
AI Engine Kernel Coding

Best Practices Guide

UG1079 (v2021.2) November 10, 2021

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1079
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Chapter 1: Overview..5

Navigating Content by Design Process.. 7
AI Engine Architecture Overview...8
Scalar Processing Unit.. 10
Vector Processing Unit... 13
AI Engine Memory...14
AI Engine Tile Interface.. 15
Tools..15

Chapter 2: Single Kernel Programming... 17
AI Engine API... 17
Kernel Pragmas... 20
Kernel Compiler ..20
Kernel Simulation.. 20
Kernel Inputs and Outputs.. 20

Chapter 3: Introduction to Scalar and Vector Programming.............. 21
AI Engine API Overview.. 22
AI Engine Data Types.. 23
Vector Registers...24
Accumulator Registers..26
Casting and Datatype Conversion...29
Vector Initialization, Load, and Store..30
Vector Arithmetic Operations.. 37
Vector Reduction... 40
Bit-wise Operations...41
Data Comparison.. 41
Data Reshaping... 42
Iterators..45
Operator Overloading.. 46
Multiple Lanes Multiplications - sliding_mul..48
Matrix Multiplications - mmul..53

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=2

API Operation Examples...54

Chapter 4: Kernel Optimization..56
Loops.. 56
Software Pipelining of Loops... 58
Restrict Keyword..62
Floating-Point Operations..62
Using Vitis IDE and Reports... 64

Chapter 5: Interface Considerations... 68
Data Movement Between AI Engines... 68
Window vs. Stream in Data Communication... 71
Free Running AI Engine Kernel..72
Run-Time Parameter Specification..73
AI Engine and PL Kernels Data Communication... 75
DDR Memory Access through GMIO.. 76

Appendix A: Single Kernel Programming using Intrinsics....................77
Intrinsics... 78
Introduction to Scalar and Vector Programming..80
AI Engine Data Types.. 81
Vector Registers...83
Accumulator Registers..85
Casting and Datatype Conversion...87
Vector Initialization, Load, and Store..88
Vector Register Lane Permutations.. 91
Loops.. 105
Floating-Point Operations..108

Appendix B: Design Analysis and Programming using Intrinsics...109
Matrix Vector Multiplication...109
Matrix Multiplication...116
Multiple Kernels Coding Example: FIR Filter..121

Appendix C: Additional Resources and Legal Notices........................... 129
Xilinx Resources...129
Documentation Navigator and Design Hubs.. 129
References..129
Revision History...130

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=3

Please Read: Important Legal Notices... 131

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=4

Chapter 1

Overview
The Versal® AI Core series delivers breakthrough artificial intelligence (AI) inference acceleration
with AI Engines that deliver over 100x greater compute performance than current server-class of
CPUs. This series is designed for a breadth of applications, including cloud for dynamic workloads
and network for massive bandwidth, all while delivering advanced safety and security features. AI
and data scientists, as well as software and hardware developers, can all take advantage of the
high compute density to accelerate the performance of any application. Given the AI Engine's
advanced signal processing compute capability, it is well-suited for highly optimized wireless
applications such as radio, 5G, backhaul, and other high-performance DSP applications.

Note: This version covers the essential hardware details specific to AI Engines. The software programming
with AI Engine API and optimization skills are intended to be extendable to new architectures.

AI Engines are an array of very-long instruction word (VLIW) processors with single instruction
multiple data (SIMD) vector units that are highly optimized for compute-intensive applications,
specifically digital signal processing (DSP), 5G wireless applications, and AI technology such as
machine learning (ML).

The AI Engine array supports three levels of parallelism:

• Instruction Level Parallelism (ILP): Through the VLIW architecture allowing multiple
operations to be executed in a single clock cycle.

• SIMD: Through vector registers allowing multiple elements (for example, eight) to be
computed in parallel.

• Multicore: Through the AI Engine array, allowing up to 400 AI Engines to execute in parallel.

Instruction-level parallelism includes a scalar operation, up to two moves, two vector reads
(loads), one vector write (store), and one vector instruction that can be executed—in total, a 7-
way VLIW instruction per clock cycle. Data-level parallelism is achieved via vector-level
operations where multiple sets of data can be operated on a per-clock-cycle basis.

Each AI Engine contains both a vector and scalar processor, dedicated program memory, local 32
KB data memory, access to local memory in itself and three neighboring AI Engines with the
direction depending on the row it is in. It also has access to DMA engines and AXI4 interconnect
switches to communicate via streams to other AI Engines or to the programmable logic (PL) or
the DMA. Refer to the Versal ACAP AI Engine Architecture Manual (AM009) for specific details on
the AI Engine array and interfaces.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=5

While most standard C code can be compiled for the AI Engine, the code might need
restructuring to take full advantage of the parallelism provided by the hardware. The power of an
AI Engine is in its ability to execute a multiply-accumulate (MAC) operation using two vectors,
load two vectors for the next operation, store a vector from the previous operation, and
increment a pointer or execute another scalar operation in each clock cycle. Specialized functions
called intrinsics allow you to target the AI Engine vector and scalar processors and provide
implementation of several common vector and scalar functions, so you can focus on the target
algorithm. In addition to its vector unit, an AI Engine also includes a scalar unit which can be used
for non-linear functions and data type conversions.

An AI Engine program consists of a data-flow graph (adaptable data flow graph) specification that
is written in C++. This specification can be compiled and executed using the AI Engine compiler.
An adaptive data flow (ADF) graph application consists of nodes and edges where nodes
represent compute kernel functions, and edges represent data connections. Kernels in the
application can be compiled to run on the AI Engines, and are the fundamental building blocks of
an ADF graph specification. ADF graph is a Kahn process network with the AI Engine kernels
operating in parallel. AI Engine kernels operate on data streams. These kernels consume input
blocks of data and produce output blocks of data. Kernels can also have static data or run-time
parameter (RTP) arguments that can be either asynchronous or synchronous.

The following figure shows the conceptual view of the ADF graph and its interfaces with the
processing system (PS), programmable logic (PL), and DDR memory. It consists of the following.

• AI Engine: Each AI Engine is a VLIW processor containing a scalar unit, a vector unit, two load
units, and a single store unit.

• AI Engine Kernel: Kernels are written in C/C++ running in an AI Engine.

• ADF Graph: ADF graph is a network with a single AI Engine kernel or multiple AI Engine
kernels connected by data streams. It interacts with the PL, global memory, and PS with
specific constructs like PLIO (port attribute in the graph programming that is used to make
stream connections to or from the programmable logic), GMIO (port attribute in the graph
programming that is used to make external memory-mapped connections to or from the
global memory), and RTP.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 6Send Feedback

https://en.wikipedia.org/wiki/Kahn_process_networks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=6

Figure 1: Conceptual Overview of the ADF Graph

ADF Graph

AI Engine Tile

AI Engine

DMA

Switch

MM2S

Data Memory
Bank 0

Data Memory
Bank 1

Data Memory
Bank 2

Data Memory
Bank 3

…

AI Engine Kernel 2

AI Engine Kernel 1

PS

Switch

AI Engine Tile

AI Engine

DMA
S2MM

Data Memory
Bank 0

Data Memory
Bank 1

Data Memory
Bank 2

Data Memory
Bank 3

…

AI Engine Kernel 2

AI Engine Kernel 1

PL DDR

Stream

Stream

Direct Memory access
Only valid for neighbor tiles

Graph
Control

RTP

PLIO GMIO

Stream

X25022-070221

This document focuses on AI Engine kernel programming and covers some aspects beyond single
kernel programming, like data communication between kernels, which are essential concepts for
partitioning the application into multiple kernels to achieve overall system performance.

For additional details about constructing graph, compiling and simulating graph, and hardware
flow, refer to the Versal ACAP AI Engine Programming Environment User Guide (UG1076).

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This
document covers the following design processes:

• AI Engine Development: Creating the AI Engine graph and kernels, library use, simulation
debugging and profiling, and algorithm development. Also includes the integration of the PL
and AI Engine kernels.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 7Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-process/versal-decision-tree-welcome.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=7

AI Engine Architecture Overview
The AI Engine array consists of a 2D array of AI Engine tiles, where each AI Engine tile contains
an AI Engine, memory module, and tile interconnect module. An overview of such a 2D array of
AI Engine tiles is shown in the following figure.

Figure 2: AI Engine Array

Dedicated
Interconnect
· Non-blocking
· Deterministic

Local, Distributed Memory
· No cache misses
· Higher bandwidth

Cascade Stream
AIE Memory Access
AXI4 Interconnects

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

X21763-040519X21763-040519

The memory module is shared between its north, south, east, or west AI Engine neighbors,
depending on the location of the tile within the array. An AI Engine can access its north, south,
east, or west, and its own memory module. Those neighboring memory modules are accessed by
AI Engine through dedicated memory access interfaces, and each of the access can be at most
256-bit wide. AI Engine can also send or receive cascade streaming data from neighboring AI
Engine. The cascade stream is one-way stream from left to right or right to left in a horizontal
manner which wraps around when moving to the next row. The AXI4 interconnect module
provides streaming connections between AI Engine tiles and provides stream to memory (S2MM)
or memory to stream (MM2S) connections between streaming interfaces and the memory
module. In addition, the interconnect modules are also connected to the neighboring
interconnect module to provide flexible routing capability in a grid like fashion.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=8

The following illustration is the architecture of a single AI Engine tile.

Figure 3: AI Engine Tile Details

Stall
Handler

Control, Debug,
& Trace

Accumulator
Stream FIFO

32b Scalar RISC
Unit

Fixed Point
512b SIMD
Vector Unit

Floating Point
512b SIMD
Vector Unit

Scalar Register
Files Vector Register Files

Program
Memory
(16KB)

Instruction
Fetch & Decode

Unit

Load & Store
Address

Generation
Units

AXIS West AXIS East

AX
IS

 N
or

th
AX

IM
 S

w
itc

h
AX

IS
 S

ou
th

S2MM
DMA

MEM
I/F

MM2S
DMA

M
EM

 I/
F

M
EM

 I/
FData

Memory
(32KB)

MEM I/F

Memory Access
AXI Stream

AXI MM
Cascade Stream

AI Engine Array

X24805-111120

Each AI Engine tile has an AXI4-Stream switch that is a fully programmable 32-bit AXI4-Stream
crossbar. It supports both circuit-switched and packet-switched streams with back-pressure.
Through MM2S DMA and S2MM DMA, the AXI4-Stream switch provides stream access from
and to AI Engine data memory. The switch also contains two 16-deep 33-bit (32-bit data + 1-bit
TLAST) wide FIFOs, which can be chained to form a 32-deep FIFO by circuit-switching the
output of one of the FIFOs to the other FIFO’s input.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=9

As shown in the following figure, the AI Engine is a highly-optimized processor featuring a single-
instruction multiple-data (SIMD) and very long instruction word (VLIW) processor containing a
scalar unit, a vector unit, two load units, a single store unit, and an instruction fetch and decode
unit. One VLIW instruction can support a maximum of two loads, one store, one scalar operation,
one fixed-point or floating-point vector operation, and two move instructions.

The AI Engine also has three address generator units (AGUs) to support multiple addressing
modes. Two of the AGUs are dedicated for the two load units and one AGU is dedicated for the
store unit.

Figure 4: AI Engine

Vector UnitScalar Unit

Load Unit A

Scalar
Register

Files

Scalar ALU

Non-linear
Functions

Vector
Register

Files

Fixed-Point
Vector Unit

Floating-Point
Vector Unit

AGU

Load Unit B

AGU

Store Unit

AGU

Memory Interface Stream Interface

Instruction Fetch
& Decode Unit

X25020-011321

Additional details about vector processing unit, AI Engine memory, and AI Engine tile interface
can be found in the following sections.

Scalar Processing Unit
The following figure shows the sub-components of the scalar unit. The scalar unit is used for
program control (branch, comparison), scalar math operations, non-linear functions, and data
type conversions much like a general-purpose processor. Similar to a general-purpose processor,
generic C/C++ code can be used.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=10

Figure 5: Scalar Processing Unit

Scalar Unit

Scalar ALU

Non-linear Processing

Scalar
Register

Files

Special
Registers

Add/
Subtract CMP MUL MOVE

Fixed-point Scalar Non-linear Functions

Floating-point Scalar Non-linear Functions

Data-type Conversions

X25019-011521

The register files are used to store input and output. There are dedicated registers for pointer
arithmetic, as well as for general-purpose usage and configuration. Special registers include stack
pointers, circular buffers, and zero overhead loops. Two types of scalar elementary non-linear
functions are supported in the AI Engine, fixed-point and floating-point precisions.

