parameter

Choices Description
16

N A positive integer

This parameter is available only if fixed is selected as the setting for parameter Output data
type.

• Fractional length:

If the Output data type is set to fixed, the Fractional length parameter specifies the number
of bits to the right of the binary point.

Table 77: Fractional Length Parameter

Choices Description
10

N An integer

This parameter is available only if fixed is selected as the setting for parameter Output data
type.

• Round:

If the Output data type is set to fixed, the Round parameter allows you to select among five
rounding and two truncation options.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 758Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=758

If one of the five rounding options is selected, the block always rounds to the nearest
supported precision. The five rounding choices are relevant only in case of a tie. For example,
assume the output type is signed fixed-point, with a word length of 6 and a fractional length
of 2, and the input to the block is 2.74. In this case, the output is rounded to the nearest
supported precision, 2.75, regardless of which one of the five rounding modes is selected.
However, if the input value is 2.625 (halfway between 2.5 and 2.75), then the output value
depends on the chosen rounding mode. If Round to plus infinity is selected, the value will be
2.75, and if Round to zero is selected, the value will be 2.5. For more information on this, refer
to the Vitis High-Level Synthesis User Guide (UG1399).

If one of the two truncation options is selected, the output will be truncated to the supported
precision specified by the truncation selection.

Truncation to minus infinity is the default setting for Round and requires the smallest
hardware resources among all the options.

The Round parameter is available only if fixed is selected as the setting for the Output data
type parameter.

Settings for the Round parameter are:

Table 78: Round Parameter

Setting Description
Round to plus infinity Rounding to plus infinity

Round to zero Rounding to zero

Round to minus infinity Rounding to minus infinity

Round to infinity Rounding to infinity

Convergent rounding Convergent rounding

Truncation to minus infinity Truncation to minus infinity

Truncation to zero Truncation to zero

• Overflow:

If the Output data type is set to fixed, the Overflow parameter specifies the overflow mode
applied during conversion.

This parameter is available only if fixed is selected as the setting for parameter Output data
type.

Settings for the Overflow parameter are:

Table 79: Overflow Parameter

Setting Description
Saturation Saturation

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 759Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=759

Table 79: Overflow Parameter (cont'd)

Setting Description
Saturation to Zero Saturation to zero

Symmetrical Saturation Symmetrical saturation

Wrap around Wrap around

Sign-Magnitude Wrap Around Sign magnitude wrap around

• Type Expression:

If the Output data type is set to data type expression, the Type Expression parameter
specifies the output data type as a string.

This parameter is available only if data type expression is selected as the setting for parameter
Output data type.

• Saturate on integer overflow:

This parameter specifies whether integer overflow is handled by wrapping (default) or by
saturating. This parameter is relevant only if the output is integral (int8, int16, int32, uint8,
uint16, uint32).

When overflow is detected, the Diagnostic Viewer displays messages depending on the
diagnostic action selected in the Configuration Parameters dialog box. To configure, in the
Configuration Parameters → Diagnostics → Data Validity pane, set the Wrap or Saturate on
overflow.

Settings for the Saturate on integer overflow parameter are:

Table 80: Saturate On Integer Overflow Parameter

Setting Description
Not selected Integer overflow is handled by wrapping.

Selected Integer overflow is handled by saturation.

If the Output data type is set to fixed and overflow is detected, the Diagnostic Viewer displays
messages that depend on the diagnostic action you specify in the Simulink Editor. To configure,
select Simulation → Model Configuration Parameters → Diagnostics → Data Validity for your
model in the Simulink Editor, then set the Wrap on overflow or Saturate on overflow parameter.

Delay
Delay input signal by specified number of samples

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 760Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=760

Library

Signal Operations

Description

The delay block produces an output signal by delaying the input signal by the number of samples
specified in the block dialog box. If the latency of the block is N, then the N-1 first output
samples are always 0, and the N-th output sample is the first input sample.

Data Type Support

All data types are supported.

Input can be a vector or a matrix. If input is a vector or a matrix and the latency value is a scalar,
the scalar value will apply to all the elements of the input.

Output is complex if the input is complex.

Parameters

Latency

The Latency parameter specifies the number of samples by which the input signal is delayed.

Latency should be a real, non-negative, scalar integer with minimum value as 1 and maximum
value as 2^25.

Demux
Separates a vector input into a number of scalar and vector outputs.

Library

Signal Routing

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 761Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=761

Description

The Demux block input signal can be a scalar, a vector, a row matrix (1xN), or a column matrix
(Nx1). The block splits elements in the input signal into scalar and vector type output signals
according to the width of each output port starting from the first port at the top right.

The number of output ports and the port widths are configurable using the Number of outputs
block parameter,

You can specify the width of each port or it can be dynamically computed by the block based on
how the parameter value is provided. Refer to the Parameters section below for more details.

When the value of the Number of outputs parameter is changed, the output ports are either
added or removed starting from the last port at the bottom right.

Figure 387: Demux Parameter Dialog

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 762Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=762

Figure 388: Demux Diagaram

The output ports are added/removed starting from the last port at the bottom right.

Data Type Support

• Inputs:

• The block has one input port.

• The input signal can be a scalar, a vector (N), a row matrix (1xN), or column matrix (Nx1),
where N is the width of input signal.

• The Demux block supports all native data types (double, single, uint8, int8, uint16, int16,
uint32, int32, and boolean), and Model Composer supported half and fixed-point data
types.

• The block supports input data in real or complex numeric type.

• Outputs:

• The number of outputs for the block is specified using the Number of outputs block
parameter.

• The value of the block parameter can be a finite positive integer, P, or an array of integers.
The numbers in the array are used to decide the number of outputs as well as the width of
each output signal.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 763Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=763

• An output signal can be configured as a scalar, a vector (M), a row matrix (1xM), or a
column matrix (Mx1) where M is less than or equal to the width of the input signal.

• The sum of widths of all output signals is ensured to be the same as the input signal width.

• The data type and the numeric type (real or complex) of output signals are the same as
those of the input signal.

Parameters

• Number of outputs:

This parameter takes number of outputs in several ways. Depending upon the parameter
value, the output ports are added/removed starting from the last port at the bottom right.

Table 81: Number of Outputs

Option Choices Description
1 2 The block icon is initially created with two output ports.

The input signal width is equally divided between the two outputs. If the input signal
width is an odd number, then any remainder of the width is assigned to the first
port at the top right.

2 P A finite integer value representing the number of output ports.
P must be greater than 0.
The block icon is redrawn with the specified number of output ports. The widths of
the output ports are dynamically computed by the block as follows:
The width of the input is equally divided among the outputs. Any remainder of the
width is assigned, one each, to the outputs starting from the first port at the top
right.
For example, if N is 3, and the width of the input is 14, then the first output is
assigned with the first 5 input elements, the second output is assigned with the next
5 input elements, and the third output is assigned with the last 4 input elements.

3 [P] A finite positive integer in square brackets is treated just like option 2 above. Here,
the number of outputs will be P.

4 [-1 -1 -1] The block icon is redrawn with 3 output ports. Here -1 means that the width of the
particular output port needs to be computed in the same way as it is explained in
the option 2 above.

5 [3 -1 -1] The block icon is redrawn with 3 output ports.
You specify the width of the first output, and Model Composer computes the widths
of the second and the third outputs.
For example, if width of the input is 8, and the first output width is 3, then the
remaining width of 5 is divided between the second and the third outputs. This
results in the widths of the second and the third outputs to be set to 3 and 2
respectively.

6 3 3 1 The block icon is redrawn with 3 output ports.
The width of each output port is already specified by the user. The sum of the width
of the outputs is 7. The width of the input must be 7, otherwise, an error message
appears.

Divide
Element-wise division

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 764Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=764

Library

Math Functions / Math Operations

Description

The Divide block has two input ports and one output port. The output signal (quotient) is the
result of element-wise division of the first input (dividend) by the second input (divisor).

Data Type Support

The data types of the dividend and divisor can be any integer, fixed point or floating point data
type. Boolean dividends or divisors are not supported. The input signals can be real or complex.
The input signals can be scalars, vectors or matrices. If neither input signal is scalar, they must
either be vectors of the same length or matrices with the same number of rows and columns.
When the output is integer or fixed point data type, the result is truncated to zero.

The output data type is chosen for maximal alignment with Vitis HLS. If the dividend and divisor
are fixed point types and the fixed point parameters of the dividend are W1 (word length), FW1
(fractional length), and S1 (signedness), and the fixed point parameters of the divisor are W2,
FW2, and S2, then the fixed point parameters of the quotient are as follows:

• S = S1 ‖ S2

• FW2 ≥ 0

○ W = W1 + FW2 + S2

○ FW = FW1

• FW2 < 0

○ W = W1 +S2

○ FW = FW1 + FW2

Parameters

The Divide block has no parameters.

Equals
Perform element-wise equal to relational operation on the inputs. The top input corresponds to
the first operand.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 765Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=765

Library

Relational Operations

Description

The Equals block performs element-wise comparison of inputs for equality. The block has two
input ports and one output port. The output is true if the first input is equal to the second input.

Figure 389: Equals Block

Data Type Support

Data types accepted at the inputs of the block are:

• The block supports all data types supported by Vitis Model Composer.

• The block supports inputs having different data types. The output data type is always
Boolean.

• The block supports mixed dimensions for inputs, where one input is a scalar, and the other
input is a vector/matrix. The scalar value is compared with each element of the multi-
dimensional input value for equality. The output has the same dimension as the multi-
dimension input.

• If both inputs are non-scalar then their dimensions must match.

The output data type is always Boolean.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 766Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=766

Parameters

The Equals block has no parameters to set.

Exp
Perform an element-wise exponential value of the input

Library

Math Functions / Math Operations

Description

The Exp block returns the exponential ex for each element in array x. The block supports all data
types except Boolean. The input can be scalar, vector or matrix.

Data Type Support

Data types accepted at the inputs of the block are:

• Dimension : Input can be scalar, vector, or matrix.

• Data Types: Input supports signal of integer, fixed point, and floating point data type. It does
not support Boolean inputs.

• Complex numbers are not supported.

The output has the same dimension and type as the input.

Parameters

The Exponential block has no parameters to set.

Gain
Element-wise multiplication of the input by a constant gain factor

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 767Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=767

Description

The Gain block multiplies the input signal by a constant gain factor.

You can specify the data type of the gain constant and built-in type promotion rules apply to
determine the output data type. Alternatively, the output data type can be made the same as the
input type. In case of integer overflow the block supports the option to saturate output values at
the output type limits.

The block warns or errors out when an integer output overflows during simulation. To configure,
select Simulation → Model Configuration Parameters → Diagnostics → Data Validity for your
model in the Simulink Editor, then set the Wrap on overflow or Saturate on overflow parameter.

Data Type Support

The block supports all data types except Boolean.

Data type support for the block is:

• The input can be a scalar, vector or matrix.

• If the input is a vector or matrix and the Gain is a scalar, the scalar value will apply to all the
elements of the input.

• If neither the input nor the gain constant are scalar the dimensions of the input and the gain
constant must match.

The output is complex if either the Gain constant or the input is complex.

Parameters

Gain

Specifies the constant gain factor. The Gain can be any valid MATLAB expression that evaluates
to a real or complex scalar, vector, or matrix.

Gain data type

This parameter specifies the type of conversion to be applied to the Gain factor constant before
multiplication. If fixed is specified more parameters are available.

Settings for the Gain data type parameter are:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 768Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=768

Table 82: Gain Data Type Parameter

Setting Description
double double precision floating-point

single single precision floating-point

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

fixed fixed-point

half half precision floating-point

data type expression A string that specifies the output data type. See "Working
with Data Type Expression" in the Vitis Model Composer User
Guide (UG1483).

Unless the Output data type same as input parameter is enabled, the output data type will be a
function of the input type and the specified Gain data type.

• If either input or gain types are floating-point (double, single, or half), the output type will be
floating-point. If both are floating-point, the output type will be the larger of both. The smaller
type will be promoted to the larger before the operation.

• Otherwise, if either of input or Gain data type are fixed-point, the output type will be fixed-
point with a bit width sufficient to hold the full output result. The other type (input or Gain
data type) will be promoted to its equivalent fixed-point type.

• Otherwise, the input and Gain data type are integers. The output type will be the larger of
either input or Gain data type, and will be a signed integer if either one is signed.

Output data type same as input

This parameter specifies the way the output data type is determined.

If disabled (unchecked) the output type is computed via built-in type promotion rules. If enabled
(checked), the output data type is the same as the input type.

Saturate on integer overflow

This parameter specifies the behavior in case of integer overflow. By default the option is
disabled and overflow would result in value wrap. With the option enabled, integer overflow gets
mitigated by saturation at the limits of the output data type.

Settings for the Saturate on integer overflow parameter are:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 769Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=769

Table 83: Saturate On Integer Overflow Parameter

Setting Description
Unchecked Wrap around

Checked Saturation

When overflow is detected, the Diagnostic Viewer displays messages that depend on the
diagnostic action you specify in the Simulink Editor. To configure, select Simulation → Model
Configuration Parameters → Diagnostics → Data Validity for your model in the Simulink Editor,
then set the Wrap on overflow or Saturate on overflow parameter.

Greater
Performs element-wise greater than relational operation on the inputs. The top input
corresponds to the first operand.

Library

Relational Operations

Description

The Greater block has two input signals and one output signal. The block compares the two
inputs using element-wise greater than relational operation. The first input corresponds to the
top input port and the second input to the bottom input port. The dimension of the output signal
matches the dimensions of the input signals. An element of the output signal is true if the
corresponding element of the first input signal is greater than the corresponding element of the
second signal. Otherwise the element is false.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 770Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=770

Figure 390: Greater Block

Data Type Support

Data type support for the Greater block is:

• The data types of the input signals can be integer, fixed-point, Boolean, or floating-point data
type.

• The input signals can be a scalars, vectors, or matrices. If both inputs are not scalar, their
dimensions must match.

• The input signals must be real.

• The output signal is Boolean.

• The dimension of the output signal is scalar if both inputs are scalar. Otherwise it matches the
dimensions of the non-scalar input.

Parameters

The Greater block has no parameters to set.

Greater Equals
Perform element-wise greater than or equal relational operation on the inputs. The top input
corresponds to the first operand.

Library

Relational Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 771Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=771

Description

The Greater Equals block performs element-wise greater than or equal relational operation on
the inputs. The upper input is the first input and the lower input is the second input. The block
returns true if the first input is greater than or equal to the second input. The output equals 1 for
true and 0 for false.

Figure 391: Greater Equals Block

Data Type Support

Data types accepted at the inputs of the block are:

• Data Types: Greater Equal block supports all data types supported by Model Composer
(integer, floating-point, fixed-point, and Boolean).

• Dimension: The inputs can be scalar, vector, or matrix, or a combination of scalar, and matrix,
or vector. If both the inputs are matrix or vector, they should have same dimension.

• Complex Number Support: No

The output is always Boolean.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 772Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=772

Outputs for the different input types are:

Table 84: Input/Output

Inputs Output
Both are scalar Scalar

Both are vector Vector of same dimension

Both are matrix Matrix of same dimension

One is scalar and the other is vector or matrix Dimension is that of the vector or matrix

Parameters

The Greater Equals block has no parameters to set.

Hermitian
Perform element-wise conjugate transpose operation on the input signal.

Library

Math Functions / Matrices and Linear Algebra

Description

The Hermitian block performs a conjugate transpose operation on the input signal.

Figure 392: Hermitian Block

Data Type Support

This block supports all data types supported by Xilinx® Model Composer. The input signal can be
real or a complex number of scalar, vector, or matrix type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 773Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=773

Parameters

The Hermitian block has no parameters to set.

Interface Spec
Specify the RTL interfaces for a subsystem

Library

Tools

Description

The Interface Spec block allows you to control what RTL interfaces should be synthesized for the
ports of the subsystem in which the Interface Spec block is instantiated. This affects only code
generation and synthesis, when an RTL model (an IP) is synthesized by Vitis HLS from the C++
model produced by Model Composer. The block has no effect on Simulink® simulation of your
design. If your design does not have an Interface Spec block, Model Composer selects default
interfaces for you. Interface synthesis is supported only to the subsystem for which you are
generating C++ code. Therefore any Interface Spec blocks instantiated in subsystems nested
within the subsystem for which you are generating C++ code are ignored.

The Interface Spec block is used as follows:

1. Instantiate the Interface Spec block in the subsystem for which you want to generate C++
code. The Input ports tab will be populated with one row for each input port of the parent
subsystem. Similarly, the Output ports tab has one row for each output port of the parent
subsystem.

2. Fill out the Function Protocol, Input ports, and Output ports tabs.

The information gathered by the Interface Specification block consists of three parts:

• The block-level Interface Protocol. This protocol is used to tell the IP when to start processing
data. It is also used by the IP to indicate whether it accepts new data, or whether it has
completed an operation, or whether it is idle.

• The port-level Interface Protocol for each input port of the parent subsystem.

• The port-level interface protocol for each output port of the parent subsystem.

The choice of port-level interface protocol should take into account the following considerations:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 774Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=774

• Large array or matrix ports should use a streaming protocol such as AXI4-Stream, FIFO, or
AXI4-Stream (video).

• Scalar ports can be implemented using any of the following protocols: Default, AXI4-Lite
Slave, Constant, Valid Port, No protocol

• Video signals can be transported over an AXI4-Stream (video) interface. In this case you also
need to specify the video format YUV 4:2:2, YUV 4:4:4, RGB or Mono. For video formats that
have more than 1 color component, you also need to specify which port carries which color
component and you need to assign the same name for the 'bundle' attribute for these (3)
ports. All of the ports (either 3 or 1) that make up the video signal are implemented by a single
AXI4-Stream interface that include start-of frame and end-of-line sideband signals. This
follows the specifications described in the AXI4-Stream Video IP and System Design Guide
(UG934).

• An AXI4-Lite Slave interface allows you to implement one or more ports.

• For further details refer to Interface Synthesis in the Vitis High-Level Synthesis User Guide
(UG1399).

The interface specification block currently supports subsystems with at most 8 input ports and 8
output ports.

Data Type Support

Data type support is not applicable to the Interface Spec block.

Parameters

The parameters for the Interface Specification block fall into the following groups.

• The parameters that apply to the function protocol. These are Mode, and Bundle. In the GUI
dialog, these parameters appear in the 'Functional Protocol' tab.

• The parameters that apply to the Input ports. For each input port, there is 1 set of parameters
Mode, Bundle, Offset, Video Format, and Video Component. In the Block Parameter dialog,
these parameters appear in the 'Input ports' tab.

• The parameters that apply to the Output ports. For each output port, there is 1 set of
parameters Mode, Bundle, Offset, Video Format, and Video Component. In the GUI dialog,
these parameters appear in the 'Output ports' tab.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 775Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_videoip;v=latest;d=ug934_axi_videoIP.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=775

Figure 393: Function Protocol Parameters

Parameters on the Function Protocol tab are as follows:

• Mode:

The Mode parameter specifies the block-level I/O protocol.

Following are the settings for the Mode parameter.

Table 85: Mode Parameter

Setting Description
AXI4-Lite Slave Specifies AXI4-Lite Slave as the block-level I/O protocol.

Handshake Specifies a handshake protocol as the block-level I/O protocol.

No block-level I/O Protocol Specifies that there is no block-level I/O protocol.

The default choice for the function protocol is 'AXI4-Lite Slave'. However, if the DUT does not
have any scalar ports then Handshake is selected as default function protocol.

• Bundle:

The Bundle parameter is used in conjunction with the AXI4-Lite Slave interface to indicate
that multiple ports should be grouped into the same interface. Enter a legal identifier in the C
language (cannot contain spaces or special characters) for Bundle.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 776Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=776

Figure 394: Input Ports Tab

Figure 395: Output Ports Tab

Parameters on the Input ports and Output ports tabs are as follows.

• Mode:

The Mode parameter specifies the I/O protocol for the input port or the output port.

Settings for the Mode parameter are:

Table 86: Mode Parameter

Setting Description
Default Specifies to use AXI4-Lite Slave if port is scalar, and use AXI4-

Stream if the port is non-scalar.

AXI4-Stream Specifies AXI4-Stream protocol.

AXI4-Stream (video) Specifies AXI4-Stream (video) protocol. Allows you to specify
Bundle, Video Format, and Video Component parameters.

AXI4-Lite Slave Specifies AXI4-Lite Slave protocol. Allows you to specify Bundle and
Offset parameters.

FIFO Specifies a protocol for arrays whose elements are accessed in a
sequential manner.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 777Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=777

Table 86: Mode Parameter (cont'd)

Setting Description
Valid port Specifies a handshake protocol that only has a valid port.

Constant Specifies a mode in which no I/O protocol is added to the port. The
mode is intended for configuration inputs which only change when
the device is in reset mode.
This mode only applies to Input ports.

No protocol Specifies that no I/O protocol is added to the port.

Block RAM Specifies Block RAM interface protocol.

• Bundle:

The Bundle parameter applies to the input ports or output ports and it is used in conjunction
with the AXI4-Stream (video) interfaces that have more than one color component. In this
case there should be one port for each color component and these ports should specify the
same name for the Bundle attribute so that they will be grouped into the same AXI4-Stream
(video) interface.

The parameter is also used in conjunction with AXI4-Lite Slave interfaces to specify that ports
with the same name for the Bundle attribute will be grouped into the same AXI4-Lite Slave
interface.

Enter a legal identifier in the C language (cannot contain spaces or special characters) for
Bundle.

• Offset:

The Offset parameter applies to the input ports or output ports and it is used in conjunction
with the AXI4-Lite Slave interface. The parameter allows you to specify the address offset for
a port within the AXI4-Lite Slave address map.

• Video Format:

The Video Format parameter applies to the input ports or output ports and it specifies the
color format for a video signal. It applies only to AXI4-Stream (video) interfaces. Options are
Mono, YUV 4:2:2, YUV 4:4:4, and RGB.

• Video Component:

The VideoComponent parameter applies to the input ports or output ports and it specifies the
color component for a video signal. It applies only to AXI4-Stream (video) interfaces that use a
Video Format with more than one color component. Options are Mono, YUV 4:2:2, YUV
4:4:4, and RGB.

The Video Component selections for the different Video Format options are as follows.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 778Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=778

Table 87: Video Component Option

Video Format Video Component Options
Mono N/A

YUV 4:2:2 Y, U, V

YUV 4:4:4 Y, U, V

RGB R, G, B

Lesser
Performs element-wise less than relational operation on the inputs. The top input corresponds to
the first operand.

Library

Relational Operations

Description

The Lesser block has two input signals and one output signal. The block compares two inputs
using element-wise lesser relational operation. The first input corresponds to the top input port
and the second input to the bottom input port. The dimension of the output signal matches the
dimensions of the input signals. An element of the output signal is true if the corresponding
element of the first input signal is less than the corresponding element of the second signal;
otherwise the element is false.

Data Type Support

Data types support for the Lesser block is:

• The data types of the input signals can be integer, fixed-point, boolean, or floating point data
type.

• The input signals can be scalars, vectors, or matrices. If both inputs are not scalar, their
dimensions must match.

• The input signals must be real.

• The output signal is boolean.

• The dimension of the output signal is scalar if both inputs are scalar. Otherwise it matches the
dimensions of the non-scalar input.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 779Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=779

Parameters

The Lesser block has no parameters to set.

Lesser Equals
Perform element-wise less than or equal relational operation on the inputs. The top input
corresponds to the first operand.

Library

Relational Operations

Description

Performs element-wise less than or equal relational operation on the inputs. The block returns
true (1) if the first input is less than or equal to the second input; returns false (0) otherwise.

Data Type Support

The Lesser Equals block supports inputs of native data types of MATLAB® and Ap_Fixed data
type supported by Vitis HLS. The output type is always Boolean. It does not support complex
data types. The block supports inputs of scalar, vector, and matrix dimensions. When both inputs
have non-scalar dimensions then the dimensions of the inputs must match each other.

Parameters

The Lesser Equals block has no parameters to set.

Library Function
Import user created C function as a block

Library

Library can be specified after you create the Library Function block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 780Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=780

Description

The Library Function block allows you to bring C or C++ models into Model Composer for block
simulation and code generation. The block I/O interface is determined by the function
declaration, which is auto-discovered by the tool. The Library function block is created when you
run the xmcImportFunction script to specify the library function sources files and header
search paths.

Data Type Support

You can import functions that have scalar, vectors, or matrices as function parameters. All data
types, including fixed-point are supported. Complex values, real, and imaginary components, and
phase angles are not supported.

Parameters

The block parameters dialog box for the Library Function block is shown below:

Figure 396: Block Parameters

The dialog box indicates the settings for these parameters which were specified when the block
was created:

• Function name

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 781Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=781

• Include files

• Source files

• Compiler include directories

You cannot change these settings from the dialog box. To change these settings, you will have to
recreate the block using the xmcImportFunction command.

Log
Compute element-wise natural logarithm of input

Library

Math Functions / Math Operations

Description

The Log block returns the logarithm value for the provided input. The block supports input of all
data types except Boolean. The input can be scalar, vector, or matrix.

Data Type Support

Data types accepted at the inputs of the block are:

• Data Types: Input supports signals of integer, fixed-point, and floating-point data type. The
block does not support Boolean inputs.

• Complex Number Support: No

The output has the same dimension and type as the input.

Parameters

The Log block has no parameters to set.

Log10
Compute element-wise base 10 logarithm of input

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 782Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=782

Description

The Log10 block returns the base 10 logarithm value for the input. The block supports input of
all data types except Boolean. The input can be scalar, vector, or matrix.

Data Type Support

Data types accepted at the inputs of the block are:

• Data Types: Input supports signals of integer, fixed-point, and floating-point data type. The
block does not support Boolean inputs.

• Complex Number Support: No

The output has the same dimension and type as the input.

Parameters

The Log10 block has no parameters to set.

Logical AND
Performs element-wise logical AND operation on inputs

Library

Logic and Bit Operations

Description

The Logical AND block has two input ports and one output port. The block performs an element-
wise logical AND operation on the inputs and produces a Boolean result on the output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 783Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=783

Figure 397: Logical AND Block

Data Type Support

• The block supports inputs of different data types. The output data type is always Boolean.

• The block only supports real inputs.

• If one input is non-scalar type then the other input can be scalar type.

• If both inputs are non-scalar type then their dimensions must match. In case of non-scalar
inputs, the output has the same dimension as the inputs.

Parameters

The Logical AND block has no parameters to set.

Logical NOT
Performs element-wise logical NOT operation on the input

Library

Logic and Bit Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 784Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=784

Description

The Logical NOT block has one input port and one output port. The output is false if the input is
a non-zero (true) value.

Data Type Support

• The Logical NOT block supports all data types supported by Model Composer.

• The block only supports real inputs.

Parameters

The Logical NOT block has no parameters to set.

Logical OR
Performs element-wise logical OR operation on inputs

Library

Logic and Bit Operations

Description

The Logical OR block has two input ports and one output port. The block performs an element-
wise logical OR operation on the inputs and produces a Boolean result on the output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 785Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=785

Figure 398: Logical OR Block

Data Type Support

• The Logical OR block supports all data types supported by Model Composer.