Fixed-point, non-linear functions include:

• Sine and cosine

• Absolute value (ABS)

• Count leading zeros (CLZ)

• Comparison to find minimum or maximum (lesser than (LG)/greater than (GT))

• Square root

• Inverse square root and inverse

Floating-point, non-linear functions include:

• Square root

• Inverse square root

• Inverse

• Absolute value (ABS)

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=11

• Comparison to find minimum or maximum (lesser than (LG)/greater than (GT))

The arithmetic logic unit (ALU) in the AI Engine manages the following operations with an issue
rate of one instruction per cycle.

• Integer addition and subtraction of 32 bits. The operation has a one-cycle latency.

• Bit-wise logical operation on 32-bit integer numbers (BAND, BOR, and BXOR). The operation
has a one-cycle latency.

• Integer multiplication: 32 x 32-bit with an output result of 32 bits stored in the R register file.
The operation has a three-cycle latency.

Note: Integer result is truncated to 32 bits when overflow occurs.

• Shift operation: Both left and right shift are supported. The operation has a one-cycle latency.

Note: A multiplication by a power of two is by default reduced to a shift operation.

Data type conversion can be done using aie::to_fixed and aie::to_float. This
conversion can also support sqrt, inv, and inv_sqrt fixed-point operations.

Scalar Programming

The compiler and scalar unit provide the programmer the ability to use standard ‘C’ data types.
The following table shows standard C data types with their precisions. All types except float and
double support signed and unsigned prefixes.

Table 1: Scalar data types

Data Type Precision Comment
char 8-bit signed

short 16-bit signed

int 32-bit signed Native support

long 64-bit signed

float 32-bit

double 64-bit Emulated using softfloat library. Scalar
proc does not contain FPU.

It is important to remember that control flow statements such as branching are still handled by
the scalar unit even in the presence of vector instructions. This concept is critical to maximizing
the performance of the AI Engine.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=12

Vector Processing Unit
The vector unit contains a fixed-point unit with 128 8-bit fixed-point multipliers and a floating-
point unit with eight single-precision floating-point multipliers. The vector registers and permute
network are shared between the fixed-point and floating-point multipliers. The peak
performance depends on the size of the data types used by the operands. The following table
provides the number of MAC operations that can be performed by the vector processor per
instruction.

Table 2: AI Engine Vector Precision Support

X Operand Z Operand Output Number of MACs/Clock
8 real 8 real 48 real 128

16 real 8 real 48 real 64

16 real 16 real 48 real 32

16 real 16 complex 48 complex 16

16 complex 16 real 48 complex 16

16 complex 16 complex 48 complex 8

16 real 32 real 48/80 real 16

16 real 32 complex 48/80 complex 8

16 complex 32 real 48/80 complex 8

16 complex 32 complex 48/80 complex 4

32 real 16 real 48/80 real 16

32 real 16 complex 48/80 complex 8

32 complex 16 real 48/80 complex 8

32 complex 16 complex 48/80 complex 4

32 real 32 real 80 real 8

32 real 32 complex 80 complex 4

32 complex 32 real 80 complex 4

32 complex 32 complex 80 complex 2

32 SPFP 32 SPFP 32 SPFP 8

The X operand is 1024 bits wide and the Z operand is 256 bits wide. In terms of component use,
consider the first row in the previous table. The multiplier operands come from the same 1024-
bit and 256-bit input registers but some values are broadcast to multiple multipliers. There are
128 8-bit single multipliers and results are post-added and accumulated into 16 or 8 accumulator
lanes of 48 bits each.

To calculate the maximum performance for a given datapath, it is necessary to multiply the
number of MACs per instruction with the clock frequency of the AI Engine kernel. For example,
with 16-bit input vectors X and Z, the vector processor can achieve 32 MACs per instruction.
Using the clock frequency for the slowest speed grade device results in:

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=13

32 MACs * 1 GHz clock frequency = 32 Giga MAC operations/second

AI Engine Memory
Each AI Engine has 16 KB of program memory, which allows storing 1024 instructions of 128-bit
each. The AI Engine instructions are 128-bit (maximum) wide and support multiple instruction
formats, as well as variable length instructions to reduce the program memory size. Many
instructions outside of the optimized inner loop can use the shorter formats.

Each AI Engine tile has eight data memory banks, where each memory bank (single bank) is a 256
word x 128-bit single-port memory (for a total of 32 KB). Each AI Engine can access the memory
from its north, south, and east or west neighboring tiles, for a total of 128 KB data memory,
including its own data memory. The stack is a subset of the data memory. The default value for
stack size and heap size is 1 KB. Heap size can be automatically computed and adjusted by the
compiler when optimization level is larger than zero (xlopt>=1 for aiecompiler). Stack size
and heap size can be changed using compiler options or constraints in the source code. Refer to
the Versal ACAP AI Engine Programming Environment User Guide (UG1076) for more information
about stack and heap size usage.

In a logical representation, the 128 KB memory can be viewed as one contiguous 128 KB block
or four 32 KB blocks, and each block can be divided into four odd and four even banks. One even
bank and one odd bank are interleaved to comprise a double bank. AI Engines on the edges of
the AI Engine array have fewer neighbors and correspondingly less memory available.

Each memory port operates in 256-bit/128-bit vector register mode or 32-bit/16-bit/8-bit scalar
register mode. The 256-bit port is created by an even and odd pairing of the memory banks. The
8-bit and 16-bit stores are implemented as read-modify-write instructions. Concurrent operation
of all three ports is supported if each port is accessing a different bank.

Data stored in memory is in little endian format.

RECOMMENDED: It is recommended to access data memory on a 128-bit boundary with vector
operations.

Each AI Engine has a DMA controller that is divided into two separate modules, S2MM to store
stream data to memory (32-bit data) and MM2S to write the contents of the memory to a stream
(32-bit data). Both S2MM and MM2S have two independent data channels.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 14Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=14

AI Engine Tile Interface
Data memory interfaces, stream interfaces, and cascade stream interfaces are the primary I/O
interfaces that read and write data for compute to and from the AI Engine.

• The data memory interface sees one contiguous memory consisting of the data memory
modules in all four directions with a total capacity of 128 KB. The AI Engine has two 256-bit
wide load units and one 256-bit wide store unit. Each load or store can access the data in
128-bit or 256-bit width using 128-bit alignment.

• The AI Engine has two 32-bit input AXI4-Stream interfaces and two 32-bit output AXI4-
Stream interfaces. Each stream is connected to a FIFO on both the input and output side,
allowing the AI Engine to have a 128-bit access every four clock cycles or 32-bit wide access
per cycle on a stream.

• The 384-bit accumulator data from one AI Engine can be forwarded to another by using the
dedicated cascade stream interfaces to form a chain. There is a small, two deep, 384-bit wide
FIFO on both the input and output streams that allows storing up to four values between AI
Engines. In each cycle, 384-bits can be received and sent by the chained AI Engines. The
cascade stream chain provides a relative tight coupling of multiple kernels operating at the
same throughput.

When programming for the AI Engine, it is important to note that each AI Engine has the
capability to access two 32-bit AXI4-Stream inputs, two 32-bit AXI4-Stream outputs, one 384-bit
cascade stream input, one 384-bit cascade stream output, two 256-bit data loads, and one 256-
bit data store. However, due to the length of the instruction, not all of these operations can be
performed during the same cycle.

Tools
Vitis Integrated Design Environment

The Vitis™ integrated design environment (IDE) can be used to target system programming of
Xilinx devices including, Versal devices. It supports development of single and multiple AI Engine
kernel applications. The following features are available in the tool.

• An optimizing C/C++ compiler that compiles the kernels and graph code making all of the
necessary connections, placements, and checks to ensure proper functioning on the device.

• A cycle accurate simulator, accelerated functional simulator, and profiling tools.

• A powerful debugging environment that works in both simulation and hardware
environments. Various views, such as, variables view, disassembly view, memory view, register
view, and pipeline view are available.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=15

Vitis Command Line Tools

Command line tools are available to build, simulate, and generate output files and reports.

• The AI Engine compiler compiles kernels and graph code into ELF files that are run on the AI
Engine processors.

• The AI Engine simulator and x86simulator are tools for cycle accurate simulation and
functional simulation respectively.

• The cross compiler for Arm® Core is provided for PS code compilation.

• The Vitis compiler is the system compilation and linking tool for integrating whole system
together.

• The Vitis Analyzer IDE is available for report viewing and analysis of the output files and
reports generated by the command line tools.

The Versal ACAP AI Engine Programming Environment User Guide (UG1076) contains a wealth of
information on the design flow and tools' usage.

Chapter 1: Overview

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=16

Chapter 2

Single Kernel Programming
An AI Engine kernel is a C/C++ program which is written using native C/C++ language, AI Engine
API and specialized intrinsic functions that target the VLIW scalar and vector processors. The AI
Engine kernel code is compiled using the AI Engine compiler (aiecompiler) that is included in the
Vitis™ core development kit. The AI Engine compiler compiles the kernels to produce ELF files
that are run on the AI Engine processors.

For advanced programming on intrinsic functions, see the Versal ACAP AI Engine Intrinsics
Documentation (UG1078). AI Engine compiler and simulator are covered in the first few sections
of this chapter.

AI Engine supports specialized data types and API functions for vector programming. By
restructuring the scalar application code with these API functions and vector data types as
needed, you can implement the vectorized application code. The AI Engine compiler takes care of
mapping API functions to operations, vector or scalar register allocation and data movement,
automatic scheduling, and generation of microcode that is efficiently packed in VLIW
instructions.

The following chapters introduce the data types supported and registers available for use by the
AI Engine kernel. In addition, the vector API functions that initialize, load, and store, as well as
operate on the vector registers using the appropriate data types are also described.

To achieve the highest performance on the AI Engine, the primary goal of single kernel
programming is to ensure that the usage of the vector processor approaches its theoretical
maximum. Vectorization of the algorithm is important, but managing the vector registers,
memory access, and software pipelining are also required. The programmer must strive to make
the data for the new operation available while the current operation is executing because the
vector processor is capable of an operation every clock cycle. Optimizations using software
pipelining in loops is available using pragmas. For instance, when the inner loop has sequential or
loop carried dependencies it might be possible to unroll an outer loop and compute multiple
values in parallel. The following sections go over these concepts as well.

AI Engine API
For AI Engine API documentation, see the AI Engine API User Guide (UG1529).

Chapter 2: Single Kernel Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com/html_docs/xilinx2021_2/aiengine_api/aie_api/doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=17

• The AI Engine API is a portable programming interface for AI Engine kernel programming. This
API interface will target current and future AI Engine architectures.

• The interface provides parameterizable data types that enable generic programming and also
implements the most common operations in a uniform way across the different data types. It
is an easier programming interface as compared to using intrinsic functions.

• It is implemented as a C++ header-only library that gets translated into optimized intrinsic
functions.

For an advanced user that needs programming with intrinsics, refer to Versal ACAP AI Engine
Intrinsics Documentation (UG1078).

The AI Engine API user guide is organized as follows:

• API Reference:

• Basic Types

• Memory

• Initialization

• Arithmetic

• Comparison

• Reduction

• Reshaping

• Floating-point Conversion

• Elementary Functions

• Matrix Multiplication

• Fast Fourier Transform (FFT)

• Special Multiplications

• Operator Overloading

• Interoperability with Adaptive Data Flow (ADF) Graph Abstractions

Chapter 2: Single Kernel Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=18

Figure 6: AI Engine API User Guide

The AI Engine API user guide is also available through the Vitis™ IDE.

Figure 7: AI Engine API Documentation through the Vitis IDE

Chapter 2: Single Kernel Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=19

Kernel Pragmas
The AI Engine compiler supports dedicated directives for efficient loop scheduling. Additional
pragmas for reducing memory dependencies and removing function hierarchy while further
optimizing kernel performance is also included. Examples of the use of those pragmas can be
found in this document.

The Chess Compiler User Manual has a list of all the pragmas and functions used in kernel
coding. This manual can be found in the AI Engine lounge.

Kernel Compiler
The AI Engine compiler is used to compile AI Engine kernel code. Compiling an AI Engine Graph
Application in the AI Engine User Guide (UG1076) describes in detail the AI Engine compiler
usage, options available, input files that can be passed in, and expected output.

Kernel Simulation
To simulate an AI Engine kernel you need to write an AI Engine graph application that consists of
a data-flow graph specification which is written in C++. This graph will contain just the AI Engine
kernel, with test bench data being provided as input(s) to the kernel. The data output(s) from the
kernel can be captured as the simulation output and compared against golden data. This
specification can be compiled and executed using the AI Engine compiler. The application can be
simulated using the AI Engine simulator. For additional details on the simulator, see Simulating an
AI Engine Graph Application in the AI Engine User Guide (UG1076).

Kernel Inputs and Outputs
AI Engine kernels operate on either streams or blocks of data. AI Engine kernels operate on data
of specific types, for example, int32 and cint32. A block of data used by a kernel is called a
window of data. Kernels consume input stream or window of data and produce output stream or
window of data. Kernels access data streams in a sample-by-sample fashion. For additional
details on the window and stream APIs, see Window and Streaming Data API in the AI Engine
User Guide (UG1076).

AI Engine kernels can also have RTP ports to be updated or read by PS. For more information
about RTP, see Run-Time Graph Control API in the AI Engine User Guide (UG1076).

Chapter 2: Single Kernel Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 20Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=rsb1512607764188
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=rsb1512607764188
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=yql1512608436352
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=yql1512608436352
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=pfy1512589515876
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=20

Chapter 3

Introduction to Scalar and Vector
Programming

This section provides an overview of the key elements of kernel programming for scalar and
vector processing elements. The details of each element and optimization skills will be seen in
following sections.

The following example uses only the scalar engine. It demonstrates a for loop iterating through
512 int32 elements. Each loop iteration performs a single multiply of int32 a and int32 b storing
the result in c and writing it to an output window. The scalar_mul kernel operates on two input
blocks (window) of data input_window<int32> and produces an output window of data
output_window<int32>.

The APIs window_readincr and window_writeincr are used to read and write to the
circular buffers outside the kernel. For additional details on the window APIs, see Window and
Streaming Data API in the AI Engine User Guide (UG1076).

void scalar_mul(input_window<int32>* __restrict data1,
 input_window<int32>* __restrict data2,
 output_window<int32>* __restrict out){
 for(int i=0;i<512;i++)
 {
 int32 a=window_readincr(data1);
 int32 b=window_readincr(data2);
 int32 c=a*b;
 window_writeincr(out,c);
 }
}

The following example is a vectorized version for the same kernel.

void vect_mul(input_window<int32>* __restrict data1,
 input_window<int32>* __restrict data2,
 output_window<int32>* __restrict out){
 for(int i=0;i<64;i++)
 chess_prepare_for_pipelining
 {
 aie::vector<int32,8> va=window_readincr_v<8>(data1);
 aie::vector<int32,8> vb=window_readincr_v<8>(data2);
 aie::accum<acc80,8> vt=aie::mul(va,vb);

 window_writeincr(out,vt.to_vector<int32>(0));
 }
}

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 21Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=21

Note the data types aie::vector<int32,8> and aie::accum<acc80,8> used in the previous kernel
code. The window API window_readincr_v<8> returns a vector of 8 int32s and stores them
in variables named va and vb. These two variables are vector type variables and they are passed
to the API function aie::mul which outputs vt, which is a aie::accum<acc80,8> data type. The
aie::accum<acc80,8> type is reduced by a shift round saturate function to_vector that allows a
v8int32 type, to be returned and then written to the output window. Additional details on the
data types supported by the AI Engine are covered in the following sections.

The __restrict keyword used on the input and output parameters of the functions, allows for
more aggressive compiler optimization by explicitly stating independence between data.

chess_prepare_for_pipelining is a compiler pragma that explicitly directs kernel compiler
to achieve optimized pipeline for the loop.

The scalar version of this example function needs 1053 cycles, while the vectorized and
optimized version needs only 98 cycles. That means that there is more than ten times speedup
for the vectorized version of the kernel. Vector processing itself would give 8x the throughput for
int32 multiplication. However, with the loop optimizations done, it can get more than 10x.

The sections that follow describe in detail the various data types that can be used, registers
available, and also the kinds of optimizations that can be achieved on the AI Engine using
concepts like software pipelining in loops and keywords like __restrict.

Related Information

Software Pipelining of Loops
Restrict Keyword

AI Engine API Overview
AI Engine API is a portable programming interface for AI Engine accelerators. It is implemented as
a C++ header-only library that provides types and operations that get translated into efficient
low-level intrinsics. The API also provides higher-level abstractions such as iterators.

Usually, two header files are needed in kernel source code:

• aie_api/aie.hpp: AI Engine main entry point.

• aie_api/aie_adf.hpp: Graph window and stream interfaces.

AI Engine API provides a helper file to print aie::vector and aie::mask values in simulation
when profiling is enabled:

• aie_api/utils.hpp: aie::print function is provided.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=22

To support operator overloading on some operations, include header file aie_api/
operators.hpp and use namespace aie::operators. For additional information, see
Operator Overloading.

An example code for AI Engine kernel is as follows.

#include <aie_api/aie.hpp>
#include <aie_api/aie_adf.hpp>
#include <aie_api/utils.hpp>

void vec_incr(input_window<int32>* data,output_window<int32>* out){
 aie::vector<int32,16> vec1=aie::broadcast(1);//set all elements to 1
 for(int i=0;i<16;i++)
 chess_prepare_for_pipelining
 chess_loop_range(4,)
 {
 aie::vector<int32,16> vdata=window_readincr_v<16>(data);
 aie::print(vdata,true,"vdata=");//print vector in a line
 aie::vector<int32,16> vresult=aie::add(vdata,vec1);
 window_writeincr(out,vresult);
 }
}

For more information about the window interface API usage, see Window and Streaming Data
API in the AI Engine User Guide (UG1076). Vector data type and operations are covered in
following sections.

AI Engine Data Types
The AI Engine scalar unit supports signed and unsigned integers in 8, 16, and 32-bit widths, along
with some single-precision floating-point for specific operations.

The two main vector types offered by the AI Engine API are vectors (aie::vector) and
accumulators (aie::accum).

A vector represents a collection of elements of the same type which is transparently mapped to
the corresponding vector registers supported on AI Engine and future AI Engine architectures.
Vectors are parametrized by the element type and the number of elements, and any combination
that defines a 128b/256b/512b/1024b vector is supported.

Table 3: Supported Vector Types and Sizes

int8 uint8 int16 int32 float cint16 cint32 cfloat
16/32/64/128 16/32/64/128 8/16/32/64 4/8/16/32 4/8/16/32 4/8/16/32 2/4/8/16 2/4/8/16

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 23Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=23

An accumulator represents a collection of elements of the same class, typically obtained as a
result of a multiplication operation, which is transparently mapped to the corresponding
accumulator registers supported on each architecture. Accumulators commonly provide a large
number of bits, allowing users to perform long chains of operations whose intermediate results
may exceed the range of regular vector types. Accumulators are parameterized by the element
type, and the number of elements. The native accumulation bits define the minimum number of
bits and the AI Engine API maps different types to the nearest native accumulator type that
supports the requirement. For example, acc40 maps to acc48 for AI Engine architecture.

Table 4: Supported Accumulator Types and Sizes

ac
c3

2

ca
cc

32

ac
c4

0

ca
cc

40

ac
c4

8

ca
cc

48

ac
c5

6

ca
cc

56

ac
c6

4

ca
cc

64

ac
c7

2

ca
cc

72

ac
c8

0

ca
cc

80

ac
cf

lo
at

ca
cc

flo
at

Native
accumulation
bits

48 80 32

For example, aie::vector<int32,16> is a 16 element vector of integers with 32 bits. Each
element of the vector is referred to as a lane. Using the smallest bit width necessary can improve
performance by making good use of registers.

Figure 8: aie::vector<int32,16>

32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X25021-011321

aie::vector and aie::accum have member functions to do type casting, data extraction
and insertion, and indexing. These operations are covered in following sections.

Vector Registers
All vector intrinsic functions require the operands to be present in the AI Engine vector registers.
The following table shows the set of vector registers and how smaller registers are combined to
form large registers.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=24

Table 5: Vector Registers

128-bit 256-bit 512-bit 1024-bit
vrl0

wr0

xa

ya

N/A
vrh0

vrl1
wr1

vrh1

vrl2
wr2

xb yd (msbs)
vrh2

vrl3
wr3

vrh3

vcl0
wc0

xc N/A N/A
vch0

vcl1
wc1

vch1

vdl0
wd0

xd N/A yd (lsbs)
vdh0

vdl1
wd1

vdh1

The underlying basic hardware registers are 128-bit wide and prefixed with the letter v. Two v
registers can be grouped to form a 256-bit register prefixed with w. wr, wc, and wd registers are
grouped in pairs to form 512-bit registers (xa, xb, xc, and xd). xa and xb form the 1024-bit wide
ya register, while xd and xb form the 1024-bit wide yd register. This means the xb register is
shared between ya and yd registers. xb contains the most significant bits (MSBs) for both ya and
yd registers.

The vector register name can be used with the chess_storage directive to force vector data
to be stored in a particular vector register. For example:

aie::vector<int32,8> chess_storage(wr0) bufA;
aie::vector<int32,8> chess_storage(WR) bufB;

When upper case is used in the chess_storage directive, it means register files (for example,
any of the four wr registers), whereas lower case in the directive means just a particular register
(for example, wr0 in the previous code example) will be chosen.

Vector registers are a valuable resource. If the compiler runs out of available vector registers
during code generation, then it generates code to spill the register contents into local memory
and read the contents back when needed. This consumes extra clock cycles.

The name of the vector register used by the kernel during its execution is shown for vector load/
store and other vector-based instructions in the kernel microcode. This microcode is available in
the disassembly view in Vitis IDE. For additional details on Vitis IDE usage, see Using Vitis IDE
and Reports.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=25

The aie::vector has member functions to support multiple operations on vector. Some
common operations include:

• insert(): Updates the contents of a region of the vector using the subvector and returns a
reference to the updated vector.

• grow(): Returns a copy of the current vector in a larger vector. The value of the new
elements is undefined.

• extract(): Returns a subvector with the contents of a region of the vector.

• push(): Shifts all elements in the vector up and writes the given value into the first position
of the vector (the element in the last position of the vector is lost).

• cast_to(): Reinterprets the current vector as a vector of the given type. The number of
elements is automatically computed by the function.

• set(): Updates the value of the element on the given index.

• get(): Returns the value of the element on the given index.

• operator[]: Returns a constant or non-constant reference object to the element on the
given index.

aie::vector<int16,16> wv;
aie::vector<int16,8> vv0,vv1;
wv.insert(0,vv0);//lower half is vv0
wv.insert(1,vv1);//higher half is vv1
aie::vector<int16,32> xv=wv.grow<32>(0);//32 is output size. "0" means that
wv is in the first 16 elements
wv.push((int16)10);//shift and set wv[0]=10
int16 i0=wv[0];
wv[1]=i0;
aie::vector<cint16,8> cv=wv.cast_to<cint16>();//cast wv to complex type
aie::vector<cint16,4> cv0=cv.extract<4>(/*idx=*/1);//extract higher half
from cv

Accumulator Registers
The accumulation registers are 384 bits wide and can be viewed as eight vector lanes of 48 bits
each. The idea is to have 32-bit multiplication results and accumulate over those results without
bit overflows. The 16 guard bits allow up to 216 accumulations. The output of fixed-point vector
MAC and MUL intrinsic functions is stored in the accumulator registers. The following table
shows the set of accumulator registers and how smaller registers are combined to form large
registers.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=26

Table 6: Accumulator Registers

384-bit 768-bit
aml0

bm0
amh0

aml1
bm1

amh1

aml2
bm2

amh2

aml3
bm3

amh3

The accumulator registers are prefixed with the letters 'am'. Two of them are aliased to form a
768-bit register that is prefixed with 'bm'. The shift-round-saturate operation can be done by
moving a value from an accumulator register to a vector register with any required shifting and
rounding.

aie::accum<acc48,8> acc;
aie::vector<int32,8> res=acc.to_vector<int32>(10);//shift right 10 bits,
from accumulator register to vector register

The upshift operation is used to move a value from a vector register to an accumulator register
with upshifting.

aie::vector<int32,8> v;
aie::accum<acc48,8> acc;
acc.from_vector(v, /*shift=*/10); //shift left 10 bits, from vector
register to accumulator register

The set_rounding() and set_saturation() APIs are used to set the rounding and
saturation mode of the accumulation result.

Note: Rounding and saturation settings are sticky. This means that the AI Engine tile maintains the mode
until it is changed. If a kernel has a runtime ratio of less than one such that it can share a tile with other
kernels, and if the rounding and saturation modes matter to the kernel operation, then the kernel must set
these modes in the kernel's graph-registered function rather than in a constructor or initialization function.
This will ensure that the rounding and saturation modes are guaranteed in the case that another kernel on
the same tile uses different rounding or saturation mode values.

Besides from_vector() and to_vector() functions, aie::accum class has the following
member functions similar to aie::vector.

• insert(): Updates the contents of a region of the accumulator using the values in the given
native subaccumulator and returns a reference to the updated accumulator.

• grow(): Returns a copy of the current accumulator in a larger accumulator. The value of the
new elements is undefined.

• extract(): Returns a subaccumulator with the contents of a region of the accumulator.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=27

• cast_to(): Reinterprets the current accumulator as an accumulator of the given type. The
number of elements is automatically computed by the function.