• The block supports inputs of different data types. The output data type is always Boolean.

• The block only supports real inputs.

• The block supports scalar and non-scalar type inputs. If one input is non-scalar type then the
other input can be scalar type. When both inputs are non-scalar type then their dimensions
must match. In that case, the output has the same dimension as the inputs.

Parameters

The Logical OR block has no parameters to set.

Lookup Table
Perform one-dimensional lookup operation with an input index.

Library

Lookup Tables

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 786Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=786

Description

The Lookup Table block implements a simple read-only memory block with an input index. The
block maps input to an output value by looking up a table of values you define with a Table data
parameter.

The input value is used as a zero-based index into the table data. The Input bias parameter is an
offset to the index value (to support negative indexing). A When input is out of range parameter
lets you specify the behavior of the block if the index value exceeds the valid table size range.

Note: If the table size is not an exact power of 2, the block incurs additional hardware cost when it is
implemented in a Xilinx device, due to a remainder calculation on the index.

Figure 399: Lookup Table Block

In the example above, the Table data setting for the Lookup Table block is [7 3 4 8 9 4 1 5] with
an input bias of 1.

Data Type Support

The Lookup Table block accepts the following data types to represent scalar index value: int8,
uint8, int16, uint16, int32, uint32, and fixed-point type. Fixed-point inputs is shifted
appropriately to generate an integer index.

The output data type is same as the Table data parameter type. Inputs for indexing must be real,
but table data can be complex.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 787Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=787

Parameters

Table Data

This parameter accepts a 1-D vector of table values. The size of the vector determines the valid
index range for the input index. The data will be explicitly converted into the type specified in the
Output data type parameter. If the input index exceeds table size and Saturate at table ends is
specified for the When input is out of range parameter, then index value is saturated to either
top or bottom of table size range. If Wrap around is specified for the When input is out of range
parameter, the index is wrapped into the valid table size range.

Note: Large tables should be defined via a Simulink workspace variable due to space limitations in the block
dialog box.

Input bias

This parameter is an offset into the table data that will be added to the index input. This makes it
possible to use negative indices and perform look up operation.

When input is out of range

This parameter will guard the index value if it exceeds the valid table size range.

Following are the settings for the When input is out of range parameter.

Table 88: When Input Is Out of Range Parameter

Setting Description
Saturate at table ends If index value exceeds the valid table size range, then index value is saturated to

either top or bottom of table size range, depending on the overflow direction.

Wrap around If index value exceeds the valid table size range, then index value is wrapped into
the valid table size range.

Output data type

Specifies the output data type.

Following are settings for the Output data type parameter.

Table 89: Output Data Type Parameter

Setting Description
double double precision floating-point

single single precision floating-point

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 788Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=788

Table 89: Output Data Type Parameter (cont'd)

Setting Description
int32 32-bit signed integer

uint32 32-bit unsigned integer

boolean boolean

fixed fixed-point

half half precision floating-point

data type expression A string that specifies the output data type. See "Working with Data Type
Expression" in the Vitis Model Composer User Guide (UG1483).

Matrix Multiply
Compute matrix product of two input signals. The first operand is the top input on the block.

Library

Math Functions / Matrices and Linear Algebra

Description

The Matrix Multiply block has two input ports and one output port. The output signal is the
matrix product of the input signals where the first operand corresponds to the top input.

Data Type Support

The data type of the input signals can be any floating-point, fixed-point, integer, or Boolean. The
input signals can be real or complex. The input signals can be scalar, vector, or matrix, but they do
need to be such that mathematically, the matrix product is defined. The table below shows valid
combinations. Combinations that do not match any row in the table result in an error.

Table 90: Data Type Combinations

Dimensions of First
Operand

Dimensions of Second
Operand

Dimensions of Matrix
Product Conditions

K x L L x M K x M K >= 1, L >= 1, M >= 1

K x L L K K >= 1, L > 1

K x 1 1 K x 1 K >= 1

K 1 K K >= 1

K 1 x M K x M K >= 1, M >= 1

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 789Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=789

The output data type is determined according to the following rules, in the order listed. T1 is a
variable representing the type of the first operand; T2 is a variable representing the type of the
second operand. These rules were chosen for maximum alignment with Vitis HLS, which may not
correspond to the output data type computed via the internal rule of the Simulink® Matrix
Product block.

Table 91: Output Data Type

Data Type of First
Operand

Data Type of Second
Operand Data Type of Matrix Product

T1: floating-point T2 The widest floating-point type between T1 and T2 if T2 is
a floating-point type; otherwise T1

T1 T2: floating-point The widest floating-point type between T1 and T2 if T1 is
a floating-point type; otherwise T2

fixed-point fixed-point The smallest fixed-point type capable of representing the
product without loss of precision

fixed-point integer The smallest fixed-point type capable of representing the
product without loss of precision

integer fixed-point The smallest fixed-point type capable of representing the
product without loss of precision

T1: integer T2: integer Let W1 be the bit width of T1 and W2 be the bit width of
T2. The product is the integer type with bit width
max(W1,W2) and it is signed if either T1 or T2 are signed.

boolean T2 T2

T1 boolean T1

Parameters

The Matrix Multiply block has no parameters to set.

Max
Outputs the maximum value of an input or element-wise maximum value of multiple inputs.

Library

Math Functions/Math Operations

Description

The Max block with a single scalar or vector input, outputs the maximum value of the input.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 790Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=790

If the block has more than one input, the non-scalar inputs must have the same dimensions. Any
scalar input is expanded to the dimensions of the non-scalar inputs, and the block outputs
element-wise maximum value of the inputs.

Data Type Support

• The block supports floating-point, integer, and fixed-point data types.

• The block supports real valued inputs.

• For Number of Inputs = 1.

○ The block supports a scalar or vector (1-D or 2-D) input when it has only one input port.
The output is a scalar.

• For Number of Inputs > 1.

○ The block supports scalar, vector, or matrix inputs when it has more than one input port.

○ The output has the same dimensions as those of the inputs when all the inputs have the
same dimensions.

○ The block supports mixed dimensions for inputs when it has more than one input port,
provided all the non-scalar inputs have the same dimensions. Any scalar input is expanded
to the dimensions of non-scalar inputs, and the block outputs element-wise maximum
value of the inputs. The output has the same dimensions as those of the non-scalar inputs.

• The block supports inputs having different data types. The output data type in this case is
defined by the following set of rules.

○ If the data type of one of the inputs is a floating-point type, the data type of the output is
the floating-point type among the data types of the inputs with the most precision.

○ If the data type of one of the inputs is a fixed-point type, the data type of the output is the
smallest fixed-point type capable of representing the result without any loss of precision.

○ If the inputs are integral, the output is integral. If any input is signed, the output is signed.
The bit width of the output is the largest among the bit widths of the inputs.

Parameters

• Number of inputs:

This parameter determines the number of inputs.

Table 92: Number of Inputs

Choices Description
1 Initially, the block icon has a single input.

N A positive integer value.
The block icon is redrawn with the specified number of input ports.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 791Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=791

Min
Outputs the minimum value of an input or element-wise minimum value of multiple inputs.

Library

Math Functions/Math Operation

Description

The Min block with a single scalar or vector input outputs the minimum value of the input.

If the block has more than one input, the non-scalar inputs must have the same dimensions. Any
scalar input is expanded to the dimensions of non-scalar inputs and the block outputs element-
wise minimum value of the inputs.

Data Type Support

• The block supports floating-point, integer, and fixed-point data types.

• The block supports real valued inputs.

• Number of inputs = 1.

○ The block supports a scalar or vector (1-D or 2-D) input when it has only one input port.
The output is a scalar.

• Number of inputs > 1.

○ The block supports scalar, vector, or matrix inputs when it has more than one input port.

○ The output has the same dimensions as those of the inputs when all the inputs have the
same dimensions.

○ The block supports mixed dimensions for inputs when it has more than one input port,
provided all the non-scalar inputs have the same dimensions. Any scalar input is expanded
to the dimensions of non-scalar inputs and the block outputs element-wise minimum value
of the inputs. The output has the same dimensions as those of the non-scalar inputs.

• The block supports inputs that have different data types. The output data type in this case is
defined by the following set of rules.

○ If the data type of one of the inputs is a floating point type, the data type of the output is
the floating point type among the data types of the inputs with the most precision.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 792Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=792

○ Otherwise, if the data type of one of the inputs is a fixed-point type, the data type of the
output is the smallest fixed-point type capable of representing the result without any loss
of precision.

○ Otherwise, if the inputs are integral, the output is integral. If any input is signed, the output
is signed. The bit width of the output is the largest among the bit widths of the inputs.

Parameters

• Number of inputs:

This parameter determines the number of inputs.

Table 93: Number of Inputs

Choices Description
1 Initially, the block icon is created with a single input.

N A positive integer value.
The block icon is redrawn with the specified number of input ports.

Model Composer Hub
Control implementation of the model

Description

The Model Composer Hub block controls the behavior of the Vitis Model Composer tool.

You can specify the targeted design flow for the generated output, the directory path for the
output, and the desired device and design clock frequency using the following tabs.

• The Code Generation tab provides options to select the output flow through Export type, the
code generation directory, and test bench generation.

• The Hardware tab helps with device or board selection. You can specify clock frequency and
throughput factor for the model.

• The Feedback tab is used to provide feedback to the tool developers, and suggestions to
improve the tool.

Library

Tools

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 793Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=793

Data Type Support

Data type support is not applicable to the Model Composer Hub block.

Parameters

Figure 400: Model Composer Block Parameters

• Code Generation tab:

• Subsystem name: Enter a subsystem name that contains only Model Composer blocks.

• Code directory: Enter the output directory name with the complete path, or use the
Browse button to provide a path.

• Target:

Target settings are shown in the following table.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 794Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=794

Table 94: Target Settings

Setting Description
IP Catalog Select IP Catalog to export the design to the Vivado IP Catalog. After C/C++

code generation, Vitis High-Level Synthesis (HLS) is invoked to synthesize
the C code and create a project that can be exported as an IP to the Vivado
IP Catalog.

System Generator Select System Generator to export the design to HDL blockset. After C/C++
code generation, Vitis High-Level Synthesis (HLS) is invoked to synthesize
the C code and create an RTL solution that can be used as a Vitis HLS block
in a HDL model.

HLS C++ code Select HLS C++ code to compile the design model into C++ code.

AI Engine This is the default selection which allows you to generate the dataflow graph
code and verify it using the AIE Simulation.

• Compiler options: When enabled, this option provides control over compiler debug
options, execution target options etc.

• Create testbench: When enabled, Model Composer generates the test vectors while
generating the code.

• Run AIE Simulation: This option is only available if Create testbench is selected. When
enabled, it runs the AIE simulation after code generation.

• Collect Profiling Statistics and enable 'printf' for debugging: When enabled, this option
allows profiling data to be collected for analysis.

• Collect data for Vitis Analyzer: When enabled, this option provides a summary of the
simulation results which can be viewed in the Vitis Analyzer.

• Plot AIE Simulation output and estimate throughput: When enabled, this option logs
simulation data and allows visualization of the output of an AI Engine subsystem.

• Create and run testbench:

If selected, Model Composer runs simulation and generates test vectors while generating
code.

IMPORTANT! This option is only available when the target is set to IP Catalog, System Generator,
or HLS C++ code.

• Testbench stack size:

This parameter prompts you to enter a larger stack size.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 795Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=795

When Create and run testbench is enabled, the Testbench stack size option specifies
the size of the testbench stack frame during C simulation (CSIM). Occasionally, the
default stack frame size of 10 MB allocated for execution of the testbench may be
insufficient to run the test, due to large arrays allocated on the stack and/or deep
nesting of sub-systems. Typically when this happens, the test would fail with a
segmentation fault and an associated error message. In such a case you may opt to
increase the size of the stack frame and rerun the test.

• Hardware tab:

• Platform: By default no platform is specified. Selecting Specify Platform from the
dropdown, allows you to specify a valid hardware platform by browsing to a particular
location. It is not mandatory to specify a platform for generating the data-flow graph code.

The following options are available only when the target is set to IP Catalog, System
Generator, or HLS C++ code:

• Project device:

Specifies the current target part or board platform for the Model Composer model.

Clicking the browse button (…) next to Project device displays the Device Chooser dialog
box, which allows you to select the board or part to which your design is targeted. Vitis
Model Composer obtains board and device data from the Vivado database.

• FPGA clock frequency:

Specifies the clock frequency in MHz for the Xilinx device. This frequency is passed to the
downstream tool flow.

• Throughput factor:

Specifies the number of samples processed per clock to increase the throughput. A larger
factor increases hardware resource usage. The throughput factor must be between 1 and
16.

• Feedback tab: This tab requests feedback to the tool developers, and suggestions to improve
the tool. It points to a weblink that opens a survey that can be completed in less than 3
minutes.

Modulus
Performs element-wise modulus operation on the input signals

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 796Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=796

Description

The Modulus block takes two inputs. The first input is taken as dividend and the second input is
considered as divisor. The output is the remainder after division. For each element of the
dividend A, compute the modulus operation (remainder after division) with regard to the
corresponding element of the divisor B, as follows:

M = mod(A, B) = A - B .* floor(A ./ B)

The block can handle division by 0 by returning the NaN output for floating-point data types and
0 for the rest of the data types.

Note: For signed data types the remainder will have the same sign as the divisor B. If instead it should have
the same sign as the dividend, use the Remainder block instead of the Modulus block.

Data Type Support

Data types accepted at the inputs of the block are:

• The block supports all native Simulink® data types, as well as half precision floating-point, and
fixed-point data types.

• For inputs of bool data type, the output value is always false.

• The block supports scalars, vectors, and 2D matrices.

• The input dimensions must match unless one input is a scalar, in which case, it gets broadcast
to be used with each of the other input's elements. The output dimension is the larger of the
two input dimensions.

• The block supports mismatched input data types. The output data type is decided by Vitis
Model Composer data type propagation rules.

• The block operates on inputs of real numeric type only. For input of complex numeric type it
issues an error.

Parameters

The Modulus block has no parameters to set.

Mux
Combines scalar and vector inputs into a larger vector output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 797Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=797

Library

Signal Routing

Description

The Mux block combines scalar and vector inputs into a larger vector. The elements of the inputs
are concatenated starting from the first input at the top left. The block takes an input signal that
is a scalar, a vector, a row matrix, or a column matrix with the limitation that it cannot support a
row matrix signal, and a column matrix signal at the same time. If an input is a row vector or a
column vector, then the output also takes that form. The output is a non-virtual vector meaning
that its elements are stored in contiguous memory.

The number of inputs to the block is configurable using the Number of inputs block parameter.
When the value of the block parameter is changed, the input ports are added or removed starting
from the last port at the bottom left.

Figure 401: Mux Diagram

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 798Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=798

Note: This figure shows how the Mux block computes output port dimensions.

Data Type Support

• Inputs:

• The number of inputs is decided by value of the Number of inputs parameter.

• The input signal can be a scalar, a vector (M), a row matrix (1xM), or column matrix (Mx1).

• The block cannot have a row matrix and a column matrix as inputs at the same time.

• All inputs must have the same data type, and the same numeric type either real or complex.

• The Mux block supports all native data types (double, single, uint8, int8, uint16, int16,
uint32, int32, and boolean), and Model Composer supported half and fixed-point data
types.

• Outputs:

• The block has one output port.

• The output data type and numeric type are the same as the inputs.

• The output signal dimension depends upon the dimensions of the input signals.

Parameters

• Number of inputs:

The value for the parameter must be a finite positive integer. When the value of the
parameter changes, the input ports are either added or removed starting from the last port at
the bottom left.

Table 95: Number of Inputs Settings

Choices Description
2 The block icon is initially created with two input ports.

N A finite positive integer value.
The block icon is redrawn with the specified number of input ports.

Negate
Perform element-wise unary minus operation on the input data

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 799Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=799

Description

The Negate block computes element-wise minus operation on the input data. The block handles
signedness of real and imaginary parts separately in case of complex data input.

Figure 402: Negate Block

Data Type Support

Data type support is:

• Input Data Type: All data types are supported except unsigned integer and Boolean values.

• Output: The data type, dimension, and complexity of the output are the same as those of the
input signal.

The block supports scalar, vector, and two-dimensional matrix data.

Parameters

The Negate block has no parameters to set.

Not Equals
Perform element-wise not equal to relational operation on the inputs. The top input corresponds
to the first operand.

Library

Relational Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 800Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=800

Description

The Not Equals block has two input signals and one output signal. The block compares two
inputs using element-wise not equals relational operation. The first input corresponds to the top
input port and the second input to the bottom input port. The dimension of the output signal
matches the dimensions of the input signals. An element of the output signal is true if the
corresponding element of the first input signal is not equal to the corresponding element of the
second signal; otherwise the element is false.

Data Type Support

Data type support for the block is:

• The data types of the input signals can be of any integer, fixed-point, boolean, or floating-
point data type.

• The input signals can be a scalars, vectors, or matrices. If both inputs are not scalar, their
dimension must match.

• The input signals can be complex.

• The output signal is boolean.

• The dimension of the output signal is scalar if both inputs are scalar. Otherwise, it matches the
dimensions of the non-scalar input.

Parameters

The Not Equals block has no parameters to set.

Polar to Complex
Element-wise conversion of real magnitude and angle representation signals into a complex
signal

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 801Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=801

Description

The Polar to Complex block accepts a real signal of floating point data type such as double,
single, or half. The first and second inputs represent magnitude and angle respectively. The angle
is in radians. The outputs are complex values of the same data type as the block input for a given
real magnitude and angle. The input can be scalar, vector or matrix of real signals, in which case
the output signals are also scalar, vector, or matrix. The elements of a certain magnitude input
map to the magnitudes of the corresponding complex output elements. Similarly, the elements of
a certain angle input map to the angles of the corresponding complex output elements.

Data Type Support

Data types accepted at the inputs of the block are:

• Dimension : The inputs can be scalar, array, or combination of scalar and an array. If both the
inputs are arrays, they must have the same dimensions.

• Data Types: Supports signal of floating point data type such as double, single, and half. Both
inputs must have the same data type.

• Complex Number Support: No

Outputs for the different input types are:

Table 96: Input/Output

Inputs Output
Both are scalar Scalar

Both are vector Vector of same dimension

Both are matrix Matrix of same dimension

One is scalar and the other is vector or matrix Dimension is that of the vector or matrix

Parameters

The Polar to Complex block has no parameters to set.

Pow
Compute the element-wise power function

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 802Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=802

Description

The Pow block computes the value of a base raised to the power exponent. Z = Xy raises each
element of X to the corresponding power in y. If one of inputs is a matrix and the other is a scalar,
the scalar input is expanded to match the dimension of the non-scalar input to perform the
operation. If both inputs are non-scalar, they must agree in dimension.

Data Type Support

Data type support for the block is:

• Dimension: Inputs can be scalar, vector, or matrix. If one of the inputs is scalar and the other is
a vector or matrix then the scalar input is expanded to match the other input dimension and
the operation will be performed element-wise. If both inputs are non-scalar, then they must
match in dimension.

• Data Types: Input supports signals of integer type, floating point data type (double, single, and
half), and signed and unsigned fixed-point type. Both inputs must be of the same data type.

• Complex Numbers: Complex numbers are not supported.

A negative base value raised to a fractional power will result in a Not A Number (NAN) value.

Parameters

The Pow block has no parameters to set.

Product
Compute element-wise product of the input signals

Library

Math Functions / Math Operations

Description

The Product block computes the element-wise product of its input signals.

The block warns or errors out when an integer output overflows during simulation. To configure,
select Simulation → Model Configuration Parameters → Diagnostics → Data Validity for your
model in the Simulink® Editor, then set the Wrap on overflow, or Saturate on overflow
parameter.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 803Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=803

Data Type Support

The Product block outputs the result of multiplying two inputs. Inputs can be two scalars, a scalar
and a non-scalar, and two non-scalars of the same dimension. If one of the inputs is scalar and
other input is vector/matrix then the scalar input is expanded to match the dimension of the
other input to perform the operation. If input signals are both integer data types, such as int16,
the datatype of the output is also an integer datatype int16. Hence an overflow of wrap around
(no saturation) is likely if the output exceeds the range that is represented with int16. If the
operation is to be applied without loss of precision or range, use fixed-point data types. If you
want to narrow the bit width of the output signal, you can run it through a Data Type Conversion
block and select a fixed-point data type that saturates.

The output dimension is the same as that of the inputs if both inputs are either scalar or non
scalar. If one input is scalar and the other is a vector/matrix then the output dimension matches
the dimension of the vector/matrix input. The output type is same as that of the inputs if both
inputs are of the same type. Otherwise, the output type is defined as follows.

Table 97: Input/Output

Input Type Output Type
(double, single) double

(double, int) double

(double, half) double

(double, fixed) double

(double, Boolean) double

(single, int) single

(single, half) single

(single, fixed) single

(single, Boolean) single

(half, int) half

(half, fixed) half

(half, Boolean) half

(fixed, int) fixed

(fixed, Boolean) fixed

(int, Boolean) int

Parameters

Saturate on integer overflow

This parameter specifies whether integer overflow is handled by wrapping (default) or by
saturating. This parameter is relevant only if the output is integral (int8, int16, int32, uint8,
uint16, uint32).

Settings for the Saturate on integer overflow parameter are:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 804Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=804

Table 98: Saturate on Integer Overflow Parameter

Setting Description
Not selected Integer overflow is handled by wrapping.

Selected Integer overflow is handled by saturation.

When overflow is detected, the Diagnostic Viewer displays messages that depend on the
diagnostic action you specify in the Simulink Editor. To configure, select Simulation → Model
Configuration Parameters → Diagnostics → Data Validity for your model in the Simulink Editor,
then set the Wrap on overflow or Saturate on overflow parameter.

Product of Elements
Multiply the elements of the input signal

Library

Math Functions / Math Operations

Description

The Product of Elements block computes the product of the elements of the input signal. The
block can be configured in the following ways.

• By default, the output is scalar and equal to the product of all (matrix) elements of the input
signal.

• If the dimension to multiply over is specified to be 1, the output is a row matrix (1xN), where
N is the number of columns of the input, and element (1,k) is the product of the elements of
column k of the input.

• If the dimension to multiply over is specified to be 2, the output is a column matrix (Mx1),
where M is the number of rows of the input, and element (k,1) is the product of the elements
of row k of the input.

Data Type Support

The input signal can be real or complex. The input data type can be any Boolean, integer,
floating-point, or fixed-point data type. The block can perform element-wise multiplication on
real or complex number data.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 805Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=805

Parameter

Multiply over

The Multiply over parameter value is used to decide whether elements will be multiplied in all
dimensions or in one of the dimensions.

Following are the settings for the Multiply over parameter.

Table 99: Multiply Over Parameter

Setting Description
All dimensions Multiply all elements of the input signal (output is scalar)

Specified dimension This option shows an edit box, Dimension, where the specific dimension value
can be entered.

Dimension

The Dimension parameter is displayed only if the Multiply over parameter value is set to
Specified dimension.

Following are the settings for the Dimension parameter.

Table 100: Dimension Parameter

Setting Description
1 Multiply input over row dimension. Output is a row matrix.

2 Multiply input over column dimension. Output is a column matrix.

QR Inverse
Compute the inverse of a matrix using QR factorization

Library

Math Functions / Matrices and Linear Algebra

Description

The QR Inverse block provides the inverse of the input matrix A by performing QR factorization.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 806Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=806

Q is an orthogonal matrix and R is an upper triangular square matrix. For singular matrix input the
output would contain NaN or +inf/-inf.

Data Type Support

Data type support is:

• Dimension: Input has to be a square matrix. Scalar and vector inputs are not supported.

• Data Types: Input supports signals of floating point data types (double, single, and half). It
does not support integer, boolean, and fixed-point data types.

• Complex Numbers: Complex numbers are not supported.

The output has the same dimension and data type as the input.

Parameters

The QR Inverse block has no parameters to set.

Real-Imag to Complex
Computes the complex output from real and imaginary input.

Library

Math Functions / Math Operations

Description

The Real-Imag to Complex block converts the real and imaginary inputs to a complex-valued
output signal. The input signal can be of any data type except boolean.. The complex output has
the same data type as that of the block input. The input can be a scalar, 1-D vector, or matrix of
real signals. It is possible to specify the constant real or imaginary part from the block dialog.

Data Type Support

Data type support for the input port is as follows.

• The block supports all data types except boolean. If the 'Input' is 'Real and Imag', both the
inputs must have the same data type. Otherwise, 'Real part' or 'Imag part' parameter is
converted to the same data type as that of the block input.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 807Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=807

• Real and imaginary parts specified using inputs or block dialog must be real.

• The input can be a scalar, 1-D vector, or matrix.

• The output is always complex, and has the same data type as that of the input.

• Dimensions:

○ The output has the same dimensions as that of the input when both real and imaginary
parts have the same dimensions.

○ The block supports mixed dimensions for real and imaginary inputs (specified as inputs or
using block dialog). Any scalar input is expanded to the dimensions of non-scalar input, and
the block has the same dimensions as those of the non-scalar input. If both the inputs are
non-scalar, they must agree on dimensions.

Parameters

• Input:

Input is a drop down menu parameter which specifies whether real, imaginary, or both of the
parts of the output signal are specified as inputs.

• Settings:

Following are settings for the Input parameter.

Table 101: Input Parameter

Setting Description
Real and imag Real and imaginary parts of the output signal are specified using Re and Im

inputs of the block, respectively.

Real The block has only Re input in this case. Real part of the output signal is
specified using the Re input of the block, while its imaginary part is specified
using the Imag part parameter.

Imag The block has only Im input in this case. Imaginary part of the output signal
is specified using the Im input of the block, while its real part is specified
using the Real part parameter.

• Real part: Specify the constant real part of the output signal when Input is set to Imag. This
parameter is visible only when you set Input to Imag.

Table 102: Real Part Parameter

Choices Description
0 The value of the Real part parameter must be a numeric, real-valued scalar,

vector, or matrix.

• Imag part: Specify the constant imaginary part of the output signal when Input is set to Real.
This parameter is visible only when you set Input to Real.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 808Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=808

Table 103: Imag Part Parameter

Choices Description
0 The value of the Imag part parameter must be a numeric, real-valued scalar,

vector, or matrix.

Reciprocal
Element-wise computation of the reciprocal for a given argument

Library

Math Functions / Math Operations

Description

The Reciprocal block returns the output of the function inv(x) for each element in array x. The
block supports input of all data types except Boolean. The input can be scalar, vector or matrix.

Data Type Support

Data types accepted at the inputs of the block:

• Dimension: Input can be scalar, vector, or matrix.

• Data Types: Input supports signals of integer, fixed-point, and floating-point data type. The
block does not support Boolean inputs.

• Complex Number Support: No

The output has the same dimension and type as the input.

Parameters

The Reciprocal block has no parameters to set.

Reciprocal Sqrt
Element-wise computation of the reciprocal square root for a given argument

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 809Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=809

Description

The Reciprocal Sqrt block returns the reciprocal square root for each element in an array. The
block supports input of all data types except Boolean. The input can be a scalar, vector or a
matrix.