Floating-point intrinsic functions do not have separate accumulation registers and instead return
their results in a vector register. The following streaming data APIs can be used to read and write
floating-point accumulator data from or to the cascade stream.

aie::vector<float,8> readincr_v<8>(input_stream<accfloat> * str);
aie::vector<cfloat,4> readincr_v<4>(input_stream<caccfloat> * str);
void writeincr(output_stream<accfloat>* str, aie::vector<float,8> value);
void writeincr(output_stream<caccfloat>* str, aie::vector<cfloat,4> value);

For more information about the window and streaming data APIs, refer to Window and
Streaming Data API in the AI Engine User Guide (UG1076).

The data size in memory is aligned to the next power of 2 (64b for acc48, 128b for acc80),
hence it is best to use sizeof to determine the position of the elements. The following code is
an example to print accumulator vector registers.

aie::accum<acc80,8> acc;

printf("acc80 is stored in two acc48, which have 16bit overlap\n");
printf("left shift higher acc48 32bits, and add the two acc48 to form the
acc80\n");
const int STORAGE_SIZE_ACC80=sizeof(acc)/8;
const int STORAGE_SIZE_ACC48=STORAGE_SIZE_ACC80/2;
auto p=reinterpret_cast<uint8_t*>(&acc);
for(int j=0;j<8;j++){//8 acc80
 printf("acc80[%d]_lower48=",j);
 for(int k=5;k>=0;k--){//print lower acc48 from high to low in hex
 printf("%02x",*(p+k));//each byte has two hex digits
 }
 printf("\n");
 p+=STORAGE_SIZE_ACC48;

 printf("acc80[%d]_higher48=",j);
 for(int k=5;k>=0;k--){//print higher acc48 from high to low in hex
 printf("%02x",*(p+k));
 }
 printf("\n");
 p+=STORAGE_SIZE_ACC48;
}

The output is as follows.

acc80 is stored in two acc48, which have 16bit overlap
left shift higher acc48 32bits, and add the two acc48 to form the acc80
acc80[0]_lower48=000000000000
acc80[0]_higher48=000010000000
acc80[1]_lower48=000080000001
acc80[1]_higher48=000010000000
acc80[2]_lower48=000100000004
acc80[2]_higher48=000010000000
acc80[3]_lower48=000000000000
acc80[3]_higher48=fffff0000000

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 28Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=28

acc80[4]_lower48=000180000001
acc80[4]_higher48=00000fffffff
acc80[5]_lower48=00007fffffff
acc80[5]_higher48=fffff0000000
acc80[6]_lower48=000000000000
acc80[6]_higher48=000000000000
acc80[7]_lower48=000000000002
acc80[7]_higher48=000000000000

Casting and Datatype Conversion
Casting functions (aie::vector_cast<DstT>(const Vec& v) and
aie::vector.cast_to<DstT>()) allow value casting between vector types with the same
size in bits. Accumulator vector types have the casting function
aie::accum.cast_to<DstT>(). Generally, using the smallest data type possible will reduce
register spillage and improve performance. For example, if a 48-bit accumulator (acc48) can meet
the design requirements then it is preferable to use that instead of a larger 80-bit accumulator
(acc80).

Note: The acc80 vector data type occupies two neighboring 48-bit lanes.

aie::vector<int16,8> iv=window_readincr_v<8>(data0);
aie::vector<cint16,4> cv=iv.cast_to<cint16>();
aie::vector<cint16,4> cv2=aie::vector_cast<cint16>(iv);
aie::accum<cacc48,4> acc=aie::mul(cv,cv2);
aie::accum<acc80,4> acc2=acc.cast_to<acc80>();

Standard C++ casts can be also used. But the recommended ways of reading vectors from a
buffer are as follows.

• Use aie::load_v and increment the scalar pointer by the number of elements in the vector.

• Using vector iterators.

Additional details about aie::load_v and iterators are covered in the following sections.

int16 coeff_buffer[16];
aie::vector<int32,8> coeff=aie::load_v<8>((int32*)coeff_buffer);//cast to
int32 and load
auto it = aie::begin_vector<8>(coeff_buffer);//create vector<int16,8>
iterator
aie::vector<int16,8> vec0=*it++;//read first vector<int16,8>
aie::vector<int16,8> vec1=*it;//read second vector<int16,8>

Hardware support is built-in for floating-point to fixed-point (to_fixed()) and fixed-point to
floating-point (to_float()) conversions. For example, the fixed-point square root, inverse
square root, and inverse (reciprocal) are implemented with floating-point precision and the
to_float() and to_fixed() conversions are used before and after the function.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=29

Only scalar data types are supported by the square root and inverse functions in AI Engine
hardware but the API also accepts vectors for those operations.

Note: The AI Engine floating-point is not completely compliant with the IEEE standards. For more
information about the exceptions, see Versal ACAP AI Engine Architecture Manual (AM009).

The conversion functions (to_float() and to_fixed()) can be handled by either the vector
or scalar engines depending on the function called. Note the difference in data return type and
data argument types in the following example.

template auto aie::to_float (T a, int shift = 0) //Uses the scalar engine
template auto aie::to_float(const vector< T, Elems > & v, int shift = 0) //
Uses the vector engine

Note: For to_fixed(), there are two types of implementations, safe (default) and fast implementations,
with the safe implementation offering a more strict data type check. You can use --fastmath option of
aiecompiler to make to_fixed() choose the fast implementation.

Note: aiecompiler provides another two options to enable fast implementation of floating point scalar
operations:

• --fast-floats: Enables fast implementation for linear floating-point scalar operations such as add,
sub, mul, and compare.

• --fast-nonlinearfloats: Enables fast implementation for non-linear floating-point scalar
operations such as, sine/cosine, sqrt, and inv.

Data can be moved from vector to accumulator using aie::accum.from_vector() or from
accumulator to vector using aie::accum.to_vector<DstT>() with shifting and rounding as
shown in the following example.

aie::vector<int16,16> v;
aie::accum<acc32,16> acc;
acc.from_vector(v, 0);

aie::accum<acc32,16> acc2;
aie::vector<int16,16> v2;
v2 = acc2.to_vector<int16>(15);

Vector Initialization, Load, and Store
Vector registers can be initialized, loaded, and saved in a variety of ways. For optimal
performance, it is critical that the local memory that is used to load or save the vector registers
be aligned on 16-byte boundaries.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=30

Alignment
Applications can load from data memory (DM) into vector registers and store the contents of
vector registers into DM. Memory instructions in the AI Engine that operate on vectors have
alignment requirements. Therefore, functions are provided for both aligned and unaligned
accesses.

The following functions are assumed to operate on pointers that have met the alignment
requirements for a vector load or store of the size.

• aie::load_v

• aie::store_v

Note: If the aligned vector load and store operations are used on unaligned pointers, the result data may be
incorrect.

While the following functions are assumed to operate on pointers that have only aligned to the
element of the vector.

• aie::load_unaligned_v

• aie::store_unaligned_v

For performance perspective, vector load and store must operate on memory that has met the
vector operation alignment requirement. Unaligned accesses can incur additional overhead
depending on the amount of misalignment. Following is an example of using aligned vector load
instead of unaligned load for performance.

//assume factor is vector aligned
__attribute__((noinline)) void vect_mul(input_window<int32>* __restrict
data1, output_window<int32>* __restrict out){
 int32* __restrict pv=(int32*)factor+1; //pv is unaligned vector pointer
 for(int i=0;i<64;i++)
 chess_prepare_for_pipelining
 {
 aie::vector<int32,8> va=window_readincr_v<8>(data1);
 aie::vector<int32,8> v1=aie::load_v<8>(pv-1);
 aie::vector<int32,8> v2=aie::load_v<8>(pv+7);
 pv+=8;
 //equivalent: aie::vector<int32,8> v3=aie::load_unaligned_v<8>(pv);
 aie::vector<int32,8> v3=aie::shuffle_down_fill(v1,v2,1);
 auto vm=aie::mul(va,v3);
 window_writeincr(out,vm.to_vector(0));
 }
}

Note: Window interfaces ensure that internal buffers have the required alignment for vector loads.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=31

The alignas standard C specifier can be used to ensure proper alignment of local memory. In
the following example, the reals is aligned to 16-byte boundary.

alignas(16) const int32 reals[8] =
 {32767, 23170, 0, -23170, -32768, -23170, 0, 23170};
 //align to 16 bytes boundary, equivalent to
"alignas(aie::vector<int16,8>)"

The API provides a global constant value (aie::vector_decl_align) that can be used to
align the buffer to a boundary that works for any vector size.

alignas(aie::vector_decl_align) static cint16 my_buffer[8]={{0,0},{1,-1},
{2,-2},{3,-3},{4,-4},{5,-5},{6,-6},{7,-7}};

Note: The alignment requirement on AI Engine is 16 bytes. Because this requirement can change with
future architectures, it is recommended to use aie::vector_decl_align for portability.

Initialization
The following functions can be used to initialize vector registers as undefined, all zeros, with data
from local memory, or with part of the values set from another register and the remaining part
are undefined.

aie::vector<int32,8> uv; //undefined
aie::vector<int32,8> nv = aie::zeros<int32,8>(); //all 0's
aie::vector<int32,8> bv = aie::broadcast<int32>(100); // all values are 100
aie::vector<int32,16> cv=aie::concat(nv,bv); //concatenate vectors into
larger vector
aie::vector<int32,8> iv =
(reinterpret_cast<aie::vector<int32,8>>(reals)); //re-interpret "reals"
as "aie::vector<int32,8>*" pointer and load value from it
aie::vector<int32,8> iv2 = aie::load_v<8>((int32*)reals); //load value
pointed by "reals"
aie::vector<int32,16> sv = iv.grow<16>(/*idx=*/0); //create a new 512-bit
vector with lower 256-bit set with "iv"

In the previous example:

• aie::zeros: Creates vector with all elements 0.

• aie::broadcast: Sets all elements of vector to a value.

• aie::concat: Concatenates multiple vectors or accumulators with same type and size into a
larger vector or accumulator.

Vector and accumulator has member function grow() allow creating a larger vector where only
one part is initialized with the subvector (iv in above example) and the other parts are
undefined. Here the function parameter idx indicates the location of the subvector within the
output vector.

The static keyword applies to the vector data type as well. The default value is zero when not
initialized and the value is kept between graph run iterations.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=32

Load and Store

Load and Store From Window Buffer

AI Engine APIs provide access methods to read and write data from data memory, streaming data
ports, and cascade streaming ports which can be used by AI Engine kernels. For additional details
on the window and stream APIs, see Window and Streaming Data API in the AI Engine User Guide
(UG1076). In the following example, the window readincr (window_readincr_v<8>(din))
API is used to read a window of complex int16 data into the data vector. Similarly,
readincr_v<8>(cin) is used to read a sample of int16 data from the cin stream.
writeincr(cas_out, v) is used to write data to a cascade stream output.

void func(input_window<cint16> *din,
 input_stream_int16 *cin,
 output_stream_cacc48 *cas_out){
 aie::vector<cint16,8> data=window_readincr_v<8>(din);
 aie::vector<int16,8> coef=readincr_v<8>(cin);
 aie::accum<cacc48,4> v;
 …
 writeincr(cas_out, v);
}

Load and Store Using Pointers

Applications can load from DM into vector registers and store the contents of vector registers
into DM. Memory instructions in the AI Engine that operate on vectors have alignment
requirements. Functions are provided for both aligned and unaligned accesses:

• aie::load_v: Load a vector of Elems size whose elements have type T (for example,
aie::load_v<Elems>(T*). The pointer is assumed to meet the alignment requirements
for a vector load of this size.

• aie::store_v: Store a vector of Elems size whose elements have type T (for example,
aie::store_v<Elems>(T*). The pointer is assumed to meet the alignment requirements
for a vector store of this size.

• aie::load_unaligned_v: Load a vector of Elems size whose elements have type T. The
pointer is assumed to be aligned to T.

• aie::store_unaligned_v: Store a vector of Elems size whose elements have type T. The
pointer is assumed to be aligned to T.

alignas(aie::vector_decl_align) int16 delay_value[N]={...};
aie::vector<int16,8> va=aie::load_v<8>(delay_value);
aie::store_v(delay_value,va);
aie::vector<int16,8> vv=aie::load_unaligned_v<8>((int16*)scatter_value);
aie::store_unaligned_v((int16*)scatter_value,vv);

The compiler supports standard pointer de-referencing and pointer arithmetic for vectors. For
using vector iterators to iterate on memory, see Iterators.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 33Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=33

It is mandatory to use the window API in the kernel function prototype as inputs and outputs.
However, in the kernel code, it is possible to use a direct pointer to load/store data.

void func(input_window<int16> *w_input,
 output_window<cint16> *w_output){

 aie::vector<int16,16> datain=aie::load_v<16>((int16*)data0->ptr);
 aie::vector<cint16,8> dataout=datain.cast_to<cint16>();
 aie::store_v((cint16*)out->ptr,dataout);

}

The window structure is responsible for managing buffer locks tracking buffer type (ping/pong)
and this can add to the cycle count. This is especially true when load/store are out-of-order
(scatter-gather). Using pointers can help reduce the cycle count required for load and store.

Note: If using pointers to load and store data, it is the designer’s responsibility to avoid out-of-bound
memory access.

Load and Store Using Streams

Vector data can also be loaded from or stored in streams as shown in the following example.

void func(input_stream<int32> *s0, input_stream<int32> *s1, …){
 for(…){
 int32 data0=readincr(s0); //32 bits load
 aie::vector<int32,4> data1=readincr_v<4>(s1); //128 bits load
 …
 }
}

For more information about window and streaming data API usage, see Window and Streaming
Data API in the AI Engine User Guide (UG1076).

Load and Store with Virtual Resource Annotations

AI Engine is able to perform several vector load or store operations per cycle. However, for the
load or store operations to be executed in parallel, they must target different memory banks. In
general, the compiler tries to schedule many memory accesses in the same cycle when possible
but there are some exceptions. Memory accesses coming from the same pointer are scheduled
on different cycles. If the compiler schedules the operations on multiple variables or pointers in
the same cycle, memory bank conflicts can occur.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 34Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=34

To avoid concurrent access to a memory with multiple variables or pointers, most memory access
functions in the AI Engine API accept an enum value from aie_dm_resource that can be used
to bind individual accesses to a virtual resource as shown in the following example.

enum class aie_dm_resource {
 none,
 a,
 b,
 c,
 d,
 stack
};

The following example shows how to annotate memory access to allow or avoid accessing
memories at the same cycle.

void fn(int __aie_dm_resource_a *A, int *B){
 aie::vector<int,8> v1 = aie::load_v<8>(A);
 /* Following access can be scheduled on the same instruction as the
access to A since B is not annotated. */
 aie::vector<int,8> v2 = aie::load_v<8>(B);
 /* Following specific access to B is annotated with the same virtual
resource as A, so they cannot be scheduled on the same instruction. */
 aie::vector<int,8> v3 = aie::load_v<8, aie_dm_resource::a>(B);
 /* vector iterator of B, annotated with the same virtual resource as A,
so they cannot be scheduled on the same instruction. */
 auto it = aie::begin_vector<8, aie_dm_resource::a>(B);
 aie::vector<int,8> v4 = *(++it);

Also, the compiler provides the following aie_dm_resource annotations to annotate different
virtual resources. Accesses using types that are associated with the same virtual resource are not
scheduled to access the resource at the same cycle.

__aie_dm_resource_a
__aie_dm_resource_b
__aie_dm_resource_c
__aie_dm_resource_d
__aie_dm_resource_stack

For example, the following code is to annotate two arrays to the same __aie_dm_resource_a
that guides the compiler to not access them in the same instruction. It shows two ways to load
vectors, using aie::load_v and iterators.

aie::vector<int32,8> va[32];
aie::vector<int32,8> vb[32];
int32 __aie_dm_resource_a* __restrict p_va = (int32 __aie_dm_resource_a*)va;
int32 __aie_dm_resource_a* __restrict p_vb = (int32 __aie_dm_resource_a*)vb;
auto it_b=aie::begin_vector<8>(p_vb);
//access va, vb by p_va, it_b
aie::vector<int32,8> vc;
vc=aie::load_v<8>(p_va)+*it_b;
p_va+=8;
++it_b;

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=35

The following code is to annotate an array and a window buffer to the same
__aie_dm_resource_a that guides the compiler to not access them in the same instruction.

alignas(aie::vector_decl_align) static int32 coeff[256]={...};
void func(input_window<int32> * __restrict wa,
 input_window<int32> sa;
 aie::vector<int32,8> v_coeff=aie::load_v<8>((int32 __aie_dm_resource_a
*)coeff);
 input_window<int32> __aie_dm_resource_a* __restrict p_wa =
(input_window<int32> __aie_dm_resource_a*)&sa;
 window_copy(p_wa,wa);
 aie::vector<int32,8> va;
 va=window_readincr_v<8>(p_wa);//access wa by p_wa

Update, Extract, and Shift
The following member functions are provided for aie::vector and aie::accum classes to
update and extract portions of the registers.

• insert(): Updates the contents of a region of the vector using the values in the given native
subvector and returns a reference to the updated vector.

• extract(): Returns a subvector with the contents of a region of the vector.

Note: The updates overwrite a portion of the larger vector with the new data while keeping the other part
of the vector alive. This alive state of the larger vector persists through multiple updates. If too many
vectors are kept unnecessarily alive, register spillage can occur and impact performance.

aie::vector<int32,4> v1,v2;
aie::vector<int32,8> w;
w.insert(1,v1); //insert v1 to 2nd part of w (each is 4 int32)
v2=w.extract<4>(1); //extract 2nd part of w

aie::vector has the following member functions and operator to set or get individual
elements.

• operator[]: Returns a constant or non-constant reference object to the element on the
given index. Preferred.

• get(): Returns the value of the element on the given index.

• set(): Updates the value of the element on the given index.

These must be used when loading or storing values that are not in contiguous memory locations
and require multiple clock cycles to load or store a vector. In the following example, the 0th
element of vector v1 is updated with the value of a – which is 100.

int a = 100;
aie::vector<int32,4> v1,v2;
v1[0]=a;//set 0th element to a
v1.set(a,0);//Another method to set 0th element to a
a=v1.get(0);

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=36

// operator[] is preferred in general as the element extraction may be
merged with the underlying operation with no cost in cycles
// No cost
auto v3 = aie::add(v1[3], v2);

// Element extraction and add in different cycles
v3 = aie::add(v1.get(3), v2);

aie::vector has the member function push to update a vector by inserting a new element at
the beginning of a vector and shifting the other elements by one.

aie::vector<int32,4> v1;
v1.push(100);//v1[0]=100,v1[1:7]=v1[0:6]

Vector Arithmetic Operations
The AI Engine API supports basic arithmetic operations on two vectors, or on a scalar and a
vector (operation on the scalar and each element of the vector). It also supports addition or
subtraction of a scalar or a vector on an accumulator. Additionally, it supports accumulation on
multiplication. These operations include:

• aie::mul

Returns an accumulator with the element-wise multiplication of two vectors, or a value and all
the elements of a vector.

• aie::negmul

Returns an accumulator with the negate of the element-wise multiplication of two vectors, or
a value and all the elements of a vector.

• aie::mac

Multiply-add on vectors (or scalar) and accumulator.

• aie::msc

Multiply-sub on vectors (or scalar) and accumulator.

• aie::add

Returns a vector with the element-wise addition of two vectors, or a value and all the
elements of a vector. Or add scalar or vector on accumulator.

• aie::sub

Returns a vector with the element-wise subtraction of two vectors, or a value and all the
elements of a vector. Or subtract scalar or vector on accumulator.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=37

The vectors and accumulator must have the same size and their types must be compatible. For
example:

aie::vector<int32,8> va=window_readincr_v<8>(data1);
aie::vector<int32,8> vb=window_readincr_v<8>(data2);
aie::accum<acc80,8> vm=aie::mul(va,vb);
aie::accum<acc80,8> vm2=aie::mul((int32)10,vb);
aie::vector<int32,8> vsub=aie::sub(va,vb);
aie::vector<int32,8> vadd=aie::add(va,vb);
aie::vector<int32,8> vsub2=aie::sub(va,(int32)10);//scalar and vector can
switch placement
aie::vector<int32,8> vadd2=aie::add((int32)10,va);//scalar and vector can
switch placement

aie::accum<acc80,8> vsub_acc=aie::sub(vm,(int32)10);
aie::accum<acc80,8> vsub_acc2=aie::sub(vm,va);
aie::accum<acc80,8> vadd_acc=aie::add(vm,(int32)10);
aie::accum<acc80,8> vadd_acc2=aie::add(vm,vb);

aie::accum<acc80,8> vmac=aie::mac(vm,va,vb);
aie::accum<acc80,8> vmsc=aie::msc(vm,va,vb);
aie::accum<acc80,8> vmac2=aie::mac(vm,va,(int32)10);//scalar and vector can
switch placement
aie::accum<acc80,8> vmsc2=aie::msc(vm,(int32)10,vb);//scalar and vector can
switch placement

AI Engine API supports arithmetic operations on a vector or accumulation of element-wise
square, including:

• aie::abs

Computes the absolute value for each element in the given vector.

• aie::abs_square

Computes the absolute square of each element in the given complex vector.

• aie::conj

Computes the conjugate for each element in the given vector of complex elements.

• aie::neg

For vectors with signed types, returns a vector whose elements are the same as in the given
vector but with the sign flipped. If the input type is unsigned, the input vector is returned.

• aie::mul_square

Returns an accumulator of the requested type with the element-wise square of the input
vector.

• aie::mac_square

Returns an accumulator with the addition of the given accumulator and the element-wise
square of the input vector.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=38

• aie::msc_square

Returns an accumulator with the subtraction of the given accumulator and the element-wise
square of the input vector.

The vector and the accumulator must have the same size and their types must be compatible. For
example:

aie::vector<int16,16> va;
aie::vector<cint16,16> ca;
aie::vector<cfloat,16> cf;
aie::vector<int16,16> va_abs=aie::abs(va);
aie::vector<int32,16> ca_abs=aie::abs_square(ca);
aie::vector<float,16> cf_abs=aie::abs_square(cf);
aie::vector<cint16,16> ca_conj=aie::conj(ca);
aie::vector<int16,16> va_neg=aie::neg(va);
aie::accum<acc48,16> va_sq=aie::mul_square(va);

aie::vector<int32,8> vc;
aie::vector<int32,8> vd;
aie::accum<acc80,8> vm;
aie::accum<acc80,8> vmac3=aie::mac_square(vm,vc);//vmac3[i]=vm[i]
+vc[i]*vc[i];
aie::accum<acc80,8> vmsc3=aie::msc_square(vm,vd);//vmsc3[i]=vm[i]-
vd[i]*vd[i];

Operands can also be supported pre-multiplication operations. On some AI Engine architectures
certain operations can be collapsed with the multiplication into a single instruction. For example:

aie::vector<cint16,16> ca,cb;
aie::accum<cacc48,16> acc=aie::mul(aie::op_conj(ca),aie::op_conj(cb));

For details about pre-multiplication operations, see Pre-Multiplication Operations.

Pre-Multiplication Operations
AI Engine architectures offer multiplication instructions that can perform additional operations
on the input arguments. Instead of adding one variant for each possible combination, AI Engine
API offers types that can wrap an existing vector, accumulator of element reference and be
passed into the multiplication function. Then the API will merge the operations into a single
instruction or apply the operation on the vector before the multiplication, depending on the
hardware support.

The pre-multiplication operations are special empty operations that simply return the original
objects they wrap. These include:

• op_abs

• op_add

• op_conj

• op_max

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=39

• op_min

• op_none

• op_sub

Note: The pre-multiplication operations are to be used with arithmetic operations, such as aie::mul and
aie::mac. They are not intended to be used independently.

The following example performs an element-wise multiplication of the absolute of vector a and
the conjugate of vector b.

aie::accum<cacc48,16> foo(aie::vector<int16,16> a, aie::vector<cint16,16> b)
{
 aie::accum<cacc48,16> ret;
 ret = aie::mul(aie::op_abs(a), aie::op_conj(b));
 return ret;
}

Vector Reduction
AI Engine API supports vector reduce operations on aie::vector.

• aie::reduce_add: Returns sum of the elements in the input vector.

• aie::reduce_add_v: Returns the sums of the elements in the input vectors. The sum of
each input vector is stored in an element of the output vector.

• aie::reduce_max: Returns the element from the input vector with the largest value.

• aie::reduce_min: Returns the element from the input vector with the smallest value.

• aie::reduce_mul: Returns multiplication of the elements in the input vector.

Vector reduction examples are as follows.

aie::vector<int16,8> iv=window_readincr_v<8>(data0);
aie::vector<int16,8> iv2,iv3,iv4;
int16 iv_add=aie::reduce_add(iv);
aie::vector<int16,8> iv_add_v4=aie::reduce_add_v(iv,iv2,iv3,iv4);
int16 iv_max=aie::reduce_max(iv);
int16 iv_min=aie::reduce_min(iv);
int16 iv_mul=aie::reduce_mul(iv);

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=40

Bit-wise Operations
The following AI Engine APIs allow bit-wise AND, OR, XOR, and NOT operations on a scalar
value and all the elements of the input vector with same type, or on the elements of the two
input vectors with same type and size.

• aie::bit_and

• aie::bit_or

• aie::bit_xor

The following AI Engine API allows bit-wise NOT operations on the elements of the input vector.