Figure 403: Reciprocal Sqrt Block

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector or matrix.

• Data Types: Input supports signals of integer, fixed-point, and floating point data type. It does
not support Boolean inputs.

• Complex Numbers: Complex numbers are not supported.

The output has the same dimension and data type as the input.

Parameters

The Reciprocal Square root block has no parameters to set.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 810Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=810

Reduction AND
Compute bitwise AND of the elements of the input over all dimensions or over a specified
dimension

Library

Logic and Bit Operations

Description

The Reduction AND block has one input signal and one output signal. It computes the bitwise
AND of the elements of the input signal over all of the dimensions or over a specified dimension.
The data type of the output signal is the same as that of the input signal. The dimension of the
output signals depends on whether the reduction takes place over all dimensions or over a
specified dimension.

• Reduce over all dimensions: The output is a scalar and it is the bitwise AND of the elements
of the input signal.

• Reduce over dimension 1: The output is a row vector (2-D) with as many elements as the
number of columns of the input. Each element in the output is the bitwise AND reduction of
the elements of the corresponding column of the input.

• Reduce over dimension 2: The output is a column vector (2-D) containing as many elements
as the number of rows of the input. Each element in the output is the bitwise AND reduction
of the elements of the corresponding row of the input.

In the example below a 2x3 input signal of type int8 feeds into three different configurations of
the Reduction AND block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 811Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=811

Figure 404: Reduction AND Block

Data Type Support

• The input signal can be of any data type except for floating point types.

• The input signal must be real.

• The input signal must be a matrix if reduction is along dimension 2.

• The input signal can be a matrix, vector or scalar if reduction is along all dimensions or along
dimension 1.

Parameters

Reduce over

This parameter specifies whether reduction takes place over all dimensions or over a specified
dimension. If reduction is specified over all dimensions, the output signal is a scalar.

Following are the settings for the Reduce over parameter.

Setting Description
All dimensions The Reduce AND operator will be applied to all elements, producing a scalar

output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 812Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=812

Setting Description
Specified dimension The Reduce AND operator will be applied along the specified dimension,

producing a vector output along the opposite dimension. When Dimension 1 is
specified, the Reduction AND is applied along columns, producing a row vector
as output. When Dimension 2 is specified, the Reduction AND is applied along
rows, producing a column vector as output.

Note: The dimension specified will be the one that gets reduced to size 1. For example, a 2-D M x N input
matrix specifying Dimension 1 (number of rows M) will result in a 1 x N row vector.

Dimension

If the Reduce over parameter is set to Specified dimension, the Dimension parameter specifies
over which dimension reduction takes place.

• If the input signal has dimensions M x N and the reduction Dimension is 1, the output has
dimensions 1 x N.

• If the input signal has dimensions M x N and the reduction Dimension is 2, the output has
dimensions M x 1.

• If the input signal is scalar or 1 x 1, the output dimension is 1 x 1.

Following are the settings for the Dimension parameter.

Table 104: Dimension Parameter

Setting Description
1 Reduce over row dimension.

2 Reduce over column dimension.

Note: If the reduce Dimension is specified to be 2 the input signal must be two-dimensional.

Reduction OR
Compute bitwise OR of the elements of the input over all dimensions or over a specified
dimension

Library

Logic and Bit Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 813Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=813

Description

The Reduction OR block has one input signal and one output signal. It computes the bitwise OR
of the elements of the input signal over all of the dimensions or over a specified dimension. The
data type of the output signal is the same as that of the input signal. The dimension of the output
signals depends on whether the reduction takes place over all dimensions or over a specified
dimension.

• Reduce over all dimensions: The output is a scalar and it is the bitwise OR of all of the
elements of the input signal.

• Reduce over dimension 1: The output is a row vector (2-D) with as many elements as the
number of columns of the input. Each element in the output is the bitwise OR reduction of
the elements of the corresponding column of the input.

• Reduce over dimension 2: The output is a column vector (2-D) containing as many elements
as the number of rows of the input. Each element in the output is the bitwise OR reduction of
the elements of the corresponding row of the input.

In the example below a 2x3 input signal of type int8 feeds into three different configurations of
the Reduction OR block.

Figure 405: Reduction OR Block

Data Type Support

• The input signal can be of any data type except for floating point types.

• The input signal must be real.

• The input signal must be a matrix if reduction is along dimension 2.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 814Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=814

• The input signal can be a matrix, vector, or scalar if reduction is along all dimensions or along
dimension 1.

Parameters

Reduce over

This parameter specifies whether reduction takes place over all dimensions or over a specified
dimension. If reduction is specified over all dimensions, the output signal is a scalar.

Following are settings for the Reduce over parameter.

Table 105: Reduce Over Parameter

Setting Description
All dimensions Reduction takes place over all dimensions.

Specified dimension Reduction takes place over the dimension specified by the Dimension
parameter.

Dimension

If the Reduce over parameter is set to Specified dimension, the Dimension parameter specifies
over which dimension reduction takes place.

• If the input signal has dimensions M x N and the reduction Dimension is 1, the output has
dimensions 1 x N.

• If the input signal has dimensions M x N and the reduction Dimension is 2, the output has
dimensions M x 1.

• If the input signal is scalar or 1 x 1, the output dimension is 1 x 1.

Following are settings for the Dimension parameter.

Table 106: Dimension Parameter

Setting Description
1 Reduce over row dimension.

2 Reduce over column dimension.

Note: If the reduce Dimension is specified to be 2 the input signal must be two-dimensional.

Reduction XOR
Compute bitwise XOR of the elements of the input over all dimensions or over a specified
dimension

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 815Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=815

Library

Logic and Bit Operations

Description

The Reduction XOR block has one input signal and one output signal. It computes the bitwise
exclusive OR (XOR) of the elements of the input signal over all of the dimensions or over a
specified dimension. The data type of the output signal is the same as that of the input signal.
The dimension of the output signals depends on whether the reduction takes place over all
dimensions or over a specified dimension.

• Reduce over all dimensions: The output is a scalar and it is the bitwise XOR of all of the
elements of the input signal.

• Reduce over dimension 1: The output is a row vector (2-D) with as many elements as the
number of columns of the input. Each element in the output is the bitwise XOR reduction of
the elements of the corresponding column of the input.

• Reduce over dimension 2: The output is a column vector (2-D) containing as many elements
as the number of rows of the input. Each element in the output is the bitwise XOR reduction
of the elements of the corresponding row of the input.

In the example below a 2x3 input signal of type int8 feeds into three different configurations of
the Reduction XOR block.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 816Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=816

Figure 406: Reduction XOR Block

Data Type Support

• The input signal can be of any data type except for floating point types.

• The input signal must be real.

• The input signal must be a matrix if reduction is along dimension 2.

• The input signal can be a matrix, vector or scalar if reduction is along all dimensions or along
dimension 1.

Parameters

Reduce over

This parameter specifies whether reduction takes place over all dimensions or over a specified
dimension. If reduction is specified over all dimensions, the output signal is a scalar.

Settings for the Reduce over parameter are:

Table 107: Reduce Over Parameter

Setting Description
All dimensions Reduction takes place over all dimensions.

Specified dimension Reduction takes place over the dimension specified by the
Dimension parameter.

Dimension

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 817Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=817

If the Reduce over parameter is set to Specified dimension, the Dimension parameter specifies
over which dimension reduction takes place.

• If the input signal has dimensions M x N and the reduction Dimension is 1, the output has
dimensions 1 x N.

• If the input signal has dimensions M x N and the reduction Dimension is 2, the output has
dimensions M x 1.

• If the input signal is scalar or 1 x 1, the output dimension is 1 x 1.

Settings for the Dimension parameter are:

Table 108: Dimension Parameter

Setting Description
1 Reduce over row dimension.

2 Reduce over column dimension.

Note: If the reduce Dimension is specified to be 2 the input signal must be two-dimensional.

Reinterpret
Element-wise reinterpretation of the input type into a compatible output type with the same bit
width

Library

Signal Attributes

Description

The Reinterpret block provides a mechanism for interpreting a value from a different data type.
You can specify the output data type with the restriction that the bit widths of input and output
data types must match.

Figure 407: Reinterpret Block

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 818Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=818

In the above example, the input is of fixed-point signed number (x_sfix8_En2) represented with 8
bits, in which 2 bits are used for the fractional part (i.e., -4 = 1111 00.00). The Reinterpret block
interprets the input type to unsigned fixed-point number (x_ufix8), represented with 8 bits as
that of input, and no bits are used for the fractional part. The output becomes 240 (1111 0000).

Data Type Support

The data types of the input can be any integer, Boolean, fixed-point, or floating-point data type.
The input can be any real or complex valued signal. If the input is real, the output is real. If the
input is complex, the output is complex. The block supports scalar, vector, or matrix data.

Following are the supported output data types.

Table 109: Input/Output

Input Data Type Supported Output Data Type
double double, 64 bit fixed-point data

single single, int32, uint32, 32 bit fixed-point data

int8 int8, uint8, 8 bit fixed-point data

uint8 uint8, int8, 8 bit fixed-point data

int16 int16, uint16, half, 16 bit fixed-point data

int16 uint16, int16, half, 16 bit fixed-point data

uint16 int32, uint32, single, 32 bit fixed-point data

int32 int32, uint32, single, 32 bit fixed-point data

uint32 uint32, int32, single, 32 bit fixed-point data

bool bool, 1 bit fixed-point data

fixed Same bit width fixed-point data with different fractional widths, all native data
types if the bit width matches

half half, int16, uint16, 16 bit fixed-point data type

Parameters

Output data type

This parameter specifies the output data type for reinterpreting the input data. If fixed is
specified more parameters are available.

Following are the settings for the Output data type parameter.

Table 110: Output Data Type Parameter

Setting Description
double Double precision floating point

single Single precision floating point

int8 8-bit signed integer

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 819Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=819

Table 110: Output Data Type Parameter (cont'd)

Setting Description
uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

boolean Boolean

fixed Fixed-point

half Half precision floating-point

data type expression A string that specifies the output data type. See Working with Data Type
Expression in the Vitis Model Composer User Guide (UG1483).

Remainder
Perform element-wise division on the input signal. The output is the remainder after the division.

Library

Math Functions / Math Operations

Description

The remainder block takes two inputs. The dividend is the top input and the divisor is the bottom
input. The block supports scalar, vector and matrix dimensions. The dimensions of the inputs
must match unless one input is a scalar. The output has the larger dimension of the two inputs.
The block can handle division by 0 and produces NaN as the output only for floating-point data
types double and single.

Figure 408: Remainder Block

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 820Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=820

Data Type Support

The Remainder block supports all MATLAB native data types, half precision floating-point data
type, and fixed-point. The block operates on real type inputs where it requires both inputs to
have the same type of data.

Parameters

The Remainder block has no parameters to set.

Reshape Row-Major
Changes the input dimensions in row-major order.

Library

Math Functions/Math Operations

Description

The Reshape Row-Major block changes the input dimensions based on the specified Output
dimensionality parameter. The output contains elements of the input in row-major order, that is
the first row of the input matrix followed by the second row, and so on.

Data Type Support

• The block supports floating point, integer, boolean, and fixed-point data types.

• The block supports real and complex valued inputs.

• The input can be a scalar, 1-D vector, or matrix.

• The output has the same data type as the input.

Parameters

• Output dimensionality:

This parameter specifies how the input should be reshaped. The settings for Output
dimensionality are as follows:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 821Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=821

Table 111: Output Dimensionality Parameter Settings

Choices Description
1-D array Converts the input to a 1-D vector. For a matrix input, the output consists of input matrix

elements in row-major order.

Column vector Converts the input to a M x 1 matrix, where M is the number of elements in the input
signal. For a matrix input, the output consists of input matrix elements in row-major
order.

Row vector Converts the input to a 1 x N matrix, where N is the number of elements in the input
signal. For a matrix input, the output consists of input matrix elements in row-major
order.

Custom Converts the input to an output which has dimensions specified by the user using the
Output dimensions parameter. The conversion is done in row-major order. The value of
the Output dimensions parameter must be a two-element vector. For example, a value
of [M N] outputs an M x N matrix. The number of elements of the input must match the
number of elements specified by the Output dimensions parameter.

Derive from reference
input port

Creates a second input port on the block and derives the dimensions of the output from
the dimensions of the second input port. Selecting this option disables the Output
dimensions parameter. Both the inputs to the block must have the same number of
elements.

• Output dimensions:

Specify Output dimensions when Output dimensionality is set to Custom. The settings for
Output dimensions are as follows:

Table 112: Output Dimensions Parameter Settings

Choices Description
[1, 1] The value of the Output dimensions parameter must be a two-element vector.

Shift Left
Perform logical shift left of input over a constant number of bit positions specified by a non-
negative integer parameter

Library

Logic and Bit Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 822Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=822

Description

The shift left block computes element-wise left shift of the input by a constant amount specified
via a parameter. This is also known as a logical shift left. The shift amount specifies over how
many bit positions bits are shifted. This shift amount must be a non-negative integer. The default
value is 0. The output is of the same type, dimension, and numeric type (real or complex) as the
input. The input type must be integral or fixed-point.

Figure 409: Shift Left Block

Data Type Support

• Input: integer, fixed-point, but not logical or floating point.

• Output: output data type is the same as input data type.

Parameters

Shift by

This parameter specifies the number of bit positions over which the shift takes place.

Enter a scalar real non-negative integer for the Shift by parameter.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 823Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=823

Shift Right
Performs arithmetic shift right of input over a constant number of bit positions specified by a
non-negative integer parameter

Library

Logic and Bit Operations

Description

The shift right block computes an element-wise right shift of the input by a constant amount
specified via a Shift by parameter. This is also known as arithmetic shift right. The shift amount
specifies over how many bit positions bits are shifted. This shift amount must be a non-negative
integer. The default value is 0. The output is of the same type, dimension, and numeric type (real
or complex) as the input. The input data must be integer or fixed-point type.

Figure 410: Shift Right Block

Data Type Support

The Shift Right block supports integer and fixed-point input data, but not Boolean or floating
type. Input data can be real or complex. Output data type and dimension are the same as that of
input data.

Parameters

Shift by

This parameter specifies the number of bit positions over which the shift takes place.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 824Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=824

Enter a scalar real non-negative integer for the Shift by parameter.

Signum
Performs signum function (sign extraction) on the input.

Library

Math Functions/Math Operations

Description

The Signum block returns the sign for each element of the real input. The block returns 1, 0, or -1
if the number is positive, equal to 0, or negative, respectively.

When the input s is complex, the block output is calculated as:

sign(s) = s./ abs(s)

Where sign is the MATLAB® signum function, and ./ indicates element-wise division.

Data Type Support

The Signum block supports signals of integer type, floating-point type (double, single and half),
and fixed-point type for real inputs. The complex inputs are supported only for floating point
data types.

The output data type, and dimension are the same as those of the input.

Parameters

The Signum block has no parameters to set.

Sine
Element-wise computation of the sine function for the given input

Library

Math Functions / Math Operations

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 825Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=825

Description

The Sine block returns the output of the function sin(x) for each element in array x.

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector or matrix.

• Data Types: Input supports signals of floating point data types (double, single, and half) and
signed fixed-point type. It does not support integer, Boolean, and unsigned fixed-point data
types.

• Complex Numbers: Complex numbers are not supported.

The output has the same dimension and data type as the input. However, If the data type of the
input is a fixed-point type, the data type of the output is fixed-point type with integer width fixed
as 2.

Parameters

The Sine block has no parameters to set.

sinh
Element-wise computation of the hyperbolic sine for a given argument

Library

Math Functions / Math Operations

Description

The sinh block returns the output of the function sinh(x), which is the hyperbolic sine, for each
element in array x.

The hyperbolic sine of x is:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 826Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=826

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector or matrix.

• Data Types: Input supports signals of integer type, floating-point data types (double, single,
and half) and fixed-point type.

• Complex Numbers: Complex numbers are not supported.

The output has the same dimension and data type as the input.

Parameters

The sinh block has no parameters to set.

Sqrt
Element-wise computation of the square root for a given argument

Library

Math Functions / Math Operations

Description

The Sqrt block returns the square root for each element in array x. The block supports input of all
data types except boolean. The input can be a scalar, vector or a matrix.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 827Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=827

Figure 411: Sqrt Block

Data Type Support

Data type support is:

• Dimension: Input can be scalar, vector or matrix.

• Data Types: Input supports signals of integer, fixed-point and floating-point data type. It does
not support Boolean inputs.

• Complex Numbers: Complex numbers are not supported.

The output has the same dimension and data type as the input.

Parameters

The Sqrt block has no parameters to set.

Submatrix
Select a subset of elements (submatrix) from matrix input

Library

Math Functions / Matrices and Linear Algebra

Description

The Submatrix block extracts a contiguous submatrix from the M-by-N input matrix u. The Row
span parameter provides three options for specifying the range of rows in u to be retained in
submatrix output y:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 828Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=828

• All rows: Specifies that y contains all M rows of u.

• One row: Specifies that y contains only one row from u. The Row parameter (described
below) is enabled to allow selection of the desired row.

• Range of rows: Specifies that y contains one or more rows from u. The Starting row and
Ending row parameters are enabled to allow selection of the desired range of rows.

The Column span parameter contains a corresponding set of three options for specifying the
range of columns in u to be retained in the submatrix y: All columns, One column, or Range of
columns. The One column option enables the Column parameter, and Range of columns options
enable the Starting column and Ending column parameters.

Figure 412: Submatrix Block

Data Type Support

All data types are supported. The output type is the same as the input type.

Parameters

• Row span: The range of input rows to be retained in the output. Options are All rows, One
row, or Range of rows.

• Row: The input row to be used as the row of the output. Row is enabled when you select One
row for Row span.

• Row index: The index of the input row to be used as the first row of the output. Row index is
enabled when you select Index for Row.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 829Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=829

• Row offset: The offset of the input row to be used as the first row of the output. Row offset is
enabled when you select Offset from middle or Offset from last for Row.

• Starting row: The input row to be used as the first row of the output. Starting row is enabled
when you select Range of rows for Row span.

• Starting row index: The index of the input row to be used as the first row of the output.
Starting row index is enabled when you select Index for Starting row.

• Starting row offset: The offset of the input row to be used as the first row of the output.
Starting row offset is enabled when you select Offset from middle or Offset from last for
Starting row.

• Ending row: The input row to be used as the last row of the output. Ending row is enabled
when you select Range of rows for Row span and you select any option but Last for Starting
row.

• Ending row index: The index of the input row to be used as the last row of the output. Ending
row index is enabled when you select Index for Ending row.

• Ending row offset: The offset of the input row to be used as the last row of the output. Ending
row offset is enabled when you select Offset from middle or Offset from last for Ending row.

• Column span: The range of input columns to be retained in the output. Options are All
columns, One column, or Range of columns.

• Column: The input column to be used as the column of the output. Column is enabled when
you select One column for Column span.

• Column index: The index of the input column to be used as the first column of the output.
Column index is enabled when you select Index for Column.

• Column offset: The offset of the input column to be used as the first column of the output.
Column offset is enabled when you select Offset from middle or Offset from last for Column.

• Starting column: The input column to be used as the first column of the output. Starting
column is enabled when you select Range of columns for Column span.

• Starting column index: The index of the input column to be used as the first column of the
output. Starting column index is enabled when you select Index for Starting column.

• Starting column offset: The offset of the input column to be used as the first column of the
output. Starting column offset is enabled when you select Offset from middle or Offset from
last for Starting column.

• Ending column: The input column to be used as the last column of the output. Ending column
is enabled when you select Range of columns for Column span and you select any option but
Last for Starting column.

• Ending column index: The index of the input column to be used as the last column of the
output. Ending column index is enabled when you select Index for Ending column.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 830Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=830

• Ending column offset: The offset of the input column to be used as the last column of the
output. Ending column offset is enabled when you select Offset from middle or Offset from
last for Ending column.

Subtract
Perform element-wise subtraction

Library

Math Functions / Math Operations

Description

The Subtract block performs element-wise subtraction of two input signals.

The block warns or errors out when an integer output overflows during simulation. To configure,
select Simulation → Model Configuration Parameters → Diagnostics → Data Validity for your
model in the Simulink Editor, then set the Wrap on overflow or Saturate on overflow parameter.

Data Type Support

The Subtract block supports any floating point, fixed-point, integer or Boolean data type. The
block can perform element-wise subtraction on real and complex inputs. The input signals can be
scalars, vectors or matrices. When both inputs have non-scalar dimensions, the dimensions must
match each other.

Parameters

Saturate on integer overflow

This parameter specifies whether integer overflow is handled by wrapping (default) or by
saturating. This parameter is relevant only if the output is integral (int8, int16, int32, uint8,
uint16, uint32).

Settings for the Saturate on integer overflow parameter are:

Table 113: Saturate On Integer Overflow Parameter

Setting Description
Not selected Integer overflow is handled by wrapping.

Selected Integer overflow is handled by saturation.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 831Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=831

When overflow is detected, the Diagnostic Viewer displays messages that depend on the
diagnostic action you specify in the Simulink Editor. To configure, select Simulation → Model
Configuration Parameters → Diagnostics → Data Validity for your model in the Simulink Editor,
then set the Wrap on overflow or Saturate on overflow parameter.

Sum
Perform element-wise addition of two input signals

Library

Math Functions / Math Operations

Description

The Sum block performs element-wise addition of two input signals.

The block warns or errors out when an integer output overflows during simulation. To configure,
select Simulation → Model Configuration Parameters → Diagnostics → Data Validity for your
model in the Simulink Editor, then set the Wrap on overflow or Saturate on overflow parameter.

Data Type Support

Data types accepted at the inputs of the block are as follows.

• This block supports all data types supported by Vitis Model Composer. The block supports
real and complex numbers.

• The input signals can be real or complex numbers of scalar, vector or matrix type. When both
inputs are non-scalar then their dimensions must match.

Output data types are as follows.

• If the data type of one input is a floating point type, the data type of the output is the floating
point type among the data types of the inputs with the most precision.

• Otherwise, if the data type of one input is a fixed-point type, the data type of the output is
the smallest fixed-point type capable of representing the result without any loss of precision.

• Otherwise, if the data type of both inputs is Boolean the output is Boolean as well.

• Finally, if one input is integral and the other is also integral or Boolean, the output is integral. If
both inputs are unsigned the output is unsigned, otherwise it is signed. The bit width of the
output is largest among the bit widths of the inputs.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 832Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=832

Parameters

Saturate on integer overflow

This parameter specifies whether integer overflow is handled by wrapping (default) or by
saturating. This parameter is relevant only if the output is integral (int8, int16, int32, uint8,
uint16, uint32).

Settings for the Saturate on integer overflow parameter are:

Table 114: Saturate On Integer Overflow Parameter

Setting Description
Not selected Integer overflow is handled by wrapping.

Selected Integer overflow is handled by saturation.

When overflow is detected, the Diagnostic Viewer displays messages that depend on the
diagnostic action you specify in the Simulink Editor. To configure, select Simulation → Model
Configuration Parameters → Diagnostics → Data Validity for your model in the Simulink Editor,
then set the Wrap on overflow or Saturate on overflow parameter.

Sum of Elements
Perform element-wise addition on the input, column-wise, row-wise, or in all dimensions

Library

Math Functions / Math Operations

Description

This block performs element-wise addition on a vector or matrix type input. If input is a scalar
then this block operates as a pass-through. The output is a scalar type if input is a vector or a
matrix and the Sum over parameter is set as All dimensions.

Data Type Support

Data type support for the block is:

• The Sum of Elements block supports any floating-point, fixed-point, integer or Boolean data
type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 833Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=833

• The output type is a scalar or a vector depending on the dimensions of the input and the
selection of the Sum over parameter.

• The block can perform element-wise addition on real or complex number data.

Parameters

Sum over

The Sum over parameter value is used to decide whether elements will be added in all
dimensions or in one of the dimensions.

Following are settings for the Sum over parameter.

Table 115: Sum Over Parameter

Setting Description
All dimensions Add all elements of the input signal (output is scalar)

Specified dimension This option shows an edit box, Dimension, where the specific dimension value
can be entered.

Dimension

The Dimension parameter is displayed only if the Sum over parameter value is set to Specified
dimension.

Settings for the Dimension parameter are:

Setting Description
1 Add input over row dimension. Output is a row matrix.

2 Add input over column dimension. Output is a column matrix.

Tangent
Perform an element-wise computation of the tangent function for the given argument

Library

Math Functions / Math Operations

Description

The block returns the output of the function tan(x) for each element in array x.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 834Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=834

Data Type Support

Data types accepted at the input of the block are:

• Dimension : Input can be scalar, vector or matrix.

• Data Types: Input supports signals of integer type, floating point type (double, single and half)
and fixed-point type.

• Complex Number Support: No

Output has the same dimension and type as the input.

Parameters

The Tangent block has no parameters to set.

Transpose
Perform an element-wise transpose operation on the input signal

Library

Math Functions / Matrices and Linear Algebra

Description

The Transpose block performs a transpose operation on the input signal.

Data Type Support

This block supports all data types supported by Vitis Model Composer. The input signal can be
real or a complex number of scalar, vector, or matrix type. The output type is always the same as
that of the input.

Parameters

The Transpose block has no parameters to set.

Unit Delay
Provides a delay of one sample period

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 835Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=835

Library

Signal Operations

Description

The Unit Delay block provides a delay of one sample period. The output has the same sample
time as the input. The output dimension is the same as the initial condition dimension if the input
is scalar. Otherwise, the output dimension is the same as the input dimension and should match
the dimension of the initial condition.

Data Type Support

Data type support is:

• All data types are supported.

• Input can be a vector or a matrix. If input is a vector or a matrix and the initial value is a scalar,
the scalar value will apply to all the elements of the input during the first cycle.

• Output is complex if the input is complex.

• If the initial value is complex but the input signal is type real, the block gives an error
indicating that the input type must be complex.

Parameters

Initial Condition

Specifies the initial value.

The Initial Condition can be scalar, vector, or matrix, of real or complex type.

Window Processing
Assemble an output matrix by applying the kernel subsystem to submatrices (windows) of the
input matrix in row-major order

Library

Ports and Subsystems

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 836Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=836

Description

The Window Processing block is a masked subsystem for assembling an output matrix by
applying a kernel subsystem to sub matrices of the input matrix in row-major order. You
customize the Window Processing block by specifying its parameters and by adding blocks to the
Kernel subsystem for computing a scalar element of the output in terms of the corresponding
input window. The computation can be thought of to proceed in the following steps:

1. Compute the padded input matrix depending on the setting of the Output size parameter.

Let the dimensions of the input be Min,Nin; let the dimensions of the window be Mwin,
Nwin.

• If the Output size is set to Valid, no padding is performed, and the dimensions of the
output are Min-Mwin+1,Nin-Nwin+1.

• If the Output size is set to Same as input, the input is padded with Mwin-1 rows and
Nwin-1 columns of 0s. Half of rows added is put at the top and the remainder goes at the
bottom. If Nwin is even then the bottom gets one more row of padding than the top. The
same is done for adding the columns. The size of the output is the same as the size of the
input.

• If the Output size is set to Full, the input is padded with 2*(Mwin-1) rows and 2*(Nwin-1)
columns of 0s. Half of the padding rows (columns) are added at the top (left) and the other
half at the bottom (right).

2. For each element (i,j) of the output (iterate over output in row-major order):

• Select the MxN sub matrix from the padded input matrix starting with element (i,j)

• Apply the kernel subsystem to this sub matrix

• Assign the scalar output of the kernel to element (i,j) of the output.

The hierarchy of the Window Processing block is shown below.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 837Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=837

Figure 413: Hierarchy of Window Processing Block

Restrictions on the use of the Window Processing block are:

• The topology of the window processing subsystem shall not be modified. It must match the
topology show in the figure above.

• The input signal must be a matrix.

• The kernel must have precisely one input port and one output port.

• The output of the kernel must be scalar.

• The input of the kernel must have the dimensions specified by the window size parameter.

• The dimensions of the input must be at least as large as the window size.

• The kernel must not contain any of the following blocks:

○ Blocks that have internal state, such as the Unit Delay block.

○ The following Digital Signal Processing blocks: FFT and IFFT.

○ Blocks created with the xmcImportFunction command.

• The kernel must not contain an if-action subsystem.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 838Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=838

Data Type Support

There are no restrictions on the data types of the input or output signals.

Parameters

Window size

This parameter specifies the size of the window. Enter a 2-element vector of real positive
integers, for example [5,3], for the Window size. Please note that Window size cannot specify
more than a total of 255 elements.

Output size

This parameter specifies how the edges of the input image are treated.

Let Min, Nin be the dimensions of the input, and let Mwin, Nwin be the Window size. The
dimensions of the output are as follows:

• Min+Mwin-1, Min+Nwin-1 if Full is selected for Output size.

• Min, Nin if Same as Input is selected for Output size.

• Min-Mwin+1, Min-Nwin+1 if Valid is selected for Output size.

Supported Simulink Blocks
You can mix blocks from the HLS block library and blocks from Simulink®, and other add-on
toolboxes, during simulation in Simulink. However, you can only generate output from Model
Composer from the top-level subsystem that uses only a limited set of Simulink blocks that are
supported for code generation.

The following Simulink blocks are fully supported by Model Composer for code generation, and
can be found in the Vitis Model Composer HLS block library as well.

Table 116: Supported Simulink Blocks

Simulink Block Description
Action Port Place this block in a subsystem to link to a signal from an If block or a Switch-

Case block.

Bus Creator This block creates a bus signal from multiple inputs.

Bus Selector Pulls signals from an input bus to pass to output.

Display Provides numeric display of input values.

DocBlock Create and edit text associated with a model, and save that text with the model.

From Receive signals from the Goto block with the specified tag.

Goto Send signals to From blocks that have the specified tag.

If Provides an IF/ELSEIF/ELSE condition for branching inputs to alternate
outputs.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 839Send Feedback

https://www.mathworks.com/help/simulink/slref/actionport.html
https://www.mathworks.com/help/simulink/slref/buscreator.html
https://www.mathworks.com/help/simulink/slref/busselector.html
https://www.mathworks.com/help/simulink/slref/display.html
https://www.mathworks.com/help/simulink/slref/docblock.html
https://www.mathworks.com/help/simulink/slref/from.html
https://www.mathworks.com/help/simulink/slref/goto.html
https://www.mathworks.com/help/simulink/slref/if.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=839

Table 116: Supported Simulink Blocks (cont'd)

Simulink Block Description
Inport Provide an input port for a subsystem or model.

Merge Merge multiple input signals into a single output signal whose initial value is
specified by the 'Initial output' parameter.

Outport Provide an output port for a subsystem or model.

Scope Displays time domain signals with respect to simulation time.

Stop Simulation Stop simulation when input is non-zero.

Terminator Used to "terminate" output signals to prevent warnings about unconnected
output ports.

To File Incrementally write data into a variable in the specified MAT-file.

To Workspace Write input to specified timeseries, array, or structure in a workspace.

Refer to the Simulink documentation for a complete description of the block.

AI Engine Blockset
Note: The AIE FIR Filter block which was part of AI Engine/DSP library will be deprecated in a future
release. Please replace all instances of this block in the model with equivalent blocks from the Xilinx
Toolbox/AI Engine/DSP library.

AIE to HDL

This block is used to connect the input port of an HDL block with the output port of an AI Engine
kernel or AI Engine graph block using an AXI4-Stream interface.

Library

AI Engine/Interfaces

Description

This block provides an interface between the AI Engine and HDL blocks.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 840Send Feedback

https://www.mathworks.com/help/simulink/slref/inport.html
https://www.mathworks.com/help/simulink/slref/merge.html
https://www.mathworks.com/help/simulink/slref/outport.html
https://www.mathworks.com/help/simulink/slref/scope.html
https://www.mathworks.com/help/simulink/slref/stopsimulation.html
https://www.mathworks.com/help/simulink/slref/terminator.html
https://www.mathworks.com/help/simulink/slref/tofile.html
https://www.mathworks.com/help/simulink/slref/toworkspace.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=840

• Input to the AIE to HDL block is a variable size signal (data) from AI Engine blocks along with
the tready signal which indicates that the consumer can accept a transfer.

• Output from the AIE to HDL block is tdata and tvalid that indicates the producer has valid
data available. A transfer takes place when both tvalid and tready are asserted.

Parameters

• Output Data Type: The following table shows different Output data types that are supported
by AIE to HDL blocks and the corresponding input data type to the block.

Output Data Type Input to AIE - HDL Block
int32 int32

uint32 int8, uint8, int16, uint16, uint32, float, cint16

sfix64 x_sfix64

ufix64 int8, uint8, int16, uint16, cint16, int32, uint32, cint32, x_ufix64, float, float(c)

ufix128 int8, uint8, int16, uint16, cint16, int32, uint32, cint32, x_sfix64, x_ufix64, float, float(c)

• Output Sample Time: This parameter depends on the input size to the block and the initiation
interval of the HDL design (the number of cycles before the HDL design can consume the
next sample).

Note: Refer to Chapter 4: AI Engine Library and product examples for more information.

HDL to AIE
This block is used to connect the output ports of HDL blocks to the input ports of AI Engine
blocks using the AXI4-Stream protocol.

Library

AI Engine/Interfaces

Description

This block provides an interface between the HDL and AI Engine blocks.

• Input to the HDL to AIE block is tdata which is the primary input for the data. The tvalid
signal indicates that the producer has valid data.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 841Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=841

• Output from the HDL to AIE block is a variable size signal (data) to AI Engine blocks along with
the tready signal which indicates that the consumer can accept a transfer. A transfer takes
place when both tvalid and tready are asserted.

Parameters

• Output Data Type: The following table shows the Output data types that are supported by
the HDL to AIE blocks and the corresponding input data type to the block.

Output Data Type Input to HDL - AIE Block
int8 uint32, ufix64, ufix128

uint8 uint32, ufix64, ufix128

int16 uint32, ufix64, ufix128

uint16 uint32, ufix64, ufix128

cint16 uint32, ufix64, ufix128

int32 int32, ufix64, ufix128

uint32 uint32, ufix64, ufix128

cint32 ufix64, ufix128

x_sfix64 sfix64

x_ufix64 ufix64, ufix128

float uint32, ufix64, ufix128

float(c) ufix64, ufix128

• Output Sample Time: This parameter depends on the initiation interval of the

• HDL

design and input size to the AI Engine block (number of cycles before the AI Engine design can
consume the frame).

Note: Refer to Chapter 4: AI Engine Library and product examples for more information.

• Samples per output frame: This determines the number of samples to be queued in the buffer
before the block updates the frame.

• Tready Sample time: This should be the same as the HDL design sample time.

AIE to HLS
This block is used to connect an input port of an HLS kernel block to the output port of an AI
Engine block in cases where the data type or complexity of the ports involved do not match.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 842Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=842

Library

AI Engine/User Defined Functions

Description

The AIE to HLS kernel block reformats a signal driven by an AI Engine block so that the resulting
signal matches the data type and complexity required by the input of an HLS Kernel block.

Parameters

• Output Size: The size of the output port. The output port is a variable sized signal whose
maximum size is specified by the OutputSize parameter. Default Output Size is '1'.

• Output Type: Possible values are: ap_axis<32>, ap_axis<64>, ap_axis<128>, ap_axiu<32>,
ap_axiu<64>, ap_axiu<128>, ap_int<32>, ap_int<64>, ap_uint<32>, ap_uint<64>,int, long
long, unsigned, unsigned long long

Note:

1. The input data type must be one of the following: int8, int16, int32, x_sfix64, x_sfix128, uint8, uint16,
uint32, x_ufix64, x_ufix128.

2. The input can be real or complex, but complex inputs are supported only for int16 and int32.

HLS to AIE
This block is used to connect an input port of an AIE Kernel or AIE Graph block to an output port
of an HLS Kernel block in cases where the datatype or complexities of the ports involved does
not match.

Library

AI Engine/User Defined Functions

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 843Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=843

Description

The HLS Kernel to AIE block reformats a signal driven by a port of an HLS Kernel block so that
the resulting signal matches the data type and complexity required by an AI Engine block.

Parameters

• Output Size: The size of the output port. The output port is a variable sized signal whose
maximum size is specified by the Output Size parameter. Default size is '1'.

• Output Type: Possible values are: int8, int16, int32, int64, uint8, uint16, uint32, uint64,
cint16, cint32.

Note: The inputs must be real and the supported input data types are: int32, x_sfix64, x_sfix128, uint32,
x_ufix64, x_ufix128.

AIE Signal Spec
This block is used to specify various properties on signals within, as well as at the boundary of an
AI Engine subsystem.

Library

AI Engine/Tools

Description

The AIE Signal Spec block allows you to specify the Platform IO (PLIO) width and FIFO depth
value within the AI Engine subsystem.

• Specifying the PLIO width at the boundary of the AI Engine subsystem will affect the
throughput of data from the AI Engine domain to the programmable logic (PL) domain.

• Specifying the FIFO depth value can help avoid deadlock or stalling by creating more buffering
in the paths. It is possible to specify two values for FIFO depth; one for the source side
(producer) and one for the destination side (consumer).

Parameters

• Connection Tab:

• Destination FIFO Depth: Should be a positive integer value and the default value is '0'.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 844Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=844

• Source FIFO Depth: Should be a positive integer value and the default value is '0'.

• Platform I/O Tab:

• PLIO Width: Only auto, 32, 64, and 128 are possible values. 'auto' is the default value.

• Specify PLIO frequency: When set to ON, you can specify the Programmable logic
frequency in MHz. The default value is 250 MHz. In general, choose a reasonable target
frequency depending on the complexity of the algorithm implemented.

To Fixed Size
This block takes a variable size vector as an input and produces a fixed size vector as output.

Library

AI Engine/Tools

Description

The To Fixed Size block takes a variable sized vector input and produces a fixed sized vector
output. The output vector size is specified by the OutputSize parameter. The block copies
samples from the input to the output. Excess samples are discarded. In cases where the input
does not have enough samples, a value of 0 is used. The optional status output shows the
difference between the number of samples in the input and output.

Parameters

• Output Size: The size of the output port. The output port is a fixed sized signal whose size is
specified by the 'Output Size' parameter. Default value is '1'

• Status Output: Optional. This port shows the difference between the number of samples in
the input and the output. By default the check box is enabled.

Variable Size Signal to Workspace
This block is used to save variable size signal data from your Simulink® simulation to the
MATLAB® workspace.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 845Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=845

Library

AI Engine/Tools

Description

AI Engine blocks produce variable signal outputs. The Variable Size Signal to Workspace block
allows you to write data into theMATLAB workspace in a structured format.

Note: This block behaves similarly to theSimulink To Workspace block but can only be connected to a
variable size signal. The settings of the block can be accessed from Model settings (Ctrl+E).

Parameters

• Variable Name: Using this parameter, you can specify the name for workspace variable.

AIE Class Kernel
This block allows you to import class-based kernels.

Library

AI Engine/User-Defined Functions

Description

The AIE Class Kernel block is used to import class-based kernels. This block also supports
importing class templates to define a family of kernels.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 846Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=846

Parameters

Parameter
Name

Parameter
Type Criticality Description

Kernel header file String Mandatory Name of the header file that contains the kernel class and
registerKernelClass method declarations The string could be
just the file name, a relative path to the file or an absolute
path of the file. Use the browse button to choose the file.

Kernel class String Mandatory Name of the kernel class which contains member variables
and kernel member functions.

Kernel function String Mandatory Name of the kernel member function for which the block is
to be created. This function should be registered using the
registerKernelClass method in the kernel header file.

Kernel source file String Mandatory Name of the source file that contains where the kernel
member function definition and non-default constructor
parameter values are specified.
The string could be the file name, a relative path to the file
or an absolute path of the file.

Kernel search
paths

Vector of strings Optional If the kernel header file or the kernel source file are not
found using the value provided through the 'Kernel header
file' or 'Kernel source file' fields respectively, then the paths
provided through 'Kernel search paths' are used to find the
files.
This parameter allows use of environment variables while
specifying paths for the kernel header file and the kernel
source file. The environment variable can be used in either $
{ENV} or $ENV format.

Preprocessor
options

Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options.
The following two preprocessor option formats are
accepted and multiple can be selected: -Dname and -
Dname=definition separated by a comma. That is, the
optional argument must begin with -D and if the the option
definition value is not provided, it is assumed to be 1.

AIE Graph
This block allows you to import an AI Engine graph.

Library

AI Engine/User-Defined Functions

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 847Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=847

Description

The AIE Graph block allows you to import an AI Engine program that consists of a dataflow graph
specification written in C++.

Parameters

• Graph File: Specifies whether the graph import should be done using the header file (*.h) or
using source file (*.cpp). By default the header file is selected.

• Graph Header file(*.h): This is the mandatory string that specify the file (.h), where the
application graph class is defined and the Adaptive Data Flow (ADF) header (adf.h), kernel
function prototypes are included. This parameter is only visible when you choose the header
file (*.h) option in the graph file.

• Graph Source file (*.cpp): This is the mandatory string that specify the file(.cpp), where the adf
dataflow graph is instantiated and connected to simulation platform. This file should contain
the main() function, from where the dataflow graph initializes and runs. This parameter is only
visible when you choose the 'source file (*.cpp) option in the Graph file. This option is available
only when the Source file (*.cpp) is selected in Graph file.

• Graph Class: This is a mandatory string that specifies the name of the graph class. This
parameter is only visible when you choose the header file (*.h) option in the graph file.

• Graph Search paths: This is a vector of strings that specifies the search paths where header
files, kernels, and other include files can be found and included for simulation. The search path
$XILINX_VITIS/adf/include (where adf.h is defined) is included by default and does not need
to be specified.

• Preprocessor options: This is an optional parameter and should be specified with a
preprocessor argument for downstream compilation with specific preprocessor options. The
following preprocessor option formats are accepted and multiple can be selected: ‘-Dname’
and ‘-Dname=definition’. That is, the optional argument must begin with the '-D' string
and if the option definition value is not provided, it is assumed to be 1.

AIE Kernel
This block allows you to import an AI Engine kernel.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 848Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=848

Library

AI Engine/User-Defined Functions

Description

The AIE Kernel block allows you to import an AI Engine kernel which is a C/C++ program. This
block supports importing Window, Stream, Cascade, and Run time parameter as arguments to
kernel function. This block also allows you to import a function template with typename
template parameter T, and a non-type (integral) template parameter N.

Parameters

Parameter
Name

Parameter
Type Criticality Description

Kernel header file String Mandatory Name of the header file that contains the kernel function
declaration. The string could be just the file name, a relative
path to the file or an absolute path of the file. Use the
browse button to choose the file.

Kernel function String Mandatory Name of the kernel function for which the block is to be
created. This function should be declared in the kernel
header file.

Kernel init
function

String Optional Name of the initialization function used by the kernel
function.

Kernel source file String Mandatory Name of the source file that contains the kernel function
definition. The string could be the file name, a relative path
to the file or an absolute path of the file.

Kernel search
paths

Vector of Strings Optional If the kernel header file or the kernel source file are not
found using the value provided through the 'Kernel header
file' or 'Kernel source file' fields respectively, then the paths
provided through 'Kernel search paths' are used to find the
files.
This parameter allows use of environment variables while
specifying paths for the kernel header file and the kernel
source file. The environment variable can be used in either $
{ENV} or $ENV format.

Preprocessor
options

Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options.
The following two preprocessor option formats are
accepted and multiple can be selected: -Dname and -
Dname=definition separated by a comma. That is, the
optional argument must begin with -D and if the the option
definition value is not provided, it is assumed to be 1.

HLS Kernel
This block lets you import an HLS kernel code with a streaming interface.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 849Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=849

Library

AI Engine/User-Defined Functions

Description

The HLS Kernel block allows you to import an HLS kernel, which is a proper HLS IP that can be
used in Vitis™ HLS and synthesized directly.

Parameters

Parameter
Name

Parameter
Type Criticality Description

Kernel header file String Mandatory The name of the HLS kernel header file that contains the
function declaration. The string could be just the file name,
a relative path to the file or an absolute path of the file. Use
the browse button to select the file.

Kernel function String Mandatory The name of the kernel function in C/C++ for which HLS
Kernel block is to be created.

Kernel source file String Mandatory The name of the source file that contains the kernel function
implementation (definition). The string could be just the file
name, a relative path to the file or an absolute path of the
file.
Specifies the search path for source files (.cc, .hpp) from
the MATLAB current folder.

Kernel search
paths

Vector of Strings Optional If the kernel header file or the kernel source file is not found
using the value provided through the 'Kernel header file' or
'Kernel source file' fields respectively, then the paths
provided through 'Kernel search paths' are used to locate
the files.
This parameter allows use of environment variables while
specifying paths for the kernel header file and the kernel
source file. The environment variable can be used in either $
{ENV} or $ENV format.

Preprocessor
Options

Optional Optional preprocessor arguments for downstream
compilation with specific preprocessor options.
The following two preprocessor option formats will be
accepted and multiple can be selected. -Dname and -
Dname=definition. That is, the optional argument must
begin with the -D string and if the option definition value is
not provided, it is assumed to be 1.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 850Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=850

FIR Asymmetric Decimation

Library

AI Engine/DSP

Description

This block implements the FIR Asymmetric Decimation filter targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 851Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=851

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify filter coefficients via the input port.

• Filter coefficients: Specifies the asymmetric filter coefficients. The filter length must be in the
range 4 to 240 and must be an integer multiple of the decimation factor.

• Decimation factor: An unsigned integer which describes the decimation factor of the filter. It
must be in the range 2 to 7.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be (Input window size/
decimation factor). The input window size must be an integer multiple of the decimation
factor and the resulting output window size must be a multiple of 256 bits.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled, the 'Number of cascade stages' can be specified (which describes the
number of AI Engine processors to split the operation over). However, this allows resources to
be traded for higher performance and the specified input sampling rate constraint may not be
achieved. The value must be in the range 1 to 9.

• Scale output down by 2^: Describes the power of 2 shift down applied to the accumulation of
FIR terms before output. It must be in the range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative Infinity

5. Round symmetrical to Infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 852Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=852

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

FIR Asymmetric Filter

Library

AI Engine/DSP

Description

This block implements the Single Rate Asymmetric FIR Filter targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, or cfloat and must also satisfy the
following rules:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 853Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=853

• Complex types are only supported when the Input/Output data type is also complex.

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via the input port.

• Filter coefficients : This field should be specified with the asymmetric filter coefficients and
must be in the range 4 to 240 inclusive.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be equal to input window
size also by virtue of the single rate nature of this function.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled, the 'Number of cascade stages' can be specified (which describes the
number of AI Engine processors to split the operation over). However, this allows resource to
be traded for higher performance and the specified input sampling rate constraint may not be
achieved. The value must be in the range 1 to 9.

• Scale output down by 2^: Describes the power of 2 shift down applied to the accumulation of
FIR terms before output. It must be in the range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative Infinity

5. Round symmetrical to Infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 854Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=854

FIR Fractional Interpolation

Library

AI Engine/DSP

Description

This block implements the FIR Fractional Asymmetric Interpolation filter targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 855Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=855

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port : When this option is enabled, the tool allows you to
specify reloadable filter coefficients via input port.

• Filter coefficients: This field should be specified with the asymmetric filter coefficients and
must be in the range 4 to 240 inclusive.

• Interpolation factor: An unsigned integer which describes the Interpolation factor of the filter.
It must be in the range 3 to 16.

• Decimation factor: An unsigned integer which describes the decimation factor of the filter. It
must be in the range 2 to 16. The decimation factor should be less that the interpolation
factor and should not be divisible by the interpolation factor.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be the input window size
multipled by the Interpolation factor and divided by the decimation factor. In this instance it
wouldresult in a fraction number of output samples which would be rounded down.

• Number of cascade stages: This determines the number of kernels over which the function
will be split. A higher number of cascade stages will result in higher throughput at the expense
of resources. The value must be in the range 1 to 9.

• Scale output down by 2^ : Describes the power of 2 shift down applied to the accumulation
of FIR terms before output. It must be in the range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 856Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=856

FIR Halfband Decimator

Library

AI Engine/DSP

Description

This block implements the FIR Halfband Decimator targeted for AI Engines.

Parameters

• Input/Output data type : Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 857Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=857

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via input port.

• Filter coefficients: Specifies the filter coefficients as a vector of (N+1)/4+1 elements, where
'N' is a positive integer that represents the filter length and must be in the range 4 to 240
inclusive.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be the Input window size
divided by two by virtue of the halfband decimation factor.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages : When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled, the 'Number of cascade stages' can be specified (which describes the
number of AI Engine processors to split the operation over). However, this allows resource to
be traded for higher performance and the specified input sampling rate constraint may not be
achieved. The value must be in the range 1 to 9.

• Scale output down by 2^: Describes the power of 2 shift down applied to the accumulation of
FIR terms before output. It must be in the range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 858Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=858

FIR Halfband Interpolator

Library

AI Engine/DSP

Description

This block implements the FIR Halfband Interpolator targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 859Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=859

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via the input port.

• Filter coefficients: Specifies the filter coefficients as a vector of (N+1)/4+1 elements, where
'N' is a positive integer that represents the filter length and must be in the range 4 to 240
inclusive.

• Input window size (Number of samples):: Describes the number of samples used as an input
to the filter function. The number of values in the output window will be the Input window
size multiplied by two by virtue of the halfband interpolation factor.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled, the 'Number of cascade stages' can be specified (which describes the
number of AI Engine processors to split the operation over). However, this allows resource to
be traded for higher performance and the specified input sampling rate constraint may not be
achieved. The value must be in the range 1 to 9.

• Scale output down by 2^: Describes the power of 2 shift down applied to the accumulation of
FIR terms before output. It must be in the range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 860Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=860

FIR Interpolation

Library

AI Engine/DSP

Description

This block implements the FIR Asymmetric Interpolation filter targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 861Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=861

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via the input port.

• Filter coefficients: Specifies the filter coefficients as a vector of (N+1)/4+1 elements, where
'N' is a positive integer that represents the filter length and must be in the range 4 to 240
inclusive.

• Interpolation factor: An unsigned integer which describes the interpolation factor of the filter.
It must be in the range 1 to 16.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be Input window size
multiplied by interpolation factor.

• Input sampling rate (MSPS) : Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, tool will determine
the filter configuration that best achieves the specified input sampling rate. When the option
is enabled and the 'Number of cascade stages' is specified, the tool will guarantee the same. In
such cases, however, the specified input sampling rate constraint may not be achieved.

• Scale output down by 2^: Describes power of 2 shift down applied to the accumulation of FIR
terms before output. It must be in range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

• :

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 862Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=862

FIR Symmetric Decimation

Library

AI Engine/DSP

Description

This block implements the FIR Symmetric Decimation Filter targeted for AI Engines.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 863Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=863

• Complex types are only supported when the Input/Output data type is also complex.

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via the input port.

• Filter coefficients: This field should only be supplied for the first half of the filter length plus
the center tap for odd lengths i.e., taps[] = {c0, c1, c2, ..., cN [, cCT]} where N =
(FILTER_LENGTH)/2 and cCT is the center tap where FILTER_LENGTH is odd. For example, a
7-tap filter might use coeffs (1, 3, 2, 5, 2, 3, 1). This could be input as taps[]= {1,3,2,5} because
the context of symmetry allows the remaining coefficients to be inferred.

• Filter length: This is an unsigned integer which describes the number of taps in the filter. The
filter length must be in the range 4 to 240 and must be an integer multiple of the decimation
factor.

• Decimation factor: An unsigned integer which describes the decimation factor of the filter. It
must be in the range 2 to 3. For larger factors, use the FIR Asymmetric decimation filter.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be the input window size
divided by decimation factor by virtue of the decimation factor.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled and the 'Number of cascade stages' is specified, the tool will guarantee
the same. In such cases, however, the specified input sampling rate constraint may not be
achieved.

• Scale output down by 2^: Describes power of 2 shift down applied to the accumulation of FIR
terms before output. It must be in range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 864Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=864

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

FIR Symmetric Filter

Library

AI Engine/DSP

Description

This block implements the Single Rate Symmetric FIR Filter targeted for AI Engines.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 865Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=865

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. int16, cint16, int32, cint32, float, cfloat.

• Filter coefficients data type: Describes the type of individual coefficients of the filter taps. It
should be one of int16, cint16, int32, cint32, float, cfloat and must also satisfy the following
rules:

• Complex types are only supported when the Input/Output data type is also complex.

• 32-bit types are only supported when the Input/Output data type is also a 32-bit type.

• Filter coefficients data type must be an integer type if the Input/Output data type is an
integer type.

• Filter coefficients data type must be a float type if the Input/Output data type is a float
type.

• Specify filter coefficients via input port: When this option is enabled, the tool allows you to
specify reloadable filter coefficients via the input port.

• Filter coefficients: This field should only be supplied for the first half of the filter length plus
the center tap for odd lengths i.e., taps[] = {c0, c1, c2, ..., cN [, cCT]} where N =
(FILTER_LENGTH)/2 and cCT is the center tap where FILTER_LENGTH is odd. For example, a
7-tap filter might use coeffs (1, 3, 2, 5, 2, 3, 1). This could be input as taps[]= {1,3,2,5} because
the context of symmetry allows the remaining coefficients to be inferred.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 866Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=866

• Filter length: This is an unsigned integer which describes the number of taps in the filter.

• Input window size (Number of samples): Describes the number of samples used as an input to
the filter function. The number of values in the output window will be the input window size
by of virtue the single rate nature of this filter.

• Input sampling rate (MSPS): Specifies the rate at which data samples should be processed.

• Specify the number of cascade stages: When this option is not enabled, the tool will
determine the filter configuration that best achieves the specified input sampling rate. When
the option is enabled and the 'Number of cascade stages' is specified, the tool will guarantee
the same. In such cases, however, the specified input sampling rate constraint may not be
achieved.

• Scale output down by 2^: Describes power of 2 shift down applied to the accumulation of FIR
terms before output. It must be in range 0 to 61.