• aie::bit_not

Note: The aie::bit_* operations are emulated on a scalar processor in AI Engine.

aie::vector<int16,8> iv=window_readincr_v<8>(data0);
aie::vector<int16,8> iv2;
aie::vector<int16,8> iv_bit_and=aie::bit_and((int16)0xf,iv);//0xf bit AND
with each element of iv
aie::vector<int16,8> iv_bit_or=aie::bit_or((int16)0xf,iv);
aie::vector<int16,8> iv_bit_xor=aie::bit_xor((int16)0xf,iv);
aie::vector<int16,8> iv_bit_and2=aie::bit_and(iv,iv2);//bit AND on each
element of iv and iv2
aie::vector<int16,8> iv_bit_or2=aie::bit_or(iv,iv2);
aie::vector<int16,8> iv_bit_xor2=aie::bit_xor(iv,iv2);
aie::vector<int16,8> iv_not=aie::bit_not(iv);

The following AI Engine APIs provide to shift all values of a vector right or left by specified
number of bits.

• aie::downshift

• aie::upshift

aie::vector<int16,8> iv_down=aie::downshift(iv,2); //shift each element
right 2 bits
aie::vector<int16,8> iv_up=aie::upshift(iv,2); //shift each element left 2
bits

Data Comparison
AI Engine API provides vector comparison operations, including:

• aie::eq

• aie::neq

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=41

• aie::le

• aie::lt

• aie::ge

• aie::gt

The vector comparison operations compare two vectors element by element or compare one
scalar with one vector, and return a special type aie::mask. Each bit of aie::mask
corresponds to one elementary comparison result.

aie::vector<int32,16> v1,v2;
aie::mask<16> msk_lt=aie::lt(v1,v2);
msk_lt.set(0);//set bit 0 to be true
aie::vector<int32,16> v_s=aie::select(v1,v2,msk_lt);

The following APIs compare all the elements of the two input vectors and return bool value
true or false.

• aie::equal: Returns whether all the elements of the two input vectors are equal. The
vectors must have the same type and size.

• aie::not_equal: Returns whether some elements in the two input vectors are not equal.
The vectors must have the same type and size.

The following APIs are provided to choose the max or min value of two vectors (or one scalar and
one vector) element by element. The type of the scalar and vectors must be same.

• aie::max

• aie::min

aie::vector<int32,16> vc=aie::max(v1,v2); //compare each element of v1,v2,
set it to vc

Data Reshaping
AI Engine API provides operations to change the location of the elements within a vector, to
extract subvector from larger vector, or to combine the elements from two or more vectors.

The following APIs are provided to retrieve half of the vector by specific patterns.

• aie::filter_even: Returns a vector of half the size by: out = { v[0:step],
v[2*step:3*step], ... }

• aie::filter_odd: Returns a vector of half the size by: out = { v[step:2*step],
v[3*step:4*step], ... }

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=42

Note: The parameter step must be a power of two.

aie::vector<int32,8> result_e=aie::filter_even(xbuff, /*step=*/1);
aie::vector<int32,8> result_o=aie::filter_even(xbuff, /*step=*/4);

The following figures show how elements are chosen by aie::filter_even and
aie::filter_odd.

Figure 9: aie::filter_even

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

xbuff

Low

result

result[0]=xbuff[2*0] result[1]=xbuff[2*1]

aie::vector<int32,8> result_e=aie::filter_even(xbuff, /*step=*/1);

High

X25745-091621

Figure 10: aie::filter_odd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 7 12 13 14 15

xbuff

Low

result

result[0]=xbuff[4*1] result[4]=xbuff[4*3]

aie::vector<int32,8> result_o=aie::filter_odd(xbuff, /*step=*/4);

High

X25746-110421

aie::select can be used to choose elements from two vectors (or a scalar and a vector) to
form a new vector. aie::mask is used for specifying the element to choose.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=43

• aie::select: Choose elements by each bit of mask value: out = {mask[0] == 0? a[0] : b[0],
…}

aie::vector<int32,8> vc=aie::select(va,vb,msk_value);//
vc[i]=(mask_value[i]==0)?va[i]:vb[i]

AI Engine API provides following functions to shift vector elements by a specific number but
maintain the vector size and element values.

• aie::shuffle_down: Shift elements down by n: out = {v[n], v[n+1], …, v[Elems-1],
undefined[0],…,undefined[n-1]}. Higher elements of output(out[n],out[n+1],…) are undefined.
"Elems" is the vector size.

• aie::shuffle_up: Shift elements up by n: out = {undefined[0],…,undefined[n-1],v[0], v[1],
…}. Lower elements of output(out[0],…,out[n-1]) are undefined.

• aie::shuffle_down_rotate: Rotate elements down by n: out = {v[n], v[n+1],
…,v[Elems-1], v[0], …,v[n-1]}.

• aie::shuffle_up_rotate: Rotate elements up by n: out = {v[Elems-n], …, v[Elems-1], v[0],
…,v[n-1]}.

• aie::shuffle_down_fill: Shift elements down by n and fill with elements from a second
vector: out = {v[n], v[n+1], …, v[Elems-1], fill[0],…,fill[n-1]}. Higher elements of
output(out[n],out[n+1],…) are filled with elements from second vector "fill"(file[0],…,fill[n-1]).

• aie::shuffle_up_fill: Shift elements up by n and fill with elements from a second
vector: out = {fill[Elems-n],…,fill[Elems-1],v[0], v[1], …}. Lower elements of output(out[0],
…,out[n-1]) are filled with elements from second vector "fill"(fill[Elems-n],…,fill[Elems-1]).

aie::vector<int32,8> v,fill;
//v_d[0:4]=v[3:7], (v_d[5],v_d[6],v_d[7] are undefined)
auto v_d=aie::shuffle_down(v,3);
//v_u[3:7]=v[0:4], (v_u[0],v_u[1],v_u[2] are undefined)
auto v_u=aie::shuffle_up(v,3);
auto vd_r=aie::shuffle_down_rotate(v,3);//vd_r[0:4]=v[3:7],vd_r[5:7]=v[0:2]
auto vu_r=aie::shuffle_up_rotate(v,3);//vu_r[3:7]=v[0:4],vu_r[0:2]=v[5:7]
//v_d_fill[0:4]=v[3:7], v_d_fill[5:7]=fill[0:2]
auto v_d_fill=aie::shuffle_down_fill(v,fill,3);
//v_u_fill[3:7]=v[0:4], v_u_fill[0:2]=fill[5:7]
auto v_u_fill=aie::shuffle_up_fill(v,fill,3);

A vector can be reversed by:

• aie::reverse: Reverse elements by: out = {v[Elems-1], …, v[1], v[0]}

aie::vector<int32,8> v_rev=aie::reverse(v,3);//v_rev[0:7]=v[7:0]

AI Engine API provides functions to shuffle two input vectors and combine them into the larger
output vectors. The two vectors must be the same type and size. The return type is std::pair.

• aie::interleave_zip: Select and combine two vectors by this pattern: out = { v1[0:step],
v2[0:step], v1[step:2*step], v2[step:2*step], ... }

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=44

• aie::inerleave_unzip: Select and combine two vectors by this pattern: out =
{ v1[0:step], v1[2*step:3*step], ..., v2[0:step], v2[2*step:3*step], ..., v1[step:2*step],
v1[3*step:4*step], ..., v2[step:2*step], v2[3*step:4*step], ... }

Note: The parameter step must be a power of two.

The following example takes two vectors with reals in rva and imaginary in rvb (with type
aie::vector<int32,8>) and creates a new complex vector. It also shows how to extract real
and imaginary parts back and compare them with the original values.

aie::vector<int32,8> rva,rvb;
auto rv=aie::interleave_zip(rva,rvb,/*step*/1);
aie::vector<cint32,8>
cv=aie::concat(rv.first.cast_to<cint32>(),rv.second.cast_to<cint32>());

auto [uva,uvb]=aie::interleave_unzip(rv.first,rv.second,/*step*/1);
bool ret=aie::equal(rva,uva) && aie::equal(rvb,uvb);//return true

Iterators
AI Engine API provides iterators to access memory successively and increasingly. There is a
circular iterator that wraps around by going back to the beginning of the buffer when it reaches
the end of the buffer.

• aie::begin_circular: Returns a scalar circular iterator. The circular buffer size is
specified.

• aie::cbegin_circular: Constant version of aie::begin_circular.

• aie::begin_random_circular: aie::begin_circular with random access.

• aie::begin_vector: Returns a vector iterator. The elementary vector size is specified.

• aie::cbegin_vector: Constant version of aie::begin_vector.

• aie::begin_restrict_vector: Same as aie::begin_vector, but the return pointer
is considered restrict.

• aie::begin_vector_circular: Returns a vector iterator. The elementary vector size and
total circular buffer size are specified.

• aie::cbegin_vector_circular: Constant version of
aie::begin_vector_circular.

These iterators all support:

• dereferencing *

• operator ++

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=45

• operator ==

• operator !=

Some iterators support more operators. For example, aie::begin_vector supports:

• operator --

• operator +

• operator -

• operator +=

• operator -=

aie::begin_random_circular supports:

• operator --

• operator +=

• operator -=

One of the benefits of circular buffer is that it avoids out-of-bound memory access. Following are
some examples of using iterator to access memory.

alignas(aie::vector_decl_align) int32
init_value[16]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
auto pv=aie::begin_vector<4>(init_value); //create vector iterator, first
value is [0,1,2,3]
auto pv_c=aie::cbegin_vector_circular<4,16>(init_value); //create const
circular vector iterator, first value is [0,1,2,3], total 16 elements
for(;pv!=init_value+16;pv++){
 aie::vector<int32,4> buff=*pv;
 aie::print(*pv,true,"pv:");
 ...
}
for(int i=0;i<5;i++){
 //go back to start if reach the end of the circular buffer
 aie::vector<int32,4> buff=*pv_c++;
}
//point to circular buffer size 16.
auto p=aie::begin_circular<16>(init_value);
for(int i=0;i<N;i++){
 //return back to init_value+0, if reaches init_value+16
 *p++=i;
}

Operator Overloading
The AI Engine API provides operator overloading for many operations. This feature can be used
by including the header file aie_api/operators.hpp and using the aie::operators
namespace.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=46

The included operators are as follows.

• Operator +: Addition operator. It is equivalent to aie::add.

• Operator +=: Addition assignment operator.

• Operator -: Negation operator. It is equivalent to aie::neg.

• Operator -: Subtraction operator. It is equivalent to aie::sub.

• Operator -=: Subtraction assignment operator.

• Operator !=: Not equal to comparison operator. It is equivalent to aie::neq.

• Operator <: Less than comparison operator. It is equivalent to aie::lt.

• Operator <=: Less than or equal comparison operator. It is equivalent to aie::le.

• Operator ==: Equal to comparison operator. It is equivalent to aie::eq.

• Operator >: Greater than comparison operator. It is equivalent to aie::gt.

• Operator >=: Greater than or equal comparison operator. It is equivalent to aie::ge.

• Operator <<: Bitwise left shift operator. It is equivalent to aie::upshift.

• Operator >>: Bitwise right shift operator. It is equivalent to aie::downshift.

• Operator &: Bitwise AND operation. It is equivalent to aie::bit_and.

• Operator ^: Bitwise XOR operation. It is equivalent to aie::bit_xor.

• Operator |: Bitwise OR operation. It is equivalent to aie::bit_or.

• Operator ~: Bitwise NEG operation. It is equivalent to aie::bit_not.

An example code of using operators is as follows.

#include <aie_api/aie.hpp>
#include <aie_api/aie_adf.hpp>
#include <aie_api/utils.hpp>
#include <aie_api/operators.hpp>
using namespace aie::operators;

void operator_overload_test(input_window<int32>* __restrict
data,output_window<int32>* __restrict out){
 aie::vector<int32,8> va=window_readincr_v<8>(data);
 aie::vector<int32,8> vb=window_readincr_v<8>(data);
 aie::vector<int32,8> vadd=va+vb;
 aie::vector<int32,8> vsub=va-vb;
 aie::vector vneg=-vb;//negation of each element
 vadd+=vneg;
 aie::print(va,true,"va=");
 aie::print(vadd,true,"vadd=");
 //compare each element of the vector correspondingly
 auto msk_neq=(vadd!=va);

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=47

 //mask bit equals 1 if vector element not equal
 aie::print(msk_neq,true,"msk_neq=");

 aie::vector vnot_va=~va;//bit not
 aie::vector vones=va ^ vnot_va;//bit xor
 aie::print(vones,true,"vones=");
 //choose vadd if mask bit equals 0
 auto vout=aie::select(vadd,vones,msk_neq);
 aie::print(vout,true,"vout=");
 window_writeincr(out,vadd);
}

One possible output of the previous code is as follows.

va=9 10 11 12 13 14 15 16
vadd=9 10 11 12 13 14 15 16
msk_neq=0 0 0 0 0 0 0 0
vones=-1 -1 -1 -1 -1 -1 -1 -1
vout=9 10 11 12 13 14 15 16

Multiple Lanes Multiplications - sliding_mul
AI Engine provides hardware support to accelerate a type of multiple lanes multiplications, called
sliding multiplication. It allows multiple lanes to do MAC operations simultaneously, and the
results are added to an accumulator. It especially works well with (but not limited to) finite
impulse response (FIR) filter implementations.