• Rounding mode: Describes the selection of rounding to be applied during the shift down stage
of processing. The rounding options are as follows:

1. Floor (truncate)

2. Ceiling

3. Round to positive infinity

4. Round to negative infinity

5. Round symmetrical to infinity

6. Round symmetrical to zero

7. Round convergent to even

8. Round convergent to odd

Modes 2 to 7 round to the nearest integer. They differ only in how they round for the value of
0.5.

IFFT

Library

AI Engine/DSP

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 867Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=867

Description

This block implements the Inverse FFT targeted for AI Engines which use the rounding method
and saturates the output samples on overflow.

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. Supported types are cint16, cint32 and cfloat.

• IFFT size: This is an unsigned integer which describes the point size of the transformation.
This must be 2^N, where N is in the range 4 to 10 inclusive. This value describes the
maximum point size possible.

• Number of cascade stages: This determines the the number of kernels the FFT will be divided
over in series to improve throughput.

• Scale output down by 2^: Describes the power of 2 to scale the result by prior to output.

FFT

Library

AI Engine/DSP

Description

This block implements the FFT targeted for AI Engines which use rounding method and saturates
the output samples on overflow.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 868Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=868

Parameters

• Input/Output data type: Describes the type of individual data samples input to and output
from the filter function. Supported types are cint16, cint32, and cfloat.

• FFT size: This is an unsigned integer which describes the point size of the transformation. This
must be 2^N, where N is in the range 4 to 10 inclusive. This value describes the maximum
point size possible.

• Number of cascade stages: This determines the the number of kernels the FFT will be divided
over in series to improve throughput.

• Scale output down by 2^: Describes the power of 2 to scale the result by prior to output.

RTP Source

Library

AI Engine/Tools

Description

This block can be used as a source for the RTP input of an AI Engine block. When the RTP input
is a scalar, the 'RTP Value' parameter should be a row vector. At each time step, the output is set
to one of the elements of the vector starting with the first element. If an element of the vector is
NaN, at the corresponding sampling time, the output will be an empty variable size signal.

If the RTP input is a vector, the 'RTP value' parameter should be a matrix. Each column represents
an RTP input vector. A NaN column will produce an empty variable size signal output.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 869Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=869

Parameters

• RTP Value:

This represents the value which can be given as an input to an AI Engine block. This can be a
scalar, vector, or a matrix and it accepts real or complex data.

• Sample Time: Specifies the interval between the times that the RTP source block output can
change during simulation.

• Form output after final data: Represents a method to determine block output after the final
data point.

• Empty: This option sets the RTP block output to empty after final data.

• Holding Final value: When this option is selected, block holds the final value.

• Cyclic repetition: This option repeats the RTP block data from first value.

To Variable Size

Library

AI Engine/Tools

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 870Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=870

Description

This block takes a fixed sized vector input and produces a variable sized vector output. The
maximum size of the output vector is specified by the Output Size parameter. If there is not
enough samples to pack the output, the output will be an empty variable size signal.

Parameters

• Output Size: Specifies the maximum size of the output vector.

Chapter 6: Xilinx Toolbox

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 871Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=871

Appendix A

Model Composer Utilities and
Programmatic Access

IMPORTANT! Information given in the appendix is relevant only to HDL libraries.

Model Composer Utilities
xilinx.analyzer Provides the interface between the Model Composer model and Vivado® timing

paths.

xilinx.environment.getcachepath and
xilinx.environment.setcachepath

Used to get and set the path Model Composer uses to store the simulation
cache.

xilinx.resource_analyzer Enables cross-probing between the Model Composer model and Vivado resource
utilization data.

xilinx.utilities.importBD Imports a BD file created in the Vivado IP integrator and creates a stub for the
Model Composer model that is part of the design.

xlAddTerms Automatically adds sinks and sources to Model Composer models.

xlConfigureSolver Configures the Simulink® solver settings of a model to provide optimal
performance during Model Composer simulation.

xlfda_denominator Returns the denominator of the filter object in an FDATool block.

xlfda_numerator Returns the numerator of the filter object in an FDATool block.

xlGenerateButton Provides a programmatic way to invoke the Model Composer code generator.

xlgetparam and xlsetparam Used to get and set parameter values in a HDL block.

xlgetparams Used to get all parameter values in a HDL block.

xlGetReOrderedCoeff The xlGetReOrderedCoeff function provides the re-ordered coefficient set of a
FIR Compiler block.

xlOpenWaveFormData Allow you to populate saved simulation waveform data into running Waveform
Viewer instance.

xlSetUseHDL Sets the 'Use behavioral HDL' option of blocks in a model of a Subsystem.

xlTBUtils Provides programmatic access to several useful procedures such as layout, re-
drawlines and getselected.

xilinx.analyzer
xilinx.analyzer is a MATLAB® class that provides an interface between the Model Composer
model and Vivado® timing paths.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 872Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=872

The Model Composer timing analysis is supported for all compilation targets. The Perform
analysis drop down menu under the Clocking tab of the System Generator token provides two
options for the trade-off between total runtime vs. accuracy of the Vivado timing data. If you
select either the Post Synthesis or the Post Implementation option of Perform analysis and click
the Generate button, then Vivado timing paths information is collected during the netlist
generation. The xilinx.analyzer class is used to access Vivado timing paths information. The
xilinx.analyzer class object processes Vivado timing paths to find 50 unique paths with the worst
slack value. The unique timing paths are sorted in increasing value of slack and saved in the
analyzer object.

The cross-probing between Vivado timing paths and the Model Composer model is made
possible using the following API functions in the xilinx.analyzer class.

Table 117: xilinx.analyzer Class Functions

Function Name Description Function Argument
xilinx.analyzer This is a constructor of the class.

A call to the xilinx.analyzer constructor returns
object of the class.

First argument is Model Composer model
name.
Second argument is path to already generated
netlist directory.

isValid Indicates if timing analysis data is valid or not.
Use this API to make sure that the
xilinx.analyzer class construction was
successful.

No argument

getErrorMessage Returns an error message string if the call to
the class constructor or other API function had
an error.

No argument

getStatus Returns ‘FAILED’ if any of the timing paths in
the model have a violation, i.e., negative slack.

No argument

getVivadoStage Returns either Post Synthesis or Post
Implementation. This is the Vivado design stage
after which timing analysis was performed.

No argument

paths Returns an array of MATLAB structures. Each
structure contains data for a timing path.

A string that is equal to either ‘setup’ or ‘hold’

violations Returns an array of MATLAB structures. Each
member of the array is a path structure with a
timing violation.

A string that is equal to either ‘setup’ or ‘hold’

print Prints timing path information such as Slack,
Path Delay, Levels of Logic, Name of Source and
Destination blocks, and Source and Destination
clocks.

An array of MATLAB structures for timing path
data. The array can have one or more
structures.

highlight In the Model Composer model, highlights
blocks for the timing path passed in the
argument. Blocks that are already highlighted
in the model will remain highlighted.

MATLAB structure for one timing path

highlightOnePath In the Model Composer model, highlights
blocks for the timing path passed in the
argument. Before highlighting blocks for this
path, the blocks that are already highlighted in
the model will be unhighlighted.

MATLAB® structure for one timing path

unhighlight In the Simulink® model, unhighlights all blocks
currently highlighted.

No argument

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 873Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=873

Table 117: xilinx.analyzer Class Functions (cont'd)

Function Name Description Function Argument
disp Displays a summary of timing analysis results

on the MATLAB console, including the worst
slack value among all timing paths.

No argument

delete This is a destructor of the xilinx.analyzer class No argument

Table 118: Timing Path Data in a MATLAB Structure

Field Name Description
Slack The double value containing timing slack for the path

Delay Total Data Path delay for the path

Levels_of_Logic Number of elements in Vivado design for the timing path. The number of HDL
blocks in the timing path may be different from Levels_of_Logic.

Source First HDL block in the timing path

Destination Last HDL block in the timing path

Source_Clock Name of the clock domain for the source block

Destination_Clock Name of the clock domain for the destination block

Path_Constraints Timing constraint used for the path. For a multi-clock design, the path constraint
can be a multi-clock timing constraint.

Block_Masks Cell array where each element contains mask information for a HDL block.

Simulink_Names Cell array where each element contains hierarchical name of a block in Model
Composer model

Vivado_Names Cell array where each element contains name of HDL block in Vivado database

Type A timing violation type. The value is either ‘setup’ or ‘hold’.

xilinx.analyzer - Construct xilinx.analyzer class object

Syntax

analyzer_object = xilinx.analyzer(<name_of_the_model>',
'<path_to_netlist_directory>')

• Description:

A call to xilinx.analyzer constructor returns object of the class.

The first argument is the name of the Model Composer model. The model must be open
before the class constructor is called.

The second argument is an absolute or relative path to the netlist directory. You must have
read permission to the netlist directory.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 874Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=874

To access API functions of the xilinx.analyzer class use the object of the class as described
below. To get more details for a specific API function type the following at the MATLAB
command prompt:

help xilinx.analyzer.<API_function>

• Example:

//Construct class. Must give the model name and absolute or relative path
to the
//target directory

>> timing_object = xilinx.analyzer('fixed_point_IIR', './
netlist_for_timing_analysis')

timing_object =

Number of setup paths = 9
Worst case setup slack = -1.6430

isValid – Check validity of Vivado timing paths

• Syntax:

result = analyzer_object.isValid();

• Description:

If timing analysis data is valid then the result equals '1', otherwise it is '0'. Use this API to make
sure that the xilinx.analyzer class construction was successful and the timing data was valid.

• Example:

//Determine if timing analysis data is valid

>> valid_status = timing_object.isValid()

valid_status =

 1

getErrorMessage - Get an error message

• Syntax:

result = analyzer_object.getErrorMessage();

• Description:

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 875Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=875

Returns an error message string if the call to the class constructor or other API function had
an error.

• Example:

//Determine if there was an error in the xilinx.analyzer constructor
//or in any of the API functions

>> err_msg = timing_object.getErrorMessage()

err_msg =

 ''

getStatus - Timing analysis status

• Syntax:

string = analyzer_object.getStatus();

• Description:

The returned string is either 'PASSED' or 'FAILED'. If any of the timing paths have a violation,
i.e. negative slack, then the timing analysis status is considered failed.

• Example:

//Determine if there were timing path violations in Simulink model

>> analysis_status = timing_object.getStatus()

analysis_status =

FAILED

getVivadoStage - Get Vivado design stage for timing analysis

• Syntax:

string = analyzer_object.getVivadoStage();

• Description:

The returned string is the Vivado design stage after which timing analysis was performed and
data collected in Vivado. The value is either 'Post Synthesis' or 'Post Implementation'.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 876Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=876

• Example:

//Determine Vivado stage when timing data was collected

>> design_stage = timing_object.getVivadoStage()

design_stage =

Post Synthesis

paths - Access all timing paths

• Syntax:

<array_of_timing_paths_structure> =
analyzer_object.paths('<violation_type>');

• Description:

The returned value is an array of MATLAB structures. Each structure contains data for a
timing path, sorted in decreasing order of timing violation, i.e. in increasing order of slack
value.

The argument 'violation_type' is either 'setup' or 'hold' string.

• Example:

//Return an array of the timing path structures

>> all_timing_paths = timing_object.paths('setup')

all_timing_paths =

1x9 struct array with fields:

 Slack
 Delay
 Levels_of_Logic
 Source
 Destination
 Source_Clock
 Destination_Clock
 Path_Constraints
 Block_Masks
 Simulink_Names
 Vivado_Names
 Type

Note:

There are a total of nine timing paths in this timing analysis.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 877Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=877

You can find the data fields in each timing path as shown in Example 1 in Additional
Information.

violations - Access paths with timing violations

• Syntax:

<array_of_timing_paths_structure> =
analyzer_object.violations('<violation_type>');

• Description:

The returned value is an array of MATLAB structures. Each member of the array is data for a
path with a timing violation. The array elements are sorted in decreasing order of timing
violation. If there are no timing violations in the design then the API function returns an
empty array.

The argument 'violation_type' is either 'setup' or 'hold'.

• Example:

//Return an array of timing paths with setup violations

>> violating_paths = timing_object.violations('setup')

violating_paths =

1x2 struct array with fields:

 Slack
 Delay
 Levels_of_Logic
 Source
 Destination
 Source_Clock
 Destination_Clock
 Path_Constraints
 Block_Masks
 Simulink_Names
 Vivado_Names
 Type

There are a total of two paths with violations in this timing analysis.

You can find the data fields in each timing path as shown in Example 3 in Additional
Information.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 878Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=878

print - Print timing path information

• Syntax:

analyzer_object.print(<timing_path_structures>);

• Description:

Prints timing data such as Slack, Path Delay, Levels of Logic, Name of Source and Destination
blocks, Source and Destination clocks, Path Constraints, etc. for the input timing path
structure.

The argument is an array of MATLAB structures with one or more elements.

• Examples:

//Print timing path information for path #1

>> timing_object.print(all_timing_paths(1))
Path Num Slack (ns) Delay (ns) Levels
of Logic
Source/Destination Blocks Source Clock Destination
Clock Path
Constraints
 1 -1.6430
11.5690 6
fixed_point_IIR/Delay1
clk clk
create_clock -name clk -period 2 [get_ports clk]

fixed_point_IIR/IIR Filter Subsystem/Delay4

ans =

 1

//Print timing path information for path #3

>> timing_object.print(all_timing_paths(3))
Path Num Slack (ns) Delay (ns) Levels
of Logic
Source/Destination Blocks Source Clock Destination
Clock Path
Constraints
 1 1.1320
0.5270 0
fixed_point_IIR/Delay1
clk clk
create_clock -name clk -period 2 [get_ports clk]

fixed_point_IIR/Delay1

ans =

 1

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 879Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=879

//Print timing path information for path #2 from violating_paths array

>> timing_obj.print(violating_paths(2))
Path Num Slack (ns) Delay (ns) Levels
of Logic
Source/Destination Blocks Source Clock Destination
Clock Path
Constraints
 1 -1.3260
11.2520 6
fixed_point_IIR/Delay1
clk clk
create_clock -name clk -period 2 [get_ports clk]

fixed_point_IIR/Delay2

ans =

 1

highlight - Highlight design blocks for a timing path

• Syntax:

analyzer_object.highlight(<timing_path_structure>);

• Description:

This API highlights HDL blocks for the timing path passed in the argument. It doesn't change
the highlighting of a block from other paths, so more than one timing path can be highlighted
if you use this function repeatedly.

The argument is the MATLAB structure for one timing path.

• Example:

//Highlight Simulink model blocks in the selected path
//Don't change highlighting of currently highlighted blocks in the model

>> [result, err_msg] = timing_object.highlight(all_timing_paths(1));

Highlighted Model Composer model blocks appear as shown below.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 880Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=880

Figure 415: HDL Model Blocks

highlightOnePath - Highlight design blocks for one timing path

• Syntax:

analyzer_object.highlightOnePath(<timing_path_structure>);

• Description:

This API highlights HDL blocks for the timing path passed in the argument. If a block from
other paths is already highlighted then it will be unhighlighted first, so only one path is
highlighted at a time.

The argument is the MATLAB structure for one timing path.

• Example:

//Highlight a single path in System Generator model, and unhighlight
currently
//highlighted paths

>> [result, err_msg] = timing_object.highlightOnePath(violating_paths(2));

unhighlight - Unhighlight design blocks

• Syntax:

analyzer_object.unhighlight();

• Description:

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 881Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=881

This API unhighlights blocks that are already highlighted. The blocks in Model Composer
model are displayed in their original colors.

• Example:

//Unhighlight any Simulink block that is currenly highlighted

>> [result, err_msg] = timing_object.unhighlight();

disp - Display summary of timing analysis

• Syntax:

analyzer_object.disp();

• Description:

This API displays the summary of timing paths on the MATLAB console, including the worst
slack value.

• Example:

//Display a summary of timing analysis

>> timing_object.disp()
Number of setup paths = 9
Worst case setup slack = -1.6430

delete - Delete xilinx.analyzer class object

• Syntax:

analyzer_object.delete();

• Description:

This is a destructor for the xilinx.analyzer class.

• Example:

//Delete xilinx.analyzer object, i.e., timing_object

>> timing_object.delete();

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 882Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=882

Additional Information

Accessing data fields of timing path structures:

• Example 1: Data for timing path #1:

//Return the data fields for the timing path with the worst slack

>> all_timing_paths(1)

ans =

 Slack: -1.6430
 Delay: 11.5690
 Levels_of_Logic: 6
 Source: 'fixed_point_IIR/Delay1'
 Destination: 'fixed_point_IIR/IIR Filter Subsystem/Delay4'
 Source_Clock: 'clk'
 Destination_Clock: 'clk'
 Path_Constraints: 'create_clock -name clk -period 2 [get_ports ...'
 Block_Masks: {1x5 cell}
 Simulink_Names: {1x5 cell}
 Vivado_Names: {1x5 cell}
 Type: 'setup'

• Example 2: Data for timing path #3:

//Return the data fields for a timing path

>> all_timing_paths(3)

ans =

 Slack: 1.1320
 Delay: 0.5270
 Levels_of_Logic: 0
 Source: 'fixed_point_IIR/Delay1'
 Destination: 'fixed_point_IIR/Delay1'
 Source_Clock: 'clk'
 Destination_Clock: 'clk'
 Path_Constraints: 'create_clock -name clk -period 2 [get_ports ...'
 Block_Masks: {'fprintf('','COMMENT: begin icon graphics')...'}
 Simulink_Names: {'fixed_point_IIR/Delay1'}
 Vivado_Names: {'fixed_point_iir.fixed_point_iir_struct.delay1'}

Type: 'setup'

• Example 3: Data for path #1 in violating_paths array:

//Return the data fields in a timing path with timing violations

>> violating_paths(1)

ans =

 Slack: -1.6430

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 883Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=883

 Delay: 11.5690
 Levels_of_Logic: 6
 Source: 'fixed_point_IIR/Delay1'
 Destination: 'fixed_point_IIR/IIR Filter Subsystem/Delay4'
 Source_Clock: 'clk'
 Destination_Clock: 'clk'
 Path_Constraints: 'create_clock -name clk -period 2 [get_ports ...'
 Block_Masks: {1x5 cell}
 Simulink_Names: {1x5 cell}
 Vivado_Names: {1x5 cell}
 Type: 'setup'

xilinx.environment.getcachepath and
xilinx.environment.setcachepath
xilinx.environment.getcachepath is used to get the path Model Composer currently
uses to store the simulation cache.

xilinx.environment.setcachepath is used to change the path Model Composer uses to
store the simulation cache.

Syntax

xilinx.environment.getcachepath

xilinx.environment.setcachepath(path)

Description

When you simulate a Simulink model containing Xilinx IP in Model Composer, the Vivado
simulator simulation data for that particular IP configuration is cached to speed up the
simulation.

Model Composer establishes the simulation cache at a default location at startup, and you can
determine the current path to the simulation cache with the
xilinx.environment.getcachepath command. If you need to change the location of the
simulation cache, use the xilinx.environment.setcachepath command. You will need to
have write permission on the destination path directory. The new path will apply for the
remainder of your Model Composer session.

One reason you would use xilinx.environment.setcachepath is to set the path if you do
not have write permission on the default directory Model Composer uses for caching simulation
data.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 884Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=884

Examples

Example 1: Getting the current simulation cache path.

>> xilinx.environment.getcachepath

ans =

C:\Users\my_login/AppData/Local/Xilinx/Sysgen/SysgenVivado/win64.o

Example 2: Setting a new simulation cache path.

>> xilinx.environment.setcachepath('C:\sim_cache')

ans =

C:\sim_cache

>> xilinx.environment.getcachepath

ans =

C:\sim_cache

xilinx.resource_analyzer
xilinx.resource_analyzer is a MATLAB class that enables cross-probing between the Model
Composer model and Vivado resource utilization data.

The Model Composer resource analysis is supported for all compilation targets. The Perform
analysis drop down menu under the Clocking tab of the System Generator token provides two
options for the trade-off between Vivado tools runtime vs. accuracy of the resource utilization
data. If you select either the Post Synthesis or the Post Implementation option of Perform
analysis and click the Generate button, then Vivado resource utilization information is collected
during the netlist generation. Once the netlist generation has completed, the
xilinx.resource_analyzer class is used to access this Vivado resource utilization results. The
xilinx.resource_analyzer class object processes Vivado resource utilization data to display the
number of resources (BRAMs, DSPs, Registers, and LUTs) used in the Simulink model, as well as
by the subsystems and low-level blocks in the model.

The cross-probing between Vivado resource utilization results and the Model Composer model is
made possible through the following API functions in the xilinx.resource_analyzer class.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 885Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=885

Table 119: Functions in xilinx.resource_analyzer Class

Function Name Description Function Argument
xilinx.resource_analyzer This is a constructor of the class. A call

to the xilinx.resource_analyzer
constructor returns object of the class.

First argument is design model name.
Second argument is path to already
generated netlist directory.

getVivadoStage Returns either Post Synthesis or
Post Implementation. This is the
Vivado design stage after which
resource analysis was performed.

No argument

getDevicePart Returns a string for device part,
package and speed grade for the
device in which the design will be
implemented.

No argument

getDeviceResource Returns a string for the total count of
the specified type of resource in the
target Xilinx device.

(Optional) Resource type.Resource
types are: BRAMs, DSPs, Registers, or
LUTs.

printDeviceResources Prints the total number of BRAMs,
DSPs, Registers, and LUTs available on
the target Xilinx device. The counts are
printed in the MATLAB console.

No argument.

getCount Returns a count for the particular
resource type used by a block or
subsystem.

(Optional) First argument is a Simulink
handle or pathname for the block.
(Optional) Second argument is
Resource type. Resource types are:
BRAMs, DSPs, Registers, or LUTs.

print Returns a count for the particular
resource type used by a block or
subsystem.

(Optional) First argument is a Simulink
handle or pathname for the block or
subsystem.
(Optional) Second argument is
resource type. Resource types are:
BRAMs, DSPs, Registers, or LUTs.

getDistribution Returns three values:
An array of MATLAB structures. Each
element in the array is a structure
containing the name of a block or
subsystem directly under the
subsystem in the argument, with a key-
value pair of the resource type and
number of resources used by that sub
block or subsystem.
A count of the resources used by the
self (the block or subsystem specified
in the argument).
A count of the resources used by both
blocks and subsystems combined.

First argument is a Simulink handle or
pathname for the block or subsystem.
Second argument is resource type.
Resource types are: BRAMs, DSPs,
Registers, or LUTs.

getErrorMessage Returns an error message string if the
call to the class constructor or other
API function had an error.

No argument

highlight In the Simulink model, highlights the
specified block or subsystem with
yellow color and red border.

A Simulink handle or pathname for the
block to highlight.

unhighlight In the Simulink model, unhighlights a
block which is currently highlighted.

(Optional) A Simulink handle or
pathname for the block to unhighlight.

delete This is a destructor of the
xilinx.resource_analyzer class

No argument

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 886Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=886

Table 120: Resource Data in a MATLAB Structure

Field Name Description
BRAMs Count of block RAM resources for a block or subsystem.

BRAMs are counted in this way:

• RAMB36E: 1 BRAM

• RAMB36E: 1 BRAM

• RAMB18E: 0.5 BRAM

• FIFO18E: 0.5 BRAM

Variations of Primitives (for example, RAM36E1 and RAM36E2) are all counted in
the same way.
Total BRAMs = (Number of RAMB36E) + (Number of FIFO36E) + 0.5 (Number of
RAMB18E + Number of FIFO18E)

DSPs Count of DSP48 resources utilized by a block or subsystem.

Registers Count of Flip-Flops and Latches used by the design is reported as the number of
Registers utilized by the design model, a particular block, or a subsystem.

LUTs Count of all LUT type resources utilized by a block or subsystem.

xilinx.resource_analyzer – Construct xilinx.resource_analyzer class object

Syntax

resource_analyzer_obj =
xilinx.resource_analyzer('<name_of_the_model>','<path_to_netlist_directory>'
);

Description

A call to xilinx.resource_analyzer constructor returns object of the class.

The first argument is the name of the Model Composer model. The model must be open before
the class constructor is called.

The second argument is an absolute or relative path to the netlist directory. You must have read
permission to the netlist directory.

To access API functions of the xilinx.resource_analyzer class use the object of the class as
described below. To get more details for a specific API function type the following at the
MATLAB command prompt:

help xilinx.resource_analyzer.<API_function>

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 887Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=887

Example

//Construct class. Must give the model name and absolute or relative path
to the
//target directory

>> res_obj = xilinx.resource_analyzer('test_decimator', './
netlist_for_resource_analysis')

res_obj =

Resources used by: test_decimator
BRAMs => 0.5
DSPs => 1
Registers => 273
LUTs => 153

getVivadoStage – Get Vivado design stage for resource analysis

Syntax

string = resource_analyzer_obj.getVivadoStage();

Description

The returned string is the Vivado design stage after which resource analysis was performed and
data collected in Vivado. The value is either Post Synthesis or Post Implementation.

Example

//Determine Vivado stage when resource data was collected

>> design_stage = res_obj.getVivadoStage()

design_stage =

Post Synthesis

getDevicePart – Get target Xilinx device part name

Syntax

string = resource_analyzer_obj.getDevicePart();

Description

Gets the name of the Xilinx device to which your design is targeted.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 888Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=888

Example

//Get the Xilinx part in which you will implement your design

>> part_name = res_obj.getDevicePart()

part_name =

xc7k325tfbg676-3

getDeviceResource – Get number of resources in target device

Syntax

total_resource_count =
resource_analyzer_obj.getDeviceResource(<resource_type>);

Description

The returned value is the total number of a particular type of resource contained in the Xilinx
device for which you are targeting your design.

The resource_type may be:

• BRAMs - Block RAM and FIFO primitives

• DSPs - DSP48 primitives

• Registers - Registers and Flip-Flops

• LUTs - All LUT types combined

If no resource_type is provided, the command returns a MATLAB structure containing all
device resources.

Example

//Determine the total number of Block RAMs in the Xilinx device

>> total_brams = res_obj.getDeviceResource('BRAMs')

total_brams =

445

//Determine the total number of Block RAMs, DSP blocks, Registers, and LUTs
in the
//Xilinx device

>> total_resource_count = res_obj.getDeviceResource

total_resource_count =

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 889Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=889

 BRAMs: '445'
 DSPs: '840'
Registers: '407600'
 LUTs: '203800'

printDeviceResources – Print number of resources in target device

Syntax

resource_analyzer_obj.printDeviceResources();

Description

Prints the number of all types of resources in the used Xilinx device. The output is printed in the
MATLAB console.

Examples

//Print the number of all types of resources contained in the target Xilinx
device

>> res_obj.printDeviceResources()

BRAMs => 445
DSPs => 840
Registers => 407600
LUTs => 203800

getCount – Get resource utilization for subsystem or block

Syntax

<block_resource_count> =
resource_analyzer_obj.getCount(<blockID>,<resource_type>);

Description

The returned value is the total number of a particular type of resource used in the specified
subsystem or block.

The blockID can be either a Simulink handle or a pathname (a hierarchical name) for the
subsystem or block.

The resource_type may be:

• BRAMs - Block RAM and FIFO primitives

• DSPs - DSP48 primitives

• Registers - Registers and Flip-Flops

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 890Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=890

• LUTs - All LUT types combined

If no resource_type is provided, the command returns a MATLAB structure containing all
device resources.

Example

// Return register resource utilization for Simulink block with pathname
// test_decimator/addr_gen

>> regs_in_block = res_obj.getCount('test_decimator/addr_gen', 'Registers')

ans =

 105
//Return resource utilization for the entire Simulink model

>> total_resource_count = res_obj.getCount()

Resources used by: test_decimator
BRAMs => 0.5
DSPs => 1
Registers => 273
LUTs => 153

print – Prints all resources used by a subsystem or block

Syntax

resource_analyzer_obj.print(<blockID>);

Description

Prints all resources (for all resource types: BRAMs, Registers, DSPs, and LUTs) used by a
subsystem or block, in key-value pair. Resources are printed in the MATLAB console.

If you enter a blockID (which can be either a Simulink handle or a pathname), all resources used
by the specified block or subsystem will be printed in the MATLAB console.

If no blockID argument is provided, all resources used by the top-level design will be printed in
the MATLAB console.

Example

// Print resource utilization for Simulink subsystem with pathname
// test_decimator/addr_gen

>> res_obj.print('test_decimator/subsystem1')
Resources used by: test_decimator/subsystem1
BRAMs => 0.5
DSPs => 1

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 891Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=891

Registers => 49
LUTs => 97

//Print resource utilization for the entire Simulink model

>> res_obj.print()
Resources used by: test_decimator
BRAMs => 0.5
DSPs => 1
Registers => 273
LUTs => 153

getDistribution – Get count of each resource type used by each block and subsystem
under a specified subsystem

Syntax

[<distribution_array>, <self_count>, <total_count>] =
resource_analyzer_obj.getDistribution(<blockId>, <resource_type>)

Description

Returns count for the specified type of resource used by each block and subsystem directly
under the subsystem passed as the argument.

The three returned values are:

• An array of MATLAB structures. Each element in the array is a structure containing the name
of a block or subsystem directly under the subsystem in the argument, with a key-value pair of
the resource type and number of resources used by that sub block or subsystem.

• A count of the resources used by the self (the block or subsystem specified in the argument).

• A count of the resources used by both blocks and subsystems combined.

The blockID can be either a Simulink handle or a pathname (a hierarchical name) for the
subsystem or block. If no blockID is provided, then the command assumes the top-level
module.

The resource_type may be:

• BRAMs - Block RAM and FIFO primitives

• DSPs - DSP48 primitives

• Registers - Registers and Flip-Flops

• LUTs - All LUT types combined

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 892Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=892

Example

// Return Register resource distribution for Simulink block with pathname
// test_decimator. This is top level of the design

>> [res_dist, self, total] = res_obj.getDistribution
('test_decimator','Registers')

res_dist =

1x8 struct array with fields:

 Name
 Hier_Name
 Count

self =

 119

total =

 273
//Return resource utilization for the entire Simulink model

>> total_resource_count = res_obj.getCount()

Resources used by: test_decimator
BRAMs => 0.5
DSPs => 1
Registers => 273
LUTs => 153

getErrorMessage – Get an error message

Syntax

result = resource_analyzer_obj.getErrorMessage();

Description

Returns an error message string if the call to the class constructor or other API function had an
error.

Example

//Determine if there was an error in the xilinx.resource_analyzer
constructor
//or in any of the API functions

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 893Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=893

>> err_msg = res_obj.getErrorMessage()

err_msg =

 ''

highlight – Highlight design subsystems and blocks

Syntax

resource_analyzer_obj.highlight(<blockId>)

Description

This API highlights blocks in the Simulink model. Highlighted blocks in the Model Composer
model are displayed in yellow and outlined in red. Highlighting blocks using this command does
not change the highlighting of other blocks currently highlighted, so more than one block can be
highlighted if you use this function repeatedly.

When you enter a blockID (which can be either a Simulink handle or a pathname) for a block or
subsystem, the specified block or subsystem will be highlighted in the Simulink model. When the
block/subsystem is highlighted then all parent subsystems up to the top level are also
highlighted. When the top level module handle is provided as the highlight function argument
no block is highlighted, but the Simulink model display changes to the top level, showing all
blocks and subsystems at the top level.

Example

//Highlight Simulink block with pathname fixed_point_IIR/IIR Filter
Subsystem/Mult1

>> res_obj.highlight('test_decimator/addr_gen/AddSub1')

Highlighted Model Composer model blocks appear as shown below.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 894Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=894

Figure 447: HDL Model Blocks

unhighlight – Unhighlight design subsystems and blocks

Syntax

resource_analyzer_obj.unhighlight(<blockId>)

Description

This API unhighlights blocks that are currently highlighted in the Simulink model. When they are
unhighlighted, the blocks in the Model Composer model are displayed in their original colors.

If you enter a blockID (which can be either a Simulink handle or a pathname) for a block or
subsystem, the specified block or subsystem will be unhighlighted in the Simulink model. When
the block/subsystem is unhighlighted, all parent subsystems up to the top level are also
unhighlighted.

If no blockID argument is provided, all currently highlighted blocks and subsystems will be
unhighlighted.

Example

//Unhighlight Simulink block with pathname test_decimator/addr_gen/Register4

>> res_obj.unhighlight('test_decimator/addr_gen/Register4')

//Unhighlight all Simulink blocks that are currenly highlighted

>> res_obj.unhighlight();

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 895Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=895

delete – Delete xilinx.resource_analyzer class object

Syntax

resource_analyzer_obj.delete();

Description

This is a destructor for the xilinx.resource_analyzer class.

Example

//Delete xilinx.resource_analyzer object, i.e., res_obj

>> delete(res_obj);

OR

>> res_obj.delete();

xilinx.utilities.importBD
xilinx.utilities.importBD imports a platform framework created in the Vivado IP
integrator into a Model Composer model. The command provides an accelerated way to enter
the Model Composer circuitry into the design. xilinx.utilities.importBD parses the platform
framework for potential Model Composer ports and interfaces and creates a sample stub in the
Simulink model.

Inputs to the xilinx.utilities.importBD command are the Vivado project to be imported and the
name of the model to be created in Model Composer.

Syntax

xilinx.utilities.importBD(vivado_project,matlab_file)

Description

xilinx.utilities.importBD parses the platform framework Vivado project for potential Model
Composer ports and interfaces and creates a sample stub to speed the development of the
Model Composer model.

xilinx.utilities.importBD('<path_to_vivado_project_directory>/
<project_name>.xpr',
'mynewmodel')

xilinx.utilities.importBD('C:\test_impportBD\platform.xpr', 'mynewmodel')

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 896Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=896

xlAddTerms
xlAddTerms is similar to the addterms command in Simulink, in that it adds blocks to terminate or
drive unconnected ports in a model. With xlAddTerms, output ports are terminated with a
Simulink terminator block, and input ports are correctly driven with either a Simulink or HDL
constant block. Additionally HDL gateway blocks can also be conditionally added.

The optionStruct argument can be configured to instruct xlAddTerms to set a block's property
(e.g. set a constant block's value to 5) or to use different source or terminator blocks.

Syntax

xlAddTerms(arg1,optionStruct)

Description

In the following description, 'source block' refers to the block that is used to drive an
unconnected port. And 'term block' refers to the block that is used to terminate an unconnected
port.

xlAddTerms(arg1,optionStruct)

xlAddTerms takes either 1 or 2 arguments. The second argument, optionStruct argument is
optional. The first argument can be the name of a system, or a block list.

Table 121: xlAddTerms Arguments

arg1 Description
gcs A string-handle of the current system

'top/test1' A string-handle of a system called test1. In this case, xlAddTerms is passed a
handle to a system. This will run xlAddTerms on all the blocks under test1,
including all children blocks of Subsystems.

{'top/test1'} A block list of string handles. In this case, xlAddTerms is passed a handle to a
block. This will run xlAddTerms only on the block called test1, and will not
process child blocks.

{'t/b1';'t/b2';'t/b3'} A block list of string handles.

[1;2;3] A block list of numeric handles.

The optionStruct argument is optional, but when included, should be a MATLAB structure. The
following table describes the possible values in the structure. The structure field names (as is true
with all MATLAB structure field names) are case sensitive.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 897Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=897

Table 122: optionStruct Arguments

optionStruct Description
Source xlAddTerms can terminate in-ports using any source block (refer to SourceWith

field). The parameters of the source block can be specified using the Source field
of the optionStruct by passing the parameters as sub-fields of the Source field.
The Source field prompts xlAddTerms to do a series of set_params on the source
block. Since it is possible to change the type of the source block, it is left to the
user to ensure that the parameters here are relevant to the source block in use.
E.g. when a Simulink constant block is used as a Source Block, setting the block's
value to 10 can be done with:

Source.value = '10'

And when a HDL Constant block is used as a Source Block, setting the constant
block to have a value of 10 and of type UFIX_32_0 can be done with:

Source.const = '10';
Source.arith_type='Unsigned';
Source.bin_pt=0;
Source.n_bits=32;

SourceWith The SourceWith field allows the source block to be specified. Default is to use a
constant block. SourceWith has two sub-fields which must be specified.
SourceWithBlock: A string specifying the full path and name of the block to be
used. e.g. 'built-in/Constant' or 'xbsIndex_r3/AddSub'.
SourceWithPort: A string specifying the port number used to connect. E.g. '1' or
'3' Specifying '1' instructs xlAddTerms to connect using port 1, etc.

TermWith The TermWith Field allows the term block to be specified. Default is to use a
Simulink terminator block. TermWith has two sub-fields which must be specified.
TermWithBlock: A string specifying the full path and name of the block to be
used. e.g. 'built-in/Terminator' or 'xbsIndex_r3/AddSub'.
TermWithPort:

A string specifying the port number used to connect. E.g. '1' or '3'

Specifying '1' instructs xlAddTerms to connect using port 1, etc.

UseGatewayIns Instructs xlAddTerms to insert HDL gateway ins when required. The existence of
the field is used to denote insertion of gateway ins. This field must not be
present if gateway ins are not to be used.

GatewayIn If gateway ins are inserted, their parameters can be set using this field, in a
similar way as for Source and Term.
For example,

GatewayIn.arith_type='Unsigned';
GatewayIn.n_bits='32'
GatewayIn.bin_pt='0'

will set the gateway in to output a ufix_32_0.

UseGatewayOuts Instructs xlAddTerms to insert HDL gateway outs when required. The existence
of the field is used to denote insertion of gateway outs. This field must not be
present if gateway outs are not to be used.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 898Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=898

Table 122: optionStruct Arguments (cont'd)

optionStruct Description
GatewayOut If gateway outs are inserted, their parameters can be set using this field, in a

similar way as for Source and Term.
For example,

GatewayOut.arith_type='Unsigned';
GatewayOut.n_bits='32'
Gatewayout.bin_pt='0'

will set the gateway out to take an input of ufix_32_0.

RecurseSubsystems Instructs xlAddTerm to recursively run xlAddTerm under all child Subsystems.
Expects a scalar number, 1 or 0.

Examples

Example 1: Runs xlAddTerms on the current system, with the default parameters: constant
source blocks are used, and gateways are not added. Subsystems are recursively terminated.

xlAddTerms(gcs);

Example 2: runs xlAddTerms on all the blocks in the Subsystem tt./mySubsystem.

xlAddTerms(find_system('tt/mySubsystem','SearchDepth',1));

Example 3: runs xlAddTerms on the current system, setting the source block's constant value to
1, using gateway outs and changing the term block to use a Simulink display block.

s.Source.const = '10';
s.UseGatewayOuts = 1;
s.TermWith.Block = 'built-in/Display';
s.TermWith.Port = '1';
s.RecurseSubsystem = 1;
xlAddTerms(gcs,s);

Remarks

Note that field names are case sensitive. When using the fields 'Source', 'GatewayIn' and
'GatewayOut', users have to ensure that the parameter names to be set are valid.

See Also

xlTBUtils

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 899Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=899

xlConfigureSolver
The xlConfigureSolver function configures the Simulink solver settings of a model to
provide optimal performance during Model Composer simulation.

Syntax

xlConfigureSolver(<model_handle>);

Description

The xlConfigureSolver function configures the model referred to by <model_handle>.
<model_handle> canbe a string or numeric handle to a Simulink model. Library models are not
supported by this function since they have no simulation solver parameters to configure.

For optimal performance during Model Composer simulation, the following Simulink simulation
configuration parameters are set:

'SolverType' = 'Variable-step'
'Solver' = 'VariableStepDiscrete'
'SolverMode' = 'SingleTasking'

xlfda_denominator
The xlfda_denomiator function returns the denominator of the filter object stored in the Xilinx
FDATool block.

Syntax

[den] = xlfda_denominator(FDATool_name);

Description

Returns the denominator of the filter object stored in the Xilinx FDATool block named
FDATool_name, or throws an error if the named block does not exist. The block name can be
local (e.g. 'FDATool'), relative (e.g. '../../FDATool'), or absolute (e.g. 'untitled/foo/bar/FDATool').

See Also

xlfda_numerator, FDATool

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 900Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=900

xlfda_numerator
The xlfda_numerator function returns the numerator of the filter object stored in the Xilinx
FDATool block.

Syntax

[num] = xlfda_numerator(FDATool_name);

Description

Returns the numerator of the filter object stored in the Xilinx FDATool block named
FDATool_name, or throws an error if the named block does not exist. The block name can be
local (e.g. 'FDATool'), relative (e.g. '../../FDATool'), or absolute (e.g. 'untitled/foo/bar/FDATool').

See Also

xlfda_denominator, FDATool

xlGenerateButton
The xlGenerateButton function provides a programmatic way to invoke the System Generator
code generator.

Syntax

status = xlGenerateButton(sysgenblock)

Description

xlGenerateButton invokes the Model Composer code generator and returns a status code.
Invoking xlGenerateButton with a HDL block as an argument is functionally equivalent to
opening the System Generator token, and clicking on the Generate button. The following is list of
possible status codes returned by xlGenerateButton.

Table 123: xlGenerateButton Status Codes

Status Description
1 Canceled

2 Simulation running

3 Check param error

4 Compile/generate netlist error

5 Netlister error

6 Post netlister script error

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 901Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=901

Table 123: xlGenerateButton Status Codes (cont'd)

Status Description
7 Post netlist error

8 Post generation error

9 External view mismatch when importing as a configurable Subsystem

See Also

xlgetparam and xlsetparam, xlgetparams, System Generator block

xlgetparam and xlsetparam
Used to get and set parameter values in the System Generator token. Both functions are similar
to the Simulink get_param and set_param commands and should be used for the System
Generator token instead of the Simulink functions.

Syntax

[value1, value2, ...] = xlgetparam(sysgenblock, param1, param2, ...)

xlsetparam(sysgenblock, param1, value1, param2, value2, ...)

Description

The System Generator token differs from other blocks in one significant manner; multiple sets of
parameters are stored for an instance of a System Generator token. The different sets of
parameters stored correspond to different compilation targets available to the System Generator
token. The 'compilation' parameter is the switch used to toggle between different compilation
targets stored in the System Generator token. In order to get or set parameters associated with a
particular compilation type, it is necessary to first use xlsetparam to change the 'compilation'
parameter to the correct compilation target, before getting or setting further values.

[value1, value2, ...] = xlgetparam(sysgenblock, param1, param2, ...)

The first input argument of xlgetparam should be a handle to the System Generator token block.
Subsequent arguments are taken as names of parameters. The output returned is an array that
matched the number of input parameters. If a requested parameter does not exist, the returned
value of xlgetparam is empty. The xlgetparams function can be used to get all the parameters for
the current compilation target.

xlsetparam(sysgenblock, param1, value1, param2, value2, ...)

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 902Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=902

The xlsetparam function also takes a handle to a System Generator token as the first argument.
Subsequent arguments must be provided in pairs, the first should be the parameter name and the
second the parameter value.

Specifying the Compilation Parameter

The 'compilation' parameter on the System Generator token captures the compilation type
chosen; for example 'HDL Netlist' or 'IP Catalog'. As previously stated, when a compilation type is
changed, the System Generator token will remember all the options chosen for that particular
compilation type. For example, when 'HDL Netlist' is chosen, the corresponding target directory
could be set to 'hdl_dir', but when 'IP Catalog' is chosen, the target directory could point to a
different location, for example 'ip_cat_dir'. Changing the compilation type causes the System
Generator token to recall previous options made for that compilation type. If the compilation
type is selected for the first time, default values are use to populate the rest of the options on
the System Generator token.

When using xlsetparam to set the compilation type of a System Generator token, be aware of the
above behaviour, since the order in which parameters are set is important; be careful to first set a
block's 'compilation' type before setting any other parameters.

When xlsetparam is used to set the 'compilation' parameter, it must be the only parameter that is
being set on that command. For example. the form below is not permitted:

xlsetparam(sysgenblock,'compilation','HDL Netlist', 'synthesis_tool',
'Vivado synthesis')

Examples

Example 1: Changing the synthesis tool used for HDL netlist.

xlsetparam(sysgenblock, 'compilation', 'HDL Netlist');
xlsetparam(sysgenblock, 'synthesis_tool', 'Vivado synthesis')

The first xlsetparam is used to set the compilation target to 'HDL Netlist'. The second xlsetparam
is used to change the synthesis tool used to 'Vivado synthesis'.

Example 2: Getting family and part information.

[fam,part]=xlgetparam(sysgenblock,'xilinxfamily','part')
fam =
Virtex2
part =
xc2v1000

See Also

xlGenerateButton, xlgetparams

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 903Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=903

xlgetparams
The xlgetparams command is used to get all parameter values in a System Generator token
associated with the current compilation type. The xlgetparams command can be used in
conjunction with the xlgetparam and xlsetparam commands to change or retrieve a System
Generator token's parameters.

Syntax

paramstruct = xlgetparams(sysgenblock_handle);

To get the sysgenblock_handle, enter gbc or gcbh at the MATLAB command line.

paramstruct = xlgetparams('chip/ System Generator');
paramstruct = xlgetparams(gcb);
paramstruct = xlgetparams(gcbh);

Description

All the parameters available to a System Generator token block can be retrieved using the
xlgetparams command. For more information regarding the parameters, please refer to the
System Generator token documentation.

paramstruct = xlgetparams(sysgenblock);

The first input argument of xlgetparams should be a handle to the System Generator token. The
function returns a MATLAB structure that lists the parameter value pairs.

The compilation_lut parameter is another structure that lists the other compilation types that are
stored in this System Generator token. Using xlsetparam to set the compilation type allows the
parameters associated with that compilation type to be visible to either xlgetparams or
xlgetparam.

See Also

xlGenerateButton, xlgetparam and xlsetparam

xlGetReOrderedCoeff
The xlGetReOrderedCoeff function provides the re-ordered coefficient set of a FIR Compiler
block.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 904Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=904

Syntax

A = xlGetReOrderedCoeff(new_coeff_set, returnType, block_handle)

Description

Note: All three parameters of this function are required.

new_coeff_set

The new coefficient set that needs to be loaded into an existing FIR Compiler. Must be supplied
to the function in the original order.

block_handle

This is the FIR Compiler block handle in the design. If a FIR Compiler block is selected, then this
block_handle can be specified as gcbh.

returnType

This parameter specifies the re-ordered coefficient or just the reload order information format.
This value can be specified as either 'coeff' or 'index'. A 'coeff' return type will modify the
required coefficient set and provide the re-arranged coefficient set that can be directly supplied
to the FIR compiler block. The 'index' return type provides only the coefficient address vector
using the new_coeff_set that needs to be processed manually.

Examples

Example 1:

If A is a row vector of coefficients, then the coefficients sorted in the reload order can be
obtained as follows:

reload_order_coefficients = xlGetReOrderedCoeff(A,'coeff', gcbh)

In this example, reload_order_coefficients specifies the order in which coefficients contained in A
should be passed to the FIR Compiler through the reload channel.

Example 2:

This example shows how to use an input text file is generated.

reload_order_coefficients =
xlGetReOrderedCoeff(A,'coeff',reload_<version>.txt)

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 905Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=905

Alternatively, the reload address vector can be obtained,

reload_order_coefficients = A(xlGetReOrderedCoeff(A,'index',gcbh))

See Also

FIR Compiler 7.2 block

xlOpenWaveFormData
Allow you to populate saved simulation waveform data into running Waveform Viewer instance.

Syntax

xlOpenWaveFormData('C:/wavedata/model_name.wdb')

How to Use

1. Make sure an instance of Waveform Viewer is opened in the current Model Composer
session.

2. Locate the waveform data file (model_name.wdb) you would like to open.

Note: Waveform data are saved under the wavedata directory.

3. Type xlOpenWaveFormData(‘C:/wavedata/model_name.wdb’) in the MatLab console. Make
sure you enter the absolute path of the waveform data file.

4. Observe the waveform data in Waveform Viewer

See Also

For information on using the Waveform Viewer to develop and troubleshoot your design, see this
link in the Vivado Design Suite User Guide: Logic Simulation (UG900).

xlSetUseHDL
This function sets the 'Use behavioral HDL' option of blocks in a model or Subsystem.

Syntax

xlSetUseHDL(system, mode)

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 906Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xAnalyzingSimulationWaveforms
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=906

Description

The model or system specified in the parameter system is set to either use cores or behavioral
HDL, depending on the mode. Mode is a number, where 0 refers to using cores, and 1 refers to
using behavioral HDL.

Examples

Example 1:

xlSetUseHDL(gcs,0)

This call sets the currently selected system to use cores.

xlTBUtils
The xlTBUtils command provides access to several features that include access to the layout,
rerouting functions and to functions that return selected blocks and lines.

Syntax

xlTBUtils(function, args)
e.g.
xlTBUtils('Layout',struct('verbose',1,'autoroute',0))
xlTBUtils('Layout',optionStruct)
xlTBUtils('Redrawlines',struct('autoroute',0))
xlTBUtils('RedrawLines',optionStruct)
[lines,blks]=xlTBUtils('GetSelected',handle,'all')

Description

xlTBUtils(function [,args])

The function argument specifies the name of the function to execute. Further arguments (if
required) can be tagged on as supplementary arguments to the function call. Note that the
function argument string is not case sensitive. Possible values are enumerated below and
explained further in the relevant subtopics.

Table 124: Function Argument

Function Description
'Layout' Runs the layout algorithm on a model to place and reroute lines on the model.

Layout can be customized using the option structure that is detailed below.

'RedrawLines' Runs the routing algorithm on a model to reroute lines on the model.
RedrawLines can be customized using the option structure detailed below.

'GetSelected' Returns MATLAB Simulink handles to blocks and lines that are selected on the
system in focus

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 907Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=907

'xlTBUtils('Layout',optionStruct)

Automatically places and routes a Simulink model. optionStruct is a MATLAB struct data-type,
that contains the parameters for Layout. The optionStruct argument is optional.

Layout expects circuits to be placed left to right. After placement, Layout uses Simulink to
autoroute the wire connections. Simulink will route avoiding anything visible on screen, including
block labels. Setting "ignore_labels" will 'allow' Simulink to route over labels – after which it is
possible to manually move the labels to a more reasonable location. Note that field names are
case sensitive.

Table 125: optionStruct Argument

Field Names Description [Default values]
x_pitch, y_pitch The gaps (pitch) between block (pixels). x_pitch specifies the amount of spacing

to leave between blocks horizontally, and y_pitch specifies vertical spacing. [30].

x_start, y_start Left (x_start) and top(y_start) margin spacing (pixels). The amount of spacing to
leave on the left and top of a model. [10].

autoroute Turns on Simulink auto-routing of lines. (1 | 0) [1]

ignore_labels When auto-routing lines, Simulink will attempt to auto-route around text labels.
Setting ignore_labels to 1 will minimize text label size during the routing process.

sys Name of the system to layout. [gcs]

verbose When set to 1, a wait bar is shown during the layout process.

xlTBUtils('RedrawLines',optionStruct)

The RedrawLines command will redraw all lines in a Simulink model. If there are lines selected,
only selected lines are redrawn otherwise all lines are redrawn. If a branch is selected, the entire
line is redrawn; main trunk and all other sub-branches.

Table 126: RedrawLines Command

Field Names Description [Default values]
autoroute Turns on Simulink auto-routing of lines. (1 | 0) [1]

sys Name of the system to layout. [gcs]

xlTBUtils('GetSelected',handle,arg)

The GetSelected command returns handles to selected blocks and lines of the system in focus.
The argument handle returns the Simulink model, in which the blocks and lines are selected. You
can also provide the model name in place of the argument handle. The argument arg should be
one of the string values described in the following table.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 908Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=908

Table 127: GetSelected Command

GetSelected Description [Default values]
'all' Gets both selected lines and blocks.

'lines' Gets only selected lines.

'blocks' Gets only selected blocks.

The GetSelected command will return an array with two items, an array of a structure containing
line information (lines) and an array of block handles (blks). If the 'lines' argument is used, blks is
an empty array; similarly when the 'blocks' argument is used, lines is an empty array.

Examples

Example 1a: Performing Layouts

a.verbose = 1;
a.autoroute= 0;
xlTBUtils('Layout',a);

This will invoke the layout tool with verbose on and autoroute off.

Example 1b: Performing Layouts

xlTBUtils('Layout',struct('verbose',1,'autoroute',0));

This will also invoke the layout tool with verbose on and autoroute off.

Example 2: Redrawing lines

xlTBUtils('Redrawlines',struct('autoroute',0));

This will redraw the lines of the current system, with auto-routing off.

Example 3: Getting selected lines and blocks

xlTBUtils('GetSelected',handle,'all')
lines =

1x3 struct array with fields:
 Handle
 Name
 Parent
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 Points
 Branch

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 909Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=909

blks =

1.0e+003 *

3.0320
3.0480

This will return all selected lines and blocks in the current system. In this case, 3 lines and 2
blocks were selected. The first line handle can be accessed using the command

lines(1).Handle

ans =

3.0740e+003

The handle to the first block can be accessed using the command

blks(1)
ans =
3.0320e+003

Remarks

The actions performed by Layout and RedrawLines will not be in the undo stack. Save a copy of
the model before performing the actions, in order to revert to the original model.

This product contains certain software code or other information ("AT&T Software") proprietary
to AT&T Corp. ("AT&T"). The AT&T Software is provided to you "AS IS". YOU ASSUME TOTAL
RESPONSIBILITY AND RISK FOR USE OF THE AT&T SOFTWARE. AT&T DOES NOT MAKE,
AND EXPRESSLY DISCLAIMS, ANY EXPRESS OR IMPLIED WARRANTIES OF ANY KIND
WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WARRANTIES OF TITLE OR
NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS, ANY WARRANTIES
ARISING BY USAGE OF TRADE, COURSE OF DEALING OR COURSE OF PERFORMANCE, OR
ANY WARRANTY THAT THE AT&T SOFTWARE IS "ERROR FREE" OR WILL MEET YOUR
REQUIREMENTS.

Unless you accept a license to use the AT&T Software, you shall not reverse compile, disassemble
or otherwise reverse engineer this product to ascertain the source code for any AT&T Software.

© AT&T Corp. All rights reserved. AT&T is a registered trademark of AT&T Corp.