These special multiplication structures or APIs are named aie::sliding_mul*. They accept
coefficient and data inputs. Some variants of aie::sliding_mul_sym* allow pre-adding of
the data input symmetrically before multiplication. These classes include:

• aie::sliding_mul_ops

• aie::sliding_mul_x_ops

• aie::sliding_mul_y_ops

• aie::sliding_mul_xy_ops

• aie::sliding_mul_sym_ops

• aie::sliding_mul_sym_x_ops

• aie::sliding_mul_sym_y_ops

• aie::sliding_mul_sym_xy_ops

• aie::sliding_mul_sym_uct_ops

For more information about these APIs and supported parameters, see the AI Engine API User
Guide (UG1529).

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 48Send Feedback

https://www.xilinx.com/html_docs/xilinx2021_2/aiengine_api/aie_api/doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=48

For example, the aie::sliding_mul_ops class provides a parametrized multiplication that
implements the following compute pattern.

DSX = DataStepX
DSY = DataStepY
CS = CoeffStep
P = Points
L = Lanes
c_s = coeff_start
d_s = data_start
out[0] = coeff[c_s] * data[d_s + 0] + coeff[c_s + CS] * data[d_s + DSX]
+ ... + coeff[c_s + (P-1) * CS] * data[d_s + (P-1) * DSX]
out[1] = coeff[c_s] * data[d_s + DSY] + coeff[c_s + CS] * data[d_s + DSY +
DSX] + ... + coeff[c_s + (P-1) * CS] * data[d_s + DSY + (P-1) * DSX]
...
out[L-1] = coeff[c_s] * data[d_s + (L-1) * DSY] + coeff[c_s + CS] *
data[d_s + (L-1) * DSY + DSX] + ... + coeff[c_s + (P-1) * CS] * data[d_s +
(L-1) * DSY + (P-1) * DSX]

Table 7: Template Parameters

Parameter Description
Lanes Number of output elements.

Points Number of data elements used to compute each lane.

CoeffStep Step used to select elements from the coeff buffer. This step
is applied to element selection within a lane.

DataStepX Step used to select elements from the data buffer. This step
is applied to element selection within a lane.

DataStepY Step used to select elements from the data buffer. This step
is applied to element selection across lanes.

CoeffType Coefficient element type.

DataType Data element type.

AccumTag Accumulator tag that specifies the required accumulation
bits. The class must be compatible with the result of the
multiplication of the coefficient and data types (real/
complex).

The following figure shows how to use the aie::sliding_mul_ops class and its member
function, mul, to perform the sliding multiplication. It also shows how each parameter
corresponds to the multiplication.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=49

Figure 11: sliding_mul_ops Usage Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 3 4 5 6 7 8 9 10 11 12 13 14 152

data

coeff

DataStepY

CoeffStep Points

Lanes

out[0]=coeff[0]*data[0]+…+coeff[15]*data[15]

out[1]=coeff[0]*data[1]+…+coeff[15]*data[16]

out[2]=coeff[0]*data[2]+…+coeff[15]*data[17]

out[3]=coeff[0]*data[3]+…+coeff[15]*data[18]

auto acc_buff= aie::sliding_mul_ops<4, 16, 1, 1, 1, int16, cint16, cacc48>::mul(coeff_buff, 0, data_buff, 0);

CoeffStep DataStepX

Lanes Points

CoeffType DataType AccumTag

DataStepY

DataStepX

X25747-091621

Besides the aie::sliding_mul* classes, AI Engine API provides aie::sliding_mul*
functions to do sliding multiplication and aie::sliding_mac* functions to do sliding
multiplication and accumulation. These functions are simply helpers, that use the
aie::sliding_mul*_ops classes internally and are provided for convenience. These include:

• aie::sliding_mul

• aie::sliding_mac

• aie::sliding_mul_sym

• aie::sliding_mac_sym

• aie::sliding_mul_antisym

• aie::sliding_mac_antisym

• aie::sliding_mul_sym_uct

• aie::sliding_mac_sym_uct

• aie::sliding_mul_antisym_uct

• aie::sliding_mac_antisym_uct

The following examples perform asymmetric sliding multiplications (template prototypes are in
comments for quick reference).

/*template<unsigned Lanes, unsigned Points, int CoeffStep, int DataStepX, int DataStepY,
ElemBaseType CoeffType, ElemBaseType DataType, AccumElemBaseType AccumTag =
detail::default_accum_tag_t<CoeffType, DataType>>
struct aie::sliding_mul_ops< Lanes, Points, CoeffStep, DataStepX, DataStepY, CoeffType,
DataType, AccumTag >
template<VectorOrOp VecCoeff, VectorOrOp VecData>

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=50

static constexpr accum_type mul (const VecCoeff &coeff, unsigned coeff_start, const VecData
&data, unsigned data_start)
*/

aie::vector<int16,16> va;
aie::vector<int16,64> vb0,vb1;
aie::accum<acc48,8> acc = aie::sliding_mul_ops<8, 8, 1, 1, 1, int16, int16,
acc48>::mul(va, 0, vb0, 0);
acc = aie::sliding_mul_ops<8, 8, 1, 1, 1, int16, int16, acc48>::mac(acc, va, 8, vb1, 0);
window_writeincr(out,acc.to_vector(15));

/*template<unsigned Lanes, unsigned Points, int CoeffStep = 1, int DataStepX = 1, int
DataStepY = DataStepX, AccumElemBaseType AccumTag = accauto, VectorOrOp VecCoeff = void,
VectorOrOp VecData = void>
auto sliding_mul (const VecCoeff &coeff, unsigned coeff_start, const VecData &data,
unsigned data_start)
*/

aie::vector<int32,32> data_buff;
aie::vector<int32,8> coeff_buff;
aie::accum<acc80,8> acc_buff = aie::sliding_mul<8, 8>(coeff_buff, 0, data_buff, 0);

Following are symmetric sliding multiplication examples.

/*template<unsigned Lanes, unsigned Points, int CoeffStep, int DataStepX, int DataStepY,
ElemBaseType CoeffType, ElemBaseType DataType, AccumElemBaseType AccumTag =
detail::default_accum_tag_t<CoeffType, DataType>>
struct aie::sliding_mul_sym_ops<Lanes, Points, CoeffStep, DataStepX, DataStepY, CoeffType,
DataType, AccumTag >

template<VectorOrOp VecCoeff, VectorOrOp VecData>
static constexpr accum_type mul_sym (const VecCoeff &coeff, unsigned coeff_start, const
VecData &data, unsigned data_start)
*/

aie::vector<cint16,16> data_buff;
aie::vector<int16,8> coeff_buff;
auto acc_buff = aie::sliding_mul_sym_ops<4, 16, 1, 1, 1, int16, cint16,
cacc48>::mul_sym(coeff_buff, 0, data_buff, 0);//usage 1

/*template<unsigned Lanes, unsigned Points, int CoeffStep = 1, int DataStepX = 1, int
DataStepY = DataStepX, AccumElemBaseType AccumTag = accauto, VectorOrOp VecCoeff = void,
VectorOrOp VecData = void>
auto sliding_mul_sym (const VecCoeff &coeff, unsigned coeff_start, const VecData &data,
unsigned data_start)
*/

auto acc_buff2 = aie::sliding_mul_sym<4, 16, 1, 1, 1>(coeff_buff, 0, data_buff, 0);//usage
2: equivalent to above

/*template<unsigned Lanes, unsigned Points, int CoeffStep = 1, int DataStepX = 1, int
DataStepY = DataStepX, AccumElemBaseType AccumTag = accauto, VectorOrOp VecCoeff = void,
VectorOrOp VecData = void>
auto sliding_mul_sym (const VecCoeff &coeff, unsigned coeff_start, const VecData &ldata,
unsigned ldata_start, const VecData &rdata, unsigned rdata_start)
*/

aie::vector<cint16,16> ldata,rdata;
aie::vector<int16,8> coeff;
auto acc = aie::sliding_mul_sym<4, 8, 1, 1, 1>(coeff, 0, ldata, 0, rdata, 8);//symmetric
sliding_mul using two data buffers.

Note: All buffers in sliding multiplication must be considered circular. They go back to the start after they
reach the end.

The following figures show how the previous symmetric examples are computed.

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=51

Figure 12: sliding_mul_sym_ops Usage Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

0 1 2 3 4 5 7 7 6 5 4 3 2 1 0

0 1 3 4 5 6 7 6 5 4 3 2 1 02

data

coeff

DataStepY

CoeffStep Points

Lanes

out[0]=coeff[0]*(data[0]+data[15])+…+coeff[7]*(data[7]+data[8])

out[1]=coeff[0]*(data[1]+data[16])+…+coeff[7]*(data[8]+data[9])

out[2]=coeff[0]*(data[2]+data[17])+…+coeff[7]*(data[9]+data[10])

out[3]=coeff[0]*(data[3]+data[18])+…+coeff[7]*(data[10]+data[11])

auto acc_buff= aie::sliding_mul_sym_ops<4, 16, 1, 1, 1, int16, cint16, cacc48>::mul_sym(coeff_buff, 0, data_buff, 0);

CoeffStep DataStepX

Lanes Points

CoeffType DataType AccumTag

DataStepY

7

7

5

7

Equivalent: auto acc_buff2 = aie::sliding_mul_sym<4, 16, 1, 1, 1>(coeff_buff, 0, data_buff, 0);

DataStepX DataStepX

CoeffStep

coeff_start data_start

X25779-092921

Figure 13: sliding_mul_sym Function with Two Data Buffers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

0 1 2 3 4 5 7 7 6 5 4 3 2 1 0

0 1 3 4 5 6 7 6 5 4 3 2 1 02

data

coeff

DataStepY

CoeffStep Points

Lanes

out[0]=coeff[0]*(ldata[0]+rdata[8])+…+coeff[7]*(ldata[7]+rdata[1])

out[1]=coeff[0]*(ldata[1]+rdata[9])+…+coeff[7]*(ldata[8]+rdata[2])

out[2]=coeff[0]*(ldata[2]+rdata[10])+…+coeff[7]*(ldata[9]+rdata[3])

out[3]=coeff[0]*(ldata[3]+rdata[11])+…+coeff[7]*(ldata[10]+rdata[4])

7

7

5

7

DataStepX

DataStepX

CoeffStep

auto acc = aie::sliding_mul_sym<4, 8, 1, 1, 1>(coeff, 0, ldata, 0, rdata, 8);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15rdata

X25780-092921

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=52

Matrix Multiplications - mmul
The AI Engine API encapsulates the matrix multiplication functionality in the aie::mmul class
template. This class template is parametrized with the matrix multiplication shape (M*K*N), the
data types and, optionally, the requested accumulation precision. For the supported shapes, see
Matrix Multiplication.

It defines one function for the initial multiplication (mul) and one function for multiply-add (mac).
aie::mmul objects can be initialized from vectors or accumulators so that they can be used in
chained computations where partial results are sent over the cascade.

The resulting class defines a function that performs the multiplication and a data type for the
result that can be converted to an accumulator/vector. The function interprets the input vectors
as matrices as described by the shape parameters.

The following is a sample code to compute C(2x64) = A(2x8) * B(8x64) matrix multiplication,
using 2*4*8 mode of mmul. One iteration of the loop does, C0(2x8) = A0(2x4) * B0(4x8) +
A1(2x4) * B1(4x8), where A0 is left half of A, A1 is right half of A, B0 is upper left 4x8 matrix of
B, B1 is lower left 4x8 matrix of B, and C0 is leftmost 2x8 matrix of C.

The data for all matrices are assumed to be row-based in memory. A is read a time into a vector.
Thus, it requires some data filtering for mmul. B0 and B1 are read a row (eight elements) a time.
Four rows are combined for mmul. The indexes of two rows of C0 need to be calculated and two
rows of C0 are written to memory separately.

Note: This example shows usage of mmul. It is not targeted for performance.