See Also

xlAddTerms

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 910Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=910

Programmatic Access
Model Composer API for Programmatic Generation
Introduction

A script of Model Composer for programmatic generation (PG API script) is a MATLAB M-
function file that builds a Model Composer Subsystem by instantiating and interconnecting
xBlock, xSignal, xInport, and xOutport objects. It is a programmatic way of constructing
Model Composer diagrams (for example, Subsystems). As is demonstrated below with examples,
the top-level function of a Model Composer programmatic script is its entry point and must be
invoked through an xBlock contructor. Upon constructor exit, MATLAB adds the corresponding
Model Composer Subsystem to the corresponding model. If no model is opened, a new untitled
model is created and the Model Composer Subsystem is inserted into it.

The xBlock constructor creates an xBlock object. The object can be created from a library block
or it can be a Subsystem. An xSignal object corresponds to a wire that connects a source block
to a target. An xInport object instantiates a Simulink Inport and an xOutport object
instantiates a Simulink Outport

The API also has one helper function, xlsub2script which converts a Simulink diagram to a
programmatic generation script.

The API works in three modes: learning mode, production mode, and debugging mode. The learning
mode allows you to type in the commands without having a physical script file. It is very useful
when you learn the API. In this mode, all blocks, ports and Subsystems are added into a Simulink
model named untiled. Please remember to run xBlock without any argument or to close the
untitled model before starting a new learning session. The production mode has an M-function
file and is invoked through the xBlock constructor. You will have a Subsystem generated. The
Subsystem can be either in the existing model or can be inserted in a new model. The debugging
mode works the same as the production mode except that every time a new object is created or
a new connection is established, the Simulink diagram is rerouted. It is very useful when you
debug the script that you set some break points in the script or single step the script.

xBlock

The xBlock constructor creates an xBlock object. The object can be created from a library
block or it can be a Subsystem. The xBlock constructor can be used in three ways:

• to add a leaf block to the current Subsystem,

• to add a Subsystem to the current Subsystem,

• to attach a top-level Subsystem to a model.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 911Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=911

The xBlock takes four arguments and is invoked as follows.

block = xBlock(source, params, inports, outports);

If the source argument is a string, it is expected to be a library block name. If the source block is
in the xbsIndex_r4 library or in the Simulink built-in library, you can use the block name without
the library name. For example, calling xBlock('AddSub', ...) is equivalent to
xBlock('xbsIndex_r4/AddSub',...). For a source block that is not in the xbsIndex_r4
library or built-in library, you need to use the full path, for example, xBlock('xbsTest_r4/
Assert Relation', ...). If the source argument is a function handle, it is interpreted as a
PG API function. If it is a MATLAB struct, it is treated as a configuration struct to specify how to
attach the top-level to a model.

The params argument sets up the parameters. It can be a cell array for position-based binding or
a MATLAB struct for name-based binding. If the source parameter is a block in a library, this
argument must be a cell array. If the source parameter is a function pointer, this argument must
be a cell array.

The inports and outports arguments specify how Subsystem input and output ports are
bound. The binding can be a cell array for position-based binding or a MATLAB struct for name-
based binding. When specifying an inport/outport binding, an element of a cell array can be an
xSignal, an xInport, or an xOutport object. If the port binding argument is a MATLAB
struct, a field of the struct is a port name of the block, a value of the struct is the object that the
port is bound to.

The two port binding arguments are optional. If the arguments are missing when constructing the
xBlock object, the port binding can be specified through the bindPort method of an xBlock
object. The bindPort method is invoked as follows:

block.bindPort(inports, outports)

where inports and outports arguments specify the input and output port binding. In this
case, the object block is create by xBlock with only two arguments, the source and the
parameter binding.

Other xBlock methods include the following.

• names = block.getOutportNames returns a cell array of outport names.

• names = block.getInportNames returns a cell array of inport names.

• nin = block.getNumInports returns the number of inports.

• nout = block.getNumoutports returns the number of outports.

• insigs = block.getInSignals returns a cell array of in coming signals.

• outsigs = block.getOutSignals returns a cell array of out going signals.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 912Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=912

xInport

An xInport object represents a Subsystem input port.

The constructor

port = xInport(port_name)

creates an xInport object with name port_name,

[port1, port2, port3, ...] = xInport(name1, name2, name2, ...)

creates a list of input port with names, and

port = xInport

creates an input port with an automatically generated name.

An xInport object can be passed for port binding.

METHODS

outsigs = port.getOutSignals

returns a cell array of out going signals.

xOutport

An xOutport object represents a Subsystem output port.

The constructor

port = xOutport(port_name)

creates an xOutport object with name port_name,

[port1, port2, port3, ...] = xOutport(name1, name2, name2, ...)

creates a list of output port with names, and

port = xOutport

creates an output port with an automatically generated name.

An xOutport object can be passed for port binding.

METHODS

port.bind(obj)

connects the object to port, where port is an xOutport object and obj is an xSignal or
xInport object.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 913Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=913

insigs = port.getInSignals

returns a cell array of incoming signals.

xSignal

An xSignal represents a signal object that connects a source to targets.

The constructor

sig = xSignal(sig_name)

creates an xSignal object with name sig_name,

[sig1, sig2, sig3, ...] = xSignal(name1, name2, name2, ...)

creates a list of signals with names, and

sig = xSignal

creates an xSignal for which a name is automatically generated.

An xSignal object can be passed for port binding.

METHODS

sig.bind(obj)

connects the obj to sig, where sig is an xSignal object and obj is an xSignal or an
xInport object.

src = sig.getSrc

returns a cell array of the source objects that are driving the xSignal object. The cell array can
have at most one element. If the source is an input port, the source object is an xInport object. If
the source is an output port of a block, the source object is a struct, having two fields block and
port. The block field is an xBlock object and the port field is the port index.

dst = sig.getDst

returns a cell array of the destination objects that the xSignal object is driving. Each element
can be either a struct or an xOutport object. It is defined same as the return value of the
getSrc method.

xlsub2script

xlsub2script is a helper function that converts a Subsystem into the top level of a Sysgen
script.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 914Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=914

xlsub2script(Subsystem) converts the Subsystem into the top-level script. The argument
can also be a model.

By default, the generated M-function file is named after the name of the Subsystem with white
spaces replaced with underscores. Once the xlsub2script finishes, a help message will guide
you how to use the generated script. The main purpose of this xlsub2script function is to
make learning Sysgen Script easier. This is also a nice utility that allows you to construct a
Subsystem using graphic means and then convert the Subsystem to a PG API M-function.

xlsub2script(block), where block is a leaf block, prints out the xBlock call that creates
the block.

The following are the limitations of xlsub2script.

• If the Subsystem has mask initialization code that contains function calls such as gcb,
set_param, get_param, add_block, and so on, the function will error out and you must
modify the mask initialization code to remove those Simulink calls.

• If there is an access to global variables inside the Subsystem, you need add corresponding
mask parameters to the top Subsystem that you run the xlsub2script.

• If a block’s link is broken, that block is skipped.

xlsub2script can also be invoked as the following:

xlsub2script(subsyste, options)

where options is a MATLAB struct. The options struct can have two fields: forcewrite,
and basevars.

If xlsub2script is invoked for the same Subsystem the second time, xlsub2script will try
to overwrite the existing M-function file. By default, xlsub2script will pop up a question
dialog asking whether to overwrite the file or not. If the forcewrite field of the options
argument is set to be true or 1, xlsub2script will overwrite the M-function file without
asking.

Sometimes a Subsystem is depended on some variables in the MATLAB base workspace. In that
case, when you run xlsub2script, you want xlsub2script to pick these base workspace
variables and generate the proper code to handle base workspace variables. The basevars field
of the options argument is for that purpose. If you want xlsub2script to pick up every
variable in the base workspace, you need to set the basevars field to be 'all'. If you want
xlsub2script to selectively pick up some variables, you can set the basevars field to be a
cell array of strings, where each string is a variable name.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 915Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=915

The following are examples of calling xlsub2script with the options argument:

xlsub2script(Subsystem, struct('forcewrite', true));
xlsub2script(Subsystem, struct('forcewrite', true, 'basevars',

 'all'));
options.basevars = {'var1', 'var2', 'var3');
xlsub2script(Subsystem, options);
xlsub2script(Subsystem, struct('basevars', {{'var1', 'var2',

 'var3'}}));

In MATLAB, if the field of a struct is a cell array, when you call the struct() function call, you need
the extra {}.

xBlockHelp

xBlockHelp(<block_name>) prints out the parameter names and the acceptable values for
the corresponding parameters. When you execute xBlockHelp without a parameter, the
available blocks in the xbsIndex_r4 library are listed.

For example, when you execute the following in the MATLAB command line:

 xBlockHelp('AddSub')

You'll get the following table in the transcript:

'xbsIndex_r4/AddSub' Parameter Table

Parameter Acceptable value Type
============ ================== ========
mode 'Addition' String
 'Subtraction'
 'Addition or Subtraction'
------------ ------------------ --------
use_carryin 'off' String
 'on'
------------ ------------------ --------
use_carryout 'off' String
 'on'
------------ ------------------ --------
en 'off' String
 'on'
------------ ------------------ --------
latency An Int value Int
------------ ------------------ --------
precision 'Full' String
 'User Defined'
------------ ------------------ --------
arith_type 'Signed (2's comp)' String
 'Unsigned'
------------ ------------------ --------
n_bits An Int value Int
------------ ------------------ --------
bin_pt An Int value Int

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 916Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=916

------------ ------------------ --------
quantization 'Truncate' String
 'Round (unbiased: +/- Inf)'
------------ ------------------ --------
overflow 'Wrap' String
 'Saturate'
 'Flag as error'
------------ ------------------ --------
use_behavioral_HDL 'off' String
 'on'
------------ ------------------ --------
pipelined 'off' String
 'on'
------------ ------------------ --------
use_rpm 'off' String
 'on'
------------ ------------------ --------

PG API Examples
Hello World

In this example, you will run the PG API in the learning mode where you can type the commands
in the MATLAB® command shell.

1. To start a new learning session, in MATLAB command console, run: xBlock.

2. Type the following three commands in MATLAB command console to create a new
Subsystem named 'Subsystem' inside a new model named 'untitled'.

[a, b] = xInport('a', 'b');
s = xOutport('s');
adder = xBlock('AddSub', struct('latency', 1), {a, b}, {s});

Figure 469: Subsystem Example

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 917Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=917

The above commands create the Subsystem with two Simulink Inports a and b, an adder block
having a latency of one, and a Simulink Outport s. The two Inports source the adder which in
turn sources the Subsystem outport. The AddSub parameter refers to the AddSub block inside
the xbsIndex_r4 library. By default, if the full block path is not specified, xBlock will search
xbsIndex_r4 and built-in libraries in turn. The library must be loaded before using xBlock. So
please use load_system to load the library before invoking xBlock.

TIP: If you type adder  in the MATLAB console, Model Composer will print a brief description of the adder
block to the MATLAB console and the block is highlighted in the Simulink diagram. Similarly, you can type
a , b , and s  to highlight Subsystem Inports and Outports.

MACC

1. Run this example in the learning mode. To start a new learning session, run: xBlock.

2. Type the following commands in the MATLAB console window to create a multiply-
accumulate function in a new Subsystem.

[a, b] = xInport('a', 'b');
mac = xOutport('mac');
m = xSignal;
mult = xBlock('Mult', struct('latency', 0, 'use_behavioral_HDL', 'on'),
{a, b},
{m});
acc = xBlock('Accumulator', struct('rst', 'off', 'use_behavioral_HDL',
'on'), {m},
{mac});

By directing Model Composer to generate behavioral HDL, the two blocks should be packed into
a single DSP48 block. As of this writing, Vivado synthesis only does so if you force the multiplier
block to be combinational.

Figure 470: Forcing a Mult Block

Note: If you do not close the model that is created in example 1, example 2 is created in a model named
untiltled1. Otherwise, a new model, untitled, is created for this example.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 918Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=918

TIP: The PG API provides functions to get information about blocks and signals in the generated
Subsystem. After each of the following commands, observe the output in the MATLAB console and the
effect on the Simulink diagram.

mult_ins = mult.getInSignals
mult_ins{1}
mult_ins{2}
src_a = mult_ins{1}.getSrc
src_a{1}
m_dst = m.getDst
m_dst{1}
m_dst{1}.block

MACC in a Masked Subsystem

If you want a particular Subsystem to be generated by the PG API and pass parameters from the
mask parameters of that Subsystem to PG API, you need to run the PG API in production mode,
where you need to have a physical M-function file and pass that function to the xBlock
constructor.

1. First create the top-level PG API M-function file MACC_sub.m with the following lines.

function MACC_sub(latency, nbits)
[a, b] = xInport('a', 'b');
mac = xOutport('mac');
if latency <= 0
 error('latency must be positive');
elseif latency == 1
 a_in = a; b_in = b;
else
 [a_in, b_in] = xSignal;
 dblock1 = xBlock('Delay', struct('latency', latency - 1,
'reg_retiming', 'on'),
{a}, {a_in});
 block2 = xBlock('Delay', struct('latency', latency - 1,
'reg_retiming', 'on'),
{b}, {b_in});
end
m = xSignal;
mult = xBlock('Mult', struct('latency', 0, 'use_behavioral_HDL', 'on'),
{a_in,
b_in}, {m});
acc = xBlock('Accumulator', struct('rst', 'off', 'n_bits', nbits,
'use_behavioral_HDL', 'on'), {m}, {mac});

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 919Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=919

Figure 471: Top-Level PG API M-Function File

2. To mask the Subsystem defined by the script, add two mask parameters latency and nbits.

Figure 472: Adding Latency Parameter

3. Then put the following lines to the mask initialization of the Subsystem.

config.source = str2func('MACC_sub');
config.toplevel = gcb;
xBlock(config, {latency, nbits});

In the production mode, the first argument of the xBlock constructor is a MATLAB struct for
configuration, which must have a source field and a toplevel field. The source field is a
function pointer pointing to the M-function and the toplevel is a string specifying the
Simulink Subsystem. If the top-level field is 1, an untitled model is created and a Subsystem
inside that model is created.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 920Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=920

Figure 473: Adding nbits Parameter

Alternatively you can use the MATLAB struct call to create the toplevel configuration:

xBlock(struct('source', str2func(MACC_sub), 'toplevel', gcb),{latency,

 nbits});

Then click OK.

You'll get the following Subsystem.

Figure 474: Creating Toplevel Configuration

4. Set the mask parameters as shown in the following figure, then click OK:

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 921Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=921

Figure 475: Adding Mask Parameters

The following diagram is generated:

Figure 476: Generated Diagram

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 922Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=922

TIP: Open MACC_sub.m  in the MATLAB editor to debug the function. By default the xBlock 
constructor will do an auto layout in the end. If you want to see the auto layout every time a block is
added, invoke the toplevel xBlock  as the following:

config.source = str2func('MACC_sub');
config.toplevel = gcb;
config.debug = 1;
xBlock(config, {latency, nbits});

By setting the debug field of the configuration struct to be 1, you run the PG API in debug mode
where every action will trigger an auto layout.

TIP: Most often you only want to re-generate the Subsystem if needed. The xBlock  constructor has a
caching mechanism. You can specify the list of dependent files in a cell array, and set the depend  field of
the toplevel configuration with this list. If any file in the 'depend' list is changed, or the argument list that
passed to the toplevel function is changed, the Subsystem is re-generated. If you want to have the caching
capability for the MACC_sub, invoke the toplevel xBlock as the following:

config.source = str2func('MACC_sub');
config.toplevel = gcb;
config.depend = {'MACC_sub.m'};
xBlock(config, {latency, nbits});

The depend field of the configuration struct is a cell array. Each element of the array is a file
name. You can put a p-file name or an M-file name. You can also put a name without a suffix. The
xBlock will use the first in the path.

PG API Error/Warning Handling and Messages
xBlock Error Messages

Condition Error Message(s)
When calling xBlock(NoSubSourceBlock,) and the
source block does not exist

Source block NoSubSourceBlock cannot be found.

When calling xBlock(sourceblock,
parameterBinding), and the parameters are illegal,
xBlock will report the Illegal parameterization error. For
example, xBlock(‘AddSub’, struct(‘latency’,
-1));

Illegal parameterization: Latency
Latency is set to a value of -1, but the value must be greater
than or equal to 0

When the input port binding list contains objects other than
xSignal or xInport:

Only objects of xInport or xSignal can appear in inport
binding list.

When the output port binding list contains objects other
than xSignal or xOutport:

Only objects of xOutport or xSignal can appear in outport
binding list.

If the first argument of xBlock is a function pointer, the
2nd argument of xBlock is expected to be a cell array,
otherwise, an error is thrown:

Cell array is expected for the second argument of the xBlock
call

If the source configuration struct has toplevel defined, it
must point to a Simulink® Subsystem and it must be a char
array, otherwise, an error is thrown:

Top level must be a char array

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 923Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=923

Condition Error Message(s)
If an object in the outport binding list has already been
driven by something, for example, if you try to have two
driving sources, an error is thrown.

Source of xSignal object already exists

xInport Error Messages

Condition Error Message(s)
If you try to create an xInport object with the same name
the second time, an error is thrown. For example, if you call
p = xInport(‘a’, ‘a’).

A new block named 'untitled/Subsystem/a' cannot be
added.

xOutport Error Messages

Condition Error Message(s)
If you try to create an xOutport object with the same name
the second time, an error is thrown. For example, if you call
p = xOutport(‘a’, ‘a’).

A new block named 'untitled/Subsystem/a' cannot be
added.

If you try to bind an xOutport object twice, an error is
thrown. For example, the following sequence of calls will
cause an error: [a, b] = xInport(‘a’, ‘b’); c = xOutport(‘c’);
c.bind(a); c.bind(b);

The destination port already has a line connection.

xSignal Error Messages

Condition Error Message(s)
If you try to bind an xSignal object with two sources, an
error is thrown. For example, the following sequence of calls
will cause an error: [a, b] = xInport(‘a’, ‘b’); sig = xSignal;
sig.bind(a); sig.bind(b);

Source of xSignal object already exists.

xsub2script Error Messages

Condition Error Message(s)
xlsub2script is invoked without any argument. An argument is expected for xlsub2script

The first argument is not a Subsystem or the model is not
opened.

The first argument must be a model, Subsystem, or a block.
Please make sure the model is opened or the argument is a
valid string for a model or a block.

A Subsystem has Simulink function calls in its mask
initialization code.

Subsystem has Simulink function calls, such as gcb,
get_param, set_param, add_block. Please remove these calls
and run xlsub2script again or you can pick a different
Subsystem to run xlsub2script.

The Subsystem has Goto blocks. You have the following Goto blocks, please modify the
model to remove them and run xlsub2script again.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 924Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=924

M-Code Access to Hardware Co-Simulation
HDL Hardware co-simulation in Model Composer brings on-chip acceleration and verification
capabilities into the Simulink simulation environment. In the typical Model Composer flow, a
Model Composer model is first compiled for a hardware co-simulation platform, during which a
hardware implementation (bitstream) of the design is generated and associated to a hardware co-
simulation block. The block is inserted into a Simulink model and its ports are connected with
appropriate source and sink blocks. The whole model is simulated while the compiled Model
Composer design is executed on an FPGA.

Alternatively, it is possible to programmatically control the hardware created through the Model
Composer HDL hardware co-simulation flow using MATLAB M-code (M-Hwcosim). The M-
Hwcosim interfaces allow for MATLAB objects that correspond to the hardware to be created in
pure M-code, independent of the Simulink framework. These objects can then be used to read
and write data into hardware.

This capability is useful for providing a scripting interface to hardware co-simulation, allowing for
the hardware to be used in a scripted test bench or deployed as hardware acceleration in M-
code. Apart from supporting the scheduling semantics of a Model Composer simulation, M-
Hwcosim also gives the flexibility for any arbitrary schedule to be used. This flexibility can be
exploited to improve the performance of a simulation, if the user has apriori knowledge of how
the design works. Additionally, the M-Hwcosim objects provide accessibility to the hardware
from the MATLAB console, allowing for the hardware internal state to be introspected
interactively.

Compiling Hardware for Use with M-Hwcosim

Compiling hardware for use in M-Hwcosim follows the same flow as the typical Model Composer
HDL hardware co-simulation flow. You start off with a Model Composer model in Simulink, select
a hardware co-simulation target in the System Generator token and click Generate. At the end of
the generation, a hardware co-simulation library is created.

Among other files in the netlist directory, you can find a bit file and an hwc file. The bit file
corresponds to the FPGA implementation, and the hwc file contains information required for M-
Hwcosim. Both bit file and hwc file are paired by name, e.g. mydesign_cw.bit and
mydesign_cw.hwc.

The hwc file specifies additional meta information for describing the design and the chosen
hardware co-simulation interface. With the meta information, a hardware co-simulation instance
can be instantiated using M-Hwcosim, through which you can interact with the co-simulation
engine.

M-Hwcosim inherits the same concepts of ports and fixed point notations as found in the
existing co-simulation block. Every design exposes its top-level ports for external access.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 925Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=925

M-Hwcosim Simulation Semantics

The simulation semantics for M-Hwcosim differs from that used during hardware co-simulation
in a Model Composer block diagram; the M-Hwcosim simulation semantics is more flexible and is
capable of emulating the simulation semantics used in the block-based hardware co-simulation.

In the block-based hardware co-simulation, a rigid simulation semantic is imposed; before
advancing a clock cycle, all the input ports of the hardware co-simulation are written to. Next all
the output ports are read and the clock is advanced. In M-Hwcosim the scheduling of when ports
are read or written to, is left to the user. For instance it would be possible to create a program
that would only write data to certain ports on every other cycle, or to only read the outputs after
a certain number of clock cycles. This flexibility allows users to optimize the transfer of data for
better performance.

Data Representation

M-Hwcosim uses fixed point data types internally, while it consumes and produces double
precision floating point values to external entities. All data samples passing through a port are
fixed point numbers. Each sample has a preset data width and an implicit binary point position
that are fixed at the compilation time. Data conversions (from double precision to fixed point)
happen on the boundary of M-Hwcosim. In the current implementation, quantization of the input
data is handled by rounding, and overflow is handled by saturation.

Interfacing to Hardware from M-Code

When a model has been compiled for hardware co-simulation, the generated bitstream can be
used in both a model-based Simulink flow, or in M-code executed in MATLAB. The general
sequence of operations to access a bitstream in hardware typically follows the sequence
described below.

1. Configure the hardware co-simulation interface. Note that the hardware co-simulation
configuration is persistent and is saved in the hwc file. If the co-simulation interface is not
changed, there is no need to re-run this step.

2. Create a M-Hwcosim instance for a particular design.

3. Open the M-Hwcosim interface.

4. Repeatedly run the following sub-steps until the simulation ends.

5. Write simulation data to input ports.

6. Read simulation data from output ports.

7. Advance the design clock by one cycle.

8. Close the M-Hwcosim interface.

9. Release the M-Hwcosim instance.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 926Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=926

Automatic Generation of M-Hwcosim Testbench

M-Hwcosim enables the test bench generation for hardware co-simulation. When the Create
testbench option is checked in the System Generator token, the hardware co-simulation
compilation flow generates an M-code script (<design>_hwcosim_test.m) and golden test
data files (<design>_<port>_hwcosim_test.dat) for each gateway based on the Simulink
simulation. The M-code script uses the M-Hwcosim API to implement a test bench that simulates
the design in hardware and verifies the results against the golden test data. Any simulation
mismatch is reported in a result file (<design>_hwcosim_test.results).

As shown below in the Example, the test bench code generated is easily readable and can be
used as a basis for your own simulation code.

 function multi_rates_cw_hwcosim_test
 try
 % Define the number of hardware cycles for the simulation.
 ncycles = 10;

 % Load input and output test reference data.
 testdata_in2 = load('multi_rates_cw_in2_hwcosim_test.dat');
 testdata_in3 = load('multi_rates_cw_in3_hwcosim_test.dat');
 testdata_in7 = load('multi_rates_cw_in7_hwcosim_test.dat');
 testdata_pb00 =
load('multi_rates_cw_pb00_hwcosim_test.dat');
 testdata_pb01 =
load('multi_rates_cw_pb01_hwcosim_test.dat');
 testdata_pb02 =
load('multi_rates_cw_pb02_hwcosim_test.dat');
 testdata_pb03 =
load('multi_rates_cw_pb03_hwcosim_test.dat');
 testdata_pb04 =
load('multi_rates_cw_pb04_hwcosim_test.dat');

 % Pre-allocate memory for test results.
 result_pb00 = zeros(size(testdata_pb00));
 result_pb01 = zeros(size(testdata_pb01));
 result_pb02 = zeros(size(testdata_pb02));
 result_pb03 = zeros(size(testdata_pb03));
 result_pb04 = zeros(size(testdata_pb04));

 % Initialize sample index counter for each sample period to
be
 % scheduled.
 insp_2 = 1;
 insp_3 = 1;
 insp_7 = 1;
 outsp_1 = 1;
 outsp_2 = 1;
 outsp_3 = 1;
 outsp_7 = 1;

 % Define hardware co-simulation project file.
 project = 'multi_rates_cw.hwc';

 % Create a hardware co-simulation instance.
 h = Hwcosim(project);

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 927Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=927

 % Open the co-simulation interface and configure the
hardware.
 try
 open(h);
 catch
 % If an error occurs, launch the configuration GUI for the
user
 % to change interface settings, and then retry the process
again.
 release(h);
 drawnow;
 h = Hwcosim(project);
 open(h);
 end

 % Simulate for the specified number of cycles.
 for i = 0:(ncycles-1)

 % Write data to input ports based their sample period.
 if mod(i, 2) == 0
 h('in2') = testdata_in2(insp_2);
 insp_2 = insp_2 + 1;
 end
 if mod(i, 3) == 0
 h('in3') = testdata_in3(insp_3);
 insp_3 = insp_3 + 1;
 end
 if mod(i, 7) == 0
 h('in7') = testdata_in7(insp_7);
 insp_7 = insp_7 + 1;
 end

 % Read data from output ports based their sample period.
 result_pb00(outsp_1) = h('pb00');
 result_pb04(outsp_1) = h('pb04');
 outsp_1 = outsp_1 + 1;
 if mod(i, 2) == 0
 result_pb01(outsp_2) = h('pb01');
 outsp_2 = outsp_2 + 1;
 end
 if mod(i, 3) == 0
 result_pb02(outsp_3) = h('pb02');
 outsp_3 = outsp_3 + 1;
 end
 if mod(i, 7) == 0
 result_pb03(outsp_7) = h('pb03');
 outsp_7 = outsp_7 + 1;
 end

 % Advance the hardware clock for one cycle.
 run(h);

 end

 % Release the hardware co-simulation instance.
 release(h);

 % Check simulation result for each output port.
 logfile = 'multi_rates_cw_hwcosim_test.results';
 logfd = fopen(logfile, 'w');
 sim_ok = true;
 sim_ok = sim_ok & check_result(logfd, 'pb00',

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 928Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=928

testdata_pb00, result_pb00);
 sim_ok = sim_ok & check_result(logfd, 'pb01',
testdata_pb01, result_pb01);
 sim_ok = sim_ok & check_result(logfd, 'pb02',
testdata_pb02, result_pb02);
 sim_ok = sim_ok & check_result(logfd, 'pb03',
testdata_pb03, result_pb03);
 sim_ok = sim_ok & check_result(logfd, 'pb04',
testdata_pb04, result_pb04);
 fclose(logfd);
 if ~sim_ok
 error('Found errors in simulation results. Please refer to
''%s'' for details.',
 logfile);
 end

 catch
 err = lasterr;
 try release(h); end
 error('Error running hardware co-simulation testbench. %s',
err);
 end

%---

 function ok = check_result(fd, portname, expected, actual)
 ok = false;

 fprintf(fd, ['\n' repmat('=', 1, 95), '\n']);
 fprintf(fd, 'Output: %s\n\n', portname);

 % Check the number of data values.
 nvals_expected = numel(expected);
 nvals_actual = numel(actual);
 if nvals_expected ~= nvals_actual
 fprintf(fd, ['The number of simulation output values (%d)
differs ' ...
 'from the number of reference values (%d).\n'], ...
 nvals_actual, nvals_expected);
 return;
 end

 % Check for simulation mismatches.
 mismatches = find(expected ~= actual);
 num_mismatches = numel(mismatches);
 if num_mismatches > 0
 fprintf(fd, 'Number of simulation mismatches = %d\n',
num_mismatches);
 fprintf(fd, '\n');
 fprintf(fd, 'Simulation mismatches:\n');
 fprintf(fd, '----------------------\n');
 fprintf(fd, '%10s %40s %40s\n', 'Cycle', 'Expected values',
'Actual values');
 fprintf(fd, '%10d %40.16f %40.16f\n', ...
 [mismatches-1; expected(mismatches); actual(mismatches)]);
 return;
 end

 ok = true;
 fprintf(fd, 'Simulation OK\n');

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 929Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=929

Resource Management

M-Hwcosim manages resources that it holds for a hardware co-simulation instance. It releases
the held resources upon the invocation of the release instruction or when MATLAB exits.
However, it is recommended to perform an explicit cleanup of resources when the simulation
finishes or throws an error. To allow proper cleanup in case of errors, it is suggested to enclose
M-Hwcosim instructions in a MATLAB try-catch block as illustrated below.

 try
 % M-Hwcosim instructions here
 catch
 err = lasterror;
 % Release any Hwcosim instances
 try release(hwcosim_instance); end
 rethrow(err);
 end

The following command can be used to release all hardware co-simulation instances.

 xlHwcosim('release'); % Release all Hwcosim instances

M-Hwcosim MATLAB Class

The Hwcosim MATLAB class provides a higher level abstraction of the hardware co-simulation
engine. Each instantiated Hwcosim object represents a hardware co-simulation instance. It
encapsulates the properties, such as the unique identifier, associated with the instance. Most of
the instruction invocations take the Hwcosim object as an input argument. For further
convenience, alternative shorthand is provided for certain operations.

Actions Syntax
Constructor h = Hwcosim(project)

Destructor release(h)

Open hardware open(h)

Close hardware close(h)

Write data write(h, 'portName', inData);

Read data outData = read(h, 'portName');

Run run(h);

Port information portinfo(h);

Set property set(h, 'propertyName', propertyValue);

Get property propertyValue = get(h, 'propertyName');

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 930Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=930

Constructor

Syntax

h = Hwcosim(project);

Description

Creates an Hwcosim instance. Note that an instance is a reference to the hardware co-simulation
project and does not signify an explicit link to hardware; creating a Hwcosim object informs the
Hwcosim engine where to locate the FPGA bitstream, it does not download the bitstream into
the FPGA. The bitstream is only downloaded to the hardware after an open command is issued.

The project argument should point to the hwc file that describes the hardware co-simulation.

Creating the Hwcosim object will list all input and output ports. The example below shows the
output of a call to the Hwcosim constructor, displaying the ID of the object and a list of all the
input and output gateways/ports.

>> h = Hwcosim(p)
System Generator Hardware Co-simulation Object
 id: 30247
 inports:
 gateway_in
 gateway_in2
 outports:
 gateway_out

Destructor

Syntax

release(h);

Description

Releases the resources used by the Hwcosim object h. If a link to hardware is still open, release
will first close the hardware.

Open Hardware

Syntax

open(h);

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 931Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=931

Description

Opens the connection between the host PC and the FPGA. Before this function can be called,
the hardware co-simulation interface must be configured. The argument, h, is a handle to an
Hwcosim object.

Close hardware

Syntax

close(h);

Description

Closes the connection between the host PC and the FPGA. The argument, h, is a handle to an
Hwcosim object.

Write data

Syntax

h('portName') = inData; %If inData is array, results in burst write.

h('portName') = [1 2 3 4];

write(h, 'portName', inData);

write(h, 'portName', [1 2 3 4]); %burst mode

Description

Ports are referenced by their legalized names. Name legalization is a requirement for VHDL and
Verilog synthesis, and converts names into all lower-case, replaces white space with underscores,
and adds unique suffixes to avoid namespace collisions. To find out what the legalized input and
output port names are, run the helper command portinfo(h), or see the output of Hwcosim
at the time of instance creation.

inData is the data to be written to the port. Normal single writes are performed if inData is a
scalar value. If burst mode is enabled and inData is a 1xn array, it will be interpreted as a
timeseries and written to the port via burst data transfer.

Read data

Syntax

outData = h('portName');

outData = h('portName', 25); %burst mode

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 932Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=932

outData = read(h, 'portName');

outData = read(h, 'portName', 25); %burst

Description

Ports are referenced by their legalized names (see previous class above).

If burst mode is enabled, and depending on whether the read command has 3 or 4 parameters (2
or 3 parameters in the case of a subscript reference h('portName', ...)), outData will be
assigned a scalar or a 1xn array. If an array, the data is the result of a burst data transfer.

Run

Syntax

run(h);

run(h, n);

run(h, inf); %start free-running clock

run(h, 0); %stop free-running clock

Description

When the hardware co-simulation object is configured to run in single-step mode, the run
command is used to advance the clock. run(h) will advance the clock by one cycle. run(h,n) will
advance the clock by n cycles.

The run command is also used to turn on (and off) free-running clock mode: run(h, inf) will
start the free-running clock and run(h, 0) will stop it.

A read of an output port will need to be preceded either by a 'dummy' run command or by a
write, in order to force a synchronization of the read cache with the hardware.

Port Information

Syntax

portinfo(h);

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 933Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=933

Description

This method will return a MATLAB struct array with fields inports and outports, which
themselves are struct arrays holding all input and output ports, respectively, again represented as
struct arrays. The fieldnames of the individual port structs are the legalized portnames
themselves, so you may obtain a cell array of input port names suitable for Hwcosim write
commands by issuing these commands:

a = portinfo(h);
inports = fieldnames(a.inports);

You can issue a similar series of commands for output ports (outports).

Additional information contained in the port structs are simulink_name, which provides the
fully hierarchical Simulink name including spaces and line breaks, rate, which contains the
signal's rate period with respect to the DUT clock, type, which holds the Model Composer data
type information, and, if burst mode is enabled, fifo_depth, indicating the maximum size of
data bursts that can be sent to Hardware in a batch.

Set property

Syntax

set(h, 'propertyName', propertyValue);

Description

The set method sets or changes any of the contents of the internal properties table of the
Hwcosim instance h. It is required that h already exists before calling this method.

Examples

set(h, 'booleanProperty', logical(0));

set(h, 'integerProperty', int32(12345));

set(h, 'doubleProperty', pi);

set(h, 'stringProperty', 'Rosebud!');

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 934Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=934

Get property

Syntax

The get property method returns the value of any of the contents of the internal properties table
in the Hwcosim instance h, referenced by the propertyName key. It is required that h already
exists before calling this method. If the propertyName key does not exist in h, the method
throws an exception and prints an error message.

Examples

bool_val = get(h, 'booleanProperty');

int_val = get(h, 'integerProperty');

double = get(h, 'doubleProperty');

str_val = get(h, 'stringProperty');

M-Hwcosim Utility Functions

xlHwcosim

Syntax

xlHwcosim('release');

Description

When M-Hwcosim objects are created global system resources are used to register each of these
objects. These objects are typically freed when a release command is called on the object.
xlHwcosim provides an easy way to release all resources used by M-Hwcosim in the event of an
unexpected error. The release functions for each of the objects should be used if possible
because the xlHwcosim call release the resources for all instances of a particular type of object.

Example

xlHwcosim('release') %release all instances of Hwcosim objects.

Appendix A: Model Composer Utilities and Programmatic Access

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 935Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=935

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix B: Additional Resources and Legal Notices

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 936Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=936

1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

2. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

3. UltraFast Vivado HLS Methodology Guide (UG1197)

4. Vivado Design Suite User Guide: Designing with IP (UG896)

5. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

6. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

7. Vivado Design Suite Tutorial: Model-Based DSP Design Using System Generator (UG948)

8. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

9. Vivado Design Suite User Guide: Design Flows Overview (UG892)

10. ISE to Vivado Design Suite Migration Guide (UG911)

11. Vivado Design Suite User Guide: Using Constraints (UG903)

12. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

13. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

14. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

15. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

16. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)

17. Vivado® Design Suite Documentation

18. Mathworks® Simulink® Documentation

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials

Appendix B: Additional Resources and Legal Notices

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 937Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug948-vivado-sysgen-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.mathworks.com/help/simulink/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=937

without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2017-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

Appendix B: Additional Resources and Legal Notices

UG1483 (v2021.1) June 16, 2021 www.xilinx.com
Vitis Model Composer User Guide 938Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1483&Title=Vitis%20Model%20Composer%20User%20Guide&releaseVersion=2021.1&docPage=938

	Vitis Model Composer User Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Navigating Content by Design Process
	Introduction
	What's New and Limitations
	Installation
	Supported MATLAB Versions and Operating Systems

	Ch. 2: HDL Library
	Introduction
	FIR Filter Generation
	Support for MATLAB
	Hardware Co-Simulation
	System Integration Platform
	Post-Installation Tasks
	Compiling Xilinx HDL Libraries
	Managing the Model Composer HDL block Cache
	Specifying Board Support in Model Composer HDL Blockset
	Hardware Co-Simulation Support
	UNC Paths Not Supported

	Hardware Design Using HDL Library
	Design Flows Using Model Composer
	Algorithm Exploration
	Implementing Part of a Larger Design
	Implementing a Complete Design
	Note to DSP Engineers
	Note to Hardware Engineers

	System-Level Modeling in Model Composer
	Model Composer HDL Blocksets
	Xilinx Commands that Facilitate Rapid Model Creation and Analysis
	Signal Types
	Floating-Point Data Type
	AXI Signal Groups
	Bit-True and Cycle-True Modeling
	Timing and Clocking
	Synchronization Mechanisms
	Block Masks and Parameter Passing

	Automatic Code Generation
	Compiling and Simulating Using the System Generator Token
	Compilation Results
	Using the Constraints File
	Multicycle Path Constraints
	IOB Timing and Placement Constraints
	The "Clock Enables" Multirate Implementation
	IP Instance Caching

	Vivado Project
	HDL Testbench

	Compiling MATLAB into an FPGA
	Simple Selector
	Simple Arithmetic Operations
	Complex Multiplier with Latency
	Shift Operations
	Passing Parameters into the MCode Block
	Optional Input Ports
	Finite State Machines
	Parameterizable Accumulator
	FIR Example and System Verification
	RPN Calculator
	Example of disp Function

	Importing a Model Composer HDL Design into a Bigger System
	HDL Netlist Compilation
	Integration Design Rules

	Configurable Subsystems and Model Composer
	Defining a Configurable Subsystem
	Using a Configurable Subsystem
	Deleting a Block from a Configurable Subsystem
	Adding a Block to a Configurable Subsystem

	Notes for Higher Performance FPGA Design
	Review the Hardware Notes Included with Each Block Dialog Box
	Register the Inputs and Outputs of Your Design
	Insert Pipeline Registers
	Use Saturation Arithmetic and Rounding Only When Necessary
	Set the Data Rate Option on All Gateway Blocks
	Pipeline for Maximum Performance
	Other Things to Try

	Using FDATool in Digital Filter Applications
	Multiple Independent Clocks Hardware Design
	Grouping Blocks within a Clock Domain
	HDL Blocks used to Create Asynchronous Clock Domains
	Configuring the Top-Level System Generator Token
	Clock Propagation Algorithm
	Debugging Clock Propagation
	Simulation
	Debugging Multiple Clock Domain Signals
	Code Generation
	Known Issues

	AXI Interface
	AXI4-Stream Support in Model Composer
	AXI4-Stream Blocks in Model Composer

	AXI4-Lite Slave Interface Generation
	AXI4-Lite Interface Synthesis in Model Composer
	Configuring the Design for an AXI4-Lite Interface
	Packaging the Design for Use in Vivado IP Integrator
	Description of the Generated Results
	Mapping to AXI4-Lite Interfaces
	Managing Multiple AXI4-Lite Interfaces
	Address Generation
	Features of the Vivado IDE Example Project
	Software Drivers
	Known Issue in AXI4-Lite Interface Generation

	Tailor Fitting a Platform Based Accelerator Design in Model Composer
	Step 1: Create a Connectivity Platform in Vivado as an IP Integrator Block Diagram (.bd)
	Step 2: Parse the BD File and Import Un-Located Ports and Interfaces into Model Composer
	Step 3: In Model Composer, Connect Logic to the BD Socket
	Step 4: Compile the Accelerator Model (IP Catalog Flow) to Create a Complete Design

	Using Super Sample Rate (SSR) Blocks in Model Composer

	Performing Analysis in Model Composer
	Timing Analysis in Model Composer
	Performing Timing Analysis
	Cross Probing from the Timing Analysis Results to the Model
	Accessing Existing Timing Analysis Results
	Recommendations For Troubleshooting Timing Violations

	Resource Analysis in Model Composer
	Performing Resource Analysis
	Cross Probing from the Resource Analysis Results to the Model
	Accessing Existing Resource Analysis Results
	Recommendations for Optimizing Resource Analysis

	Using Hardware Co-Simulation
	Compiling a Model for Hardware Co-Simulation
	Performing Standard Hardware Co-Simulation
	Performing Burst Mode Hardware Co-Simulation
	M-Code Access to Hardware Co-Simulation
	Setting Up Your Hardware Board
	Setting Up a KC705 Board for JTAG Hardware Co-Simulation

	Hardware Co-Simulation Blocks
	Block Parameters for the JTAG Hardware Co-Simulation Block

	Hardware Co-Simulation Clocking
	Clocking Modes

	Burst Data Transfers for Hardware Co-Simulation
	Hardware Co-Simulation Overview
	Burst Data Transfer Mode
	How to Use Burst Data Transfer Mode

	Importing HDL Modules
	Black Box HDL Requirements and Restrictions
	Black Box Configuration M-Function
	Language Selection
	Specifying the Top-Level Entity
	Defining Port Blocks
	Adding New Ports
	Obtaining a Port Object
	Configuring Port Types
	Configuring Bi-Directional Ports for Simulation
	Configuring Port Sample Rates
	Dynamic Output Ports

	Black Box Clocking
	Combinational Paths
	Specifying VHDL Generics and Verilog Parameters
	Black Box VHDL Library Support
	Error Checking
	Black Box API
	SysgenBlockDescriptor Member Variables
	SysgenBlockDescriptor Methods
	SysgenPortDescriptor Member Variables
	SysgenPortDescriptor Methods

	Multiple Independent Clock Support on Black Box
	Design Rule Checks on Port Connection
	Configuring Port Sample Rates
	Black Box Clocking

	HDL Co-Simulation
	Configuring the HDL Simulator
	Co-Simulating Multiple Black Boxes

	Black Box Configuration Wizard
	Using the Configuration Wizard
	Configuration Wizard Fine Points

	Compilation Types for HDL Library designs
	HDL Netlist Compilation
	Hardware Co-Simulation Compilation
	IP Catalog Compilation
	The IP Catalog Flow
	Including a Testbench with the IP Module
	Adding an Interface Document to the IP Module
	Adding the Generated IP to the Vivado IP Catalog

	Synthesized Checkpoint Compilation
	Creating Your Own Custom Compilation Target

	Creating Custom Compilation Targets
	xilinx_compilation Base Class
	Creating a New Compilation Target
	Running the Helper Function
	Modifying a Compilation Target
	Adding an Existing Compilation Target
	Saving a Custom Compilation Target
	Removing a Custom Compilation Target

	Base Class Properties and APIs
	System Generator Token-Related Properties and APIs
	Vivado Project-Related Properties
	Vivado IDE Project Generation-Related Functions
	Design Info

	Examples of Creating Custom Compilation Targets
	Example 1: Creating an Implementation Target
	Example 2: Creating a Bitstream Target

	GUI Utilities for HDL Blocksets
	Xilinx BlockAdd
	How to Invoke
	How to Use

	Xilinx Tools > Save as blockAdd default
	How to Use
	How to Restore the Block Default

	Xilinx BlockConnect
	Simple Connections
	Smart Connections

	Xilinx Tools > Terminate
	How to Use
	Verifying Input Port Data Type Requirements

	Xilinx Waveform Viewer
	Waveform Viewer Files
	Opening the Xilinx Waveform Viewer
	Adding Signals to the Waveform Viewer Display
	Deleting Signals From the Waveform Viewer Display
	Cross Probing Between the Waveform Viewer and the Model
	Clearing the Waveform Viewer Display
	Customizing the Display and Analyzing Waveforms
	Tips for Working in the Waveform Viewer
	Closing the Waveform Viewer

	Ch. 3: HLS Library
	Introduction
	Creating a Model Composer Design
	Creating a New Model
	Adding Blocks to a Model
	Connecting Blocks
	Working with Data Types
	Working with Fixed-Point Data Types
	Working with Half Data Types
	Working with Data Type Expression
	Managing Overflow
	Saturate on Overflow
	Configuring Overflow Warnings

	Creating a Top-Level Subsystem Module

	Importing C/C++ Code as Custom Blocks
	Introduction
	Using the xmcImportFunction Command
	Importing C/C++ into Model Composer
	Using Complex Types

	Defining Blocks Using Function Templates
	Function Templates for Data Types
	Defining Customization Parameters

	Pragmas for xmcImportFunction
	XMC SUPPORTS_STREAMING
	XMC BUFFER_DEPTH
	XMC THROUGHPUT_FACTOR

	Adding Your Library to Library Browser
	Debugging Imported Blocks
	Enable Debug Mode
	Launch the Debug Tool
	Setting a Breakpoint for the Imported Function
	Connecting Debug to the MATLAB Process
	xmcImportFunctionSettings Command Syntax

	Generating Outputs
	Introduction
	Adding the Model Composer Hub
	Controlling the Throughput of the Implementation
	Introduction
	Setting Throughput Factor from the Hub block
	Restrictions on Using Throughput Control
	Understanding Throughput Control Through an Example

	Defining the Interface Specification
	Generating Packaged IP for Vivado
	Generating Model Composer HDL IP
	Generating C++ Code
	Model Composer Log File

	Simulating and Verifying Your Design
	Introduction
	Simulating in Simulink
	Managing the HLS Block Cache
	Verifying the C++ Code
	Verifying the C/RTL Code

	Select Target Device or Board
	Device Chooser Dialog Box

	Ch. 4: AI Engine Library
	Introduction
	AI Engines
	Adaptable and Scalar Engines
	AI Engine Kernels
	AI Engine Graphs

	Model Composer for AI Engine Development
	Creating an AI Engine Design using Model Composer
	Preparing the Kernels
	Data Accessing Mechanisms
	Run-Time Parameter Specification

	Importing AI Engine Code as a Block
	Variable-Size Signals
	Importing AI Engine Kernels
	Non-Class-Based Kernels
	Importing Window-Based Kernels
	Importing Stream-Based Kernels
	Importing an AI Engine Kernel with Run-Time Parameters
	Importing an AI Engine Kernel with Function Template
	Template Specialization

	Class-Based Kernels
	Kernel Class with Default Constructor
	Class Kernels with Parameterized Constructors
	Constructor with Reference to an Array
	Kernel with Class Templates
	Template Specialization
	Template Partial Specialization

	Kernels with Namespaces
	Specifying Constraints
	Core utilization factor (runtime<ratio>)
	Kernel Location
	Stack Location
	Stack Size
	Buffer Location
	Parameter Location
	HLS Kernel Frequency
	Graph Bounding Box
	Graph Stamp Location

	Importing AI Engine Graphs

	Setting Signal Size to Avoid Buffer Overflow
	Simulation and Code Generation
	Running Simulink Simulation
	Code Generation
	Model Composer Hub Block for AI Engine Code Generation
	Output Directory
	Stream FIFO Depth Specification
	PLIO Attributes
	Specifying PLIOs in Model Composer designs
	Data File Layout
	Specifying PLIO Frequency

	Verification of AI Engine Code
	Model Composer Hub Block for Verification
	Profiling Statistics and Event Tracing
	Viewing Results in the Vitis Analyzer
	Plotting AIE Simultion Output Data and Calculating Throughput
	Running Simulation using the Makefile

	Ch. 5: Connecting AI Engine and Non-AI Engine Blocks
	AI Engine/Programmable Logic Integration
	Interconnecting AI Engine and HDL Blocks
	AIE to HDL
	HDL to AIE
	Example: Setting Block Parameters

	Interconnecting AI Engines and HLS Kernels
	HLS Function versus HLS Kernel
	Behavior of HLS Functions on Blocking Calls
	Importing HLS Kernels
	Interconnect AI Engine and HLS Kernel Blocks
	AIE to HLS Kernel
	HLS Kernel to AIE

	Connecting Source and Sink Blocks

	Ch. 6: Xilinx Toolbox
	Xilinx Toolbox Block Description
	AI Engine Blocksets
	HDL Blocksets
	HLS Blocksets

	HDL Blockset
	Common Options in Block Parameter Dialog Boxes
	Block Reference Pages
	Absolute
	Accumulator
	Addressable Shift Register
	AddSub
	Assert
	AXI FIFO
	BitBasher
	Black Box
	CIC Compiler 4.0
	Clock Enable Probe
	Clock Probe
	CMult
	Complex Multiplier 6.0
	Concat
	Constant
	Convert
	Convolution Encoder 9.0
	CORDIC 6.0
	Counter
	DDS Compiler 6.0
	Delay
	Depuncture
	Digital FIR Filter
	Divide
	Divider Generator 5.1
	Down Sample
	DSP48E
	DSP Macro 1.0
	DSP48E1
	DSP48E2
	DSP58
	DSPCPLX
	Dual Port RAM
	Exponential
	Expression
	Fast Fourier Transform 9.1
	FDATool
	FFT
	FIFO
	FIR Compiler 7.2
	Gateway In
	Gateway Out
	Indeterminate Probe
	Interleaver/De-interleaver 8.0
	Inverse FFT
	Inverter
	LFSR
	Logical
	MCode
	Questa
	Mult
	MultAdd
	Mux
	Natural Logarithm
	Negate
	Opmode
	Parallel to Serial
	Product
	Puncture
	Reciprocal
	Reciprocal SquareRoot
	Reed-Solomon Decoder 9.0
	Reed-Solomon Encoder 9.0
	Register
	Reinterpret
	Relational
	Requantize
	Reset Generator
	ROM
	Sample Time
	Scalar2Vector
	Scale
	Serial to Parallel
	Shift
	Sine Wave
	Single Port RAM
	Slice
	SquareRoot
	System Generator
	Threshold
	Time Division Demultiplexer
	Time Division Multiplexer
	Up Sample
	Vector Absolute
	Vector AddSub Fabric
	Vector Assert
	Vector Complex Mult
	Vector Concat
	Vector Constant
	Vector Convert
	Vector DDFS
	Vector Delay
	Vector Delay Delta
	Vector Down Sample
	Vector FFT
	Vector FIR
	Vector Logical
	Vector Mux
	Vector Real Gateway In
	Vector Real Gateway Out
	Vector Real Mult
	Vector Register
	Vector Reinterpret
	Vector Relational
	Vector Slice
	Vector Up Sample
	Vector2Scalar
	Vitis HLS
	Viterbi Decoder 9.1

	HLS Blockset
	Abs
	atan
	atan2
	Bit Concat
	Bit Slice
	Bitwise AND
	Bitwise NOT
	Bitwise OR
	Bitwise XOR
	Complex to Polar
	Complex to Real-Imag
	Conditional
	Conjugate
	Constant
	cosh
	Cosine
	Cumulative Sum
	Data Type Conversion
	Delay
	Demux
	Divide
	Equals
	Exp
	Gain
	Greater
	Greater Equals
	Hermitian
	Interface Spec
	Lesser
	Lesser Equals
	Library Function
	Log
	Log10
	Logical AND
	Logical NOT
	Logical OR
	Lookup Table
	Matrix Multiply
	Max
	Min
	Model Composer Hub
	Modulus
	Mux
	Negate
	Not Equals
	Polar to Complex
	Pow
	Product
	Product of Elements
	QR Inverse
	Real-Imag to Complex
	Reciprocal
	Reciprocal Sqrt
	Reduction AND
	Reduction OR
	Reduction XOR
	Reinterpret
	Remainder
	Reshape Row-Major
	Shift Left
	Shift Right
	Signum
	Sine
	sinh
	Sqrt
	Submatrix
	Subtract
	Sum
	Sum of Elements
	Tangent
	Transpose
	Unit Delay
	Window Processing
	Supported Simulink Blocks

	AI Engine Blockset
	AIE to HDL
	HDL to AIE
	AIE to HLS
	HLS to AIE
	AIE Signal Spec
	To Fixed Size
	Variable Size Signal to Workspace
	AIE Class Kernel
	AIE Graph
	AIE Kernel
	HLS Kernel
	FIR Asymmetric Decimation
	FIR Asymmetric Filter
	FIR Fractional Interpolation
	FIR Halfband Decimator
	FIR Halfband Interpolator
	FIR Interpolation
	FIR Symmetric Decimation
	FIR Symmetric Filter
	IFFT
	FFT
	RTP Source
	To Variable Size

	Appx. A: Model Composer Utilities and Programmatic Access
	Model Composer Utilities
	xilinx.analyzer
	xilinx.environment.getcachepath and xilinx.environment.setcachepath
	xilinx.resource_analyzer
	xilinx.utilities.importBD
	xlAddTerms
	xlConfigureSolver
	xlfda_denominator
	xlfda_numerator
	xlGenerateButton
	xlgetparam and xlsetparam
	xlgetparams
	xlGetReOrderedCoeff
	xlOpenWaveFormData
	xlSetUseHDL
	xlTBUtils

	Programmatic Access
	Model Composer API for Programmatic Generation
	PG API Examples
	PG API Error/Warning Handling and Messages
	M-Code Access to Hardware Co-Simulation
	Compiling Hardware for Use with M-Hwcosim
	M-Hwcosim Simulation Semantics
	Data Representation
	Interfacing to Hardware from M-Code
	Automatic Generation of M-Hwcosim Testbench
	Resource Management
	M-Hwcosim MATLAB Class

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