//For element mmul
const int M=2;
const int K=4;
const int N=8;
//Total matrix sizes
const int rowA=2;
const int colA=8;
const int colB=64;

__attribute__((noinline)) void matrix_mul(input_window<int16>* __restrict
data0, input_window<int16>* __restrict data1, output_window<int16>*
__restrict out){
 constexpr size_t sizeTileA = M * K;
 constexpr size_t sizeTileB = K * N;
 constexpr size_t sizeTileC = M * N;
 aie::vector<int16,sizeTileA*2> va=window_readincr_v<sizeTileA*2>(data0);
 //select left half matrix of A into va0
 aie::vector<int16,sizeTileA> va0=aie::filter_even(va,4);
 //select right half matrix of A into va1
 aie::vector<int16,sizeTileA> va1=aie::filter_odd(va,4);

 input_window<int16> data1_copy_mem;
 input_window<int16>* data1_copy=&data1_copy_mem;
 window_copy(data1_copy,data1);
 window_incr(data1_copy,256);

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 53Send Feedback

http://cervino-doc/aie_api/aie/HEAD/group__group__mmul.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=53

 aie::vector<int16,N> vb0_[4];
 aie::vector<int16,N> vb1_[4];
 aie::vector<int16,sizeTileC> vc;

 for(int i=0;i<colB/N;i++)
 chess_prepare_for_pipelining
 {
 for(int j=0;j<4;j++){
 vb0_[j]=window_read_v<8>(data1);
 window_incr(data1,64);
 vb1_[j]=window_read_v<8>(data1_copy);
 window_incr(data1_copy,64);
 }

 aie::mmul<M,K,N,int16,int16> m;
 m.mul(va0,aie::concat(vb0_[0],vb0_[1],vb0_[2],vb0_[3]));
 m.mac(va1,aie::concat(vb1_[0],vb1_[1],vb1_[2],vb1_[3]));
 vc=m.to_vector(15);
 window_write(out,vc.extract<8>(0));
 window_incr(out,64);
 window_write(out,vc.extract<8>(1));
 window_incr(out,72);

 window_incr(data1,264);
 window_incr(data1_copy,264);
 }

}

API Operation Examples
The following example takes two vectors with reals in rva and imaginary in rvb (with type
aie::vector<int32,8>) and creates a new complex vector, using the offsets to interleave
the values as required.

aie::vector<int32,8> rva,rvb;
auto rv=aie::interleave_zip(rva,rvb,1);
aie::vector<cint32,8>
cv=aie::concat(rv.first.cast_to(),rv.second.cast_to());

The following example shows how to extract real and imaginary portion of a vector cv with type
aie::vector<cint32,8>.

aie::vector<cint32,8> cv;
aie::vector<int32,16> re_im=cv.cast_to<int32>();
aie::vector<int32,8> re=aie::filter_even(re_im,1);
aie::vector<int32,8> im=aie::filter_odd(re_im,1);

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=54

aie::broadcast can be used to set every element of a vector to a given value. The following
example shows how to implement a function to set all four elements in a vector to a constant
value.

aie::vector<int32,8> v1=aie::broadcast<int32,8>(100); //set all elements to
100

The following example shows how to use aie::broadcast to set multiple values repeatedly in
the vector.

alignas(aie::vector_decl_align) int16
init_data[16]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
aie::vector<int16,32>
buff=aie::broadcast<cint32,8>(*(cint32*)init_data).cast_to<int16>();//set 0
1 2 3 repeatedly into buff
//buff=0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

The following example shows how to multiply each element in rva by the first element in rvb.
This is efficient for a vector multiplied by constant value.

aie::vector<int32,8> v1;
aie::accum<acc80,8> acc = aie::mul(v1,a);

The following examples show how to multiply each element in rva by its corresponding element
in rvb.

aie::vector<int32,8> va,vb;
aie::accum<acc80,8> acc=aie::mul(va,vb);

The following examples show how to perform matrix multiplication for int8 x int8 data types
with mmul intrinsic, assuming that data storage is row based.

//Z_{2x8} * X_{8x8} = A_{2x8}
aie::vector<int8,16> Z;
aie::vector<int8,64> X;
aie::mmul<2,8,8,int8,int8> m;
m.mul(Z,X);
//Z_{4x8} * X_{8x4} = A_{4x4}
aie::vector<int8,32> Z;
aie::vector<int8,32> X;
aie::mmul<4,8,4,int8,int8> m;
m.mul(Z,X);

For more information about vector lane permutations, refer to the Versal ACAP AI Engine Intrinsics
Documentation (UG1078).

Chapter 3: Introduction to Scalar and Vector Programming

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=55

Chapter 4

Kernel Optimization

Loops
The AI Engine has a zero-overhead loop structure that does not incur any branch control
overhead for comparison and branching thus reducing the inner loop cycle count. Pipelining
allows the compiler to add pre-amble and post-amble so that the instruction pipeline is always
full during loop execution. With a pipelined loop, a new iteration can be started before the
previous one ends to achieve higher instruction level parallelism.

The following figure shows the assembly code of a zero-overhead loop. Note that two vector
loads, one vector store, one scalar instruction, two data moves, and one vector instruction are
shown in order in different slots.

Figure 14: Assembly Code of Zero-Overhead Loop

The following pragmas work together to direct the compiler to pipeline the loop and let it know
that the loop will always be executed at least three times.

for (int i=0; i<N; i+=2)
 chess_prepare_for_pipelining
 chess_loop_range(3,)

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=56

The chess_loop_range(<minimum>, <maximum>) tells the compiler that the
corresponding loop is executed at least <minimum> times, and at most <maximum> times,
where <minimum> and <maximum> are non-negative constant expressions, or can be omitted.
When omitted, <minimum> defaults to 0, and <maximum> defaults to the maximum preset in
the compiler. While <maximum> is not relevant for the pipeline implementation, <minimum>
guides the pipeline implementation.

The <minimum> number defines how many loop iterations are executed at a minimum each time
the loop is executed. The software pipeline is then tuned to allow at least that many iterations to
execute in parallel if possible. It also determines that checking the boundaries for the loop is not
necessary before the <minimum> number of iterations are executed.

The loop range pragma is not needed if the loop range is a compile time constant. In general, the
AI Engine compiler reports the theoretical number best suited for optimum pipelining of an
algorithm. If the range specification is not optimal, the compiler would issue a warning and
suggest the optimal range. Towards that end, it is okay to initially set the <minimum> to one
[chess_loop_range(1,)] and observe the theoretical best suited <minimum> being
reported by the compiler.

Warning in "matmul_vec16.cc", line 10: (loop #39)
further loop software pipelining (to 4 cycles) is feasible with
`chess_prepare_for_pipelining'
but requires a minimum loop count of 3
... consider annotating the loop with `chess_loop_range(3,)' if applicable,
... or remove the current `chess_loop_range(1,)` annotation

At this point, you can choose to update the <minimum> number to the reported optimum.

This second part of the pipeline implementation can be a reason for potential deadlocks in the AI
Engine kernels if the actual <minimum> number of iterations is not reached. For this reason, you
must ensure that the number of iterations is always at least the number specified in the
chess_loop_range directive.

Loop carried dependencies impact the vectorization of code. If an inner loop dependency cannot
be removed, a strategy to step out a level and manually unroll where there are (effectively)
multiple copies of the inner loop running in parallel.

Try to avoid sequential load operations to fill a vector register completely before use. It is best to
interleave loads with aie::sliding_mul functions, where the MAC and loads can be done in
the same cycle.

buff.insert(3,readincr_v<4>(sig_in));
acc = aie::sliding_mul<4,8>(coe,0,buff,4);
writeincr_v4(cascadeout,acc);

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=57

In certain use cases loop rotation, which rotates the instructions inside the loop, can be
beneficial. Instead of loading data into a vector at the start of a loop, consider loading a block of
data for the first iteration before the loop, and then for the next iteration near the end of the
loop. This will add additional instructions but shorten the dependency length of the loop which
helps to achieve an ideal loop with a potentially lower loop range.

// Load starting data for first iteration
aie::vector<cint16,16> buff = delay_line;

for (unsigned int i = 0; i < LSIZE; ++i)
chess_prepare_for_pipelining
chess_loop_range(4,)
{
 //template <unsigned Lanes, unsigned Points, int CoeffStep = 1, int
DataStepX = 1, int DataStepY = DataStepX, AccumElemBaseType AccumTag =
accauto, VectorOrOp VecCoeff = void, VectorOrOp VecData = void>
 //auto sliding_mul (const VecCoeff &coeff, unsigned coeff_start, const
VecData &data, unsigned data_start)
 buff.insert(2,readincr_v<4>(sig_in));
 acc = aie::sliding_mul<4,8>(coe,0,buff,0);
 writeincr_v4(cascadeout,acc);

 buff.insert(3,readincr_v<4>(sig_in));
 acc = aie::sliding_mul<4,8>(coe,0,buff,4);
 writeincr_v4(cascadeout,acc);

 buff.insert(0,readincr_v<4>(sig_in));
 acc = aie::sliding_mul<4,8>(coe,0,buff,8);
 writeincr_v4(cascadeout,acc);

 buff.insert(1,readincr_v<4>(sig_in));
 acc = aie::sliding_mul<4,8>(coe,0,buff,12);
 writeincr_v4(cascadeout,acc);
}

Software Pipelining of Loops
This section dives into software pipelining of loops. This is an important concept that enables the
AI Engine to concurrently execute different parts of a program. For example, a loop that requires
a total of nine cycles to execute through one iteration is shown in the following figure, where
sequential execution all the way to a full overlap pipelining is illustrated.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=58

Figure 15: Pipelining Example

Sequential Execution:
1
2
3
4
5
6
7
8
9

Iteration 1

Iteration 2

Iteration 3

Partial Overlap:

1
2
3
4
5
6
7
8
9

Iteration 1

Iteration 2

Iteration 3

Full Overlap:

1
2
3
4
5
6
7
8
9

Iteration 1
Iteration 2

Iteration 3

X23294-092619

Counting the cycles through each of these examples, it is clear that the sequential execution
requires 27 cycles to fully execute the three loop iterations, while the partially overlapped
pipeline requires 13 cycles, and the fully pipelined loop requires only 11 cycles. From a
performance perspective, it is therefore desirable to have a fully overlapping pipeline. However,
this is not always possible, because resource constraints, as well as inter-iteration loop
dependencies can prevent a full overlap (see the following figure).

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=59

Figure 16: Dependencies in Pipelining

Load
2x256

Load
2x256

Use A

Update
A

2

3

1

4

5

6

7

8

9

Load
2x256

Load
2x256

Use A

Update
A

2

3

1

4

5

6

7

8

9

Load
2x256

Load
2x256

Use A

Update
A

Iteration 1

Iteration 2

Dependency by Resource ConstraintSingle Loop Iteration Code Dependency

Load
2x256

Load
2x256

Use A

Update
A

2

3

1

4

5

6

7

8

9

Load
2x256

Load
2x256

Use A

Update
A

Iteration 1

Iteration 2

Iteration x-1

Iteration x

Iteration x+1

Iteration x+2

Iteration x+3

Iteration x+4

Iteration x+5

Total Concurrent Execution = 5

X24816-111120

In this example, the program performs load A (2 x 256-bit) in cycle 2, load B (2 x 256-bit) in cycle
3, and in cycle 6 and 7 it is executes operations on loop variable A. The remaining instructions of
this iteration are of no importance with respect to the loop performance analysis.

Cycles 2 and 3 of this loop iteration execute 4 x 256-bit load operations. The required four loads
are executed in two cycles because the AI Engines can only execute two loads per cycle. This is
called a resource constraint. If the loop containing this iteration is supposed to be pipelined, this
constraint limits the overlap to no less than two cycles. Similarly, code dependencies between
iterations shown in cycle 6 and 7 can prevent additional overlap. In this case, the next iteration of
the loop requires the value of A to be updated before it can be used by the loop, thus, limiting
the overlap.

The AI Engine compiler reports on each loop in the following form.

Note: The core compilation report can be found in Work/aie/core_ID/core_ID.log and the -v
option is needed to generate the verbose report.

HW do-loop #397 in "testbench.cc", line 132: (loop #16) :
Critical cycle of length 2 : b67 -> b68 -> b67
Minimum length due to resources: 2
Scheduling HW do-loop #397
(algo 1a) -> # cycles: 9
(modulo) -> # cycles: 2 ok (required budget ratio: 1)
(resume algo) -> after folding: 2 (folded over 4 iterations)
 -> HW do-loop #397 in "testbench.cc", line 132: (loop #16) : 2 cycles
NOTICE: loop #397 contains folded negative edges
NOTICE: postamble created
Removing chess_separator blocks (all)

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=60

In the AI Engine compiler report shown previously, the section Critical cycle of length
provides feedback on code dependencies, while the Minimum length due to resources
indicates minimum overlap requirement due to resource constraints. The algo 1a line states the
total amount of cycles for a single iteration. Given these numbers, there are a maximum of five
iterations active at a time creating the pipeline.

The AI Engine compiler reports these five overlapping iterations (the current iteration plus four
folded iterations) in the resume algo line. In addition, it states the initiation interval (ii), the
number of cycles a single iteration has to execute before the following iteration is started, which
is two in this example.

In general, it is sufficient to provide the directive chess_prepare_for_pipelining to
instruct the compiler to attempt software pipelining. When the number of loop iterations is a
compile time constant, the chess compiler creates the optimum software pipeline.

In the case of a dynamic loop range (defined by a variable start/end), the compiler requires
additional information to create an effective pipeline loop structure. This is performed through
the directive chess_loop_range(<minimum>, <maximum>). Details about the
chess_loop_range(<minimum>, <maximum>) directive can be found in Loops.

Note: If the number of cycles in the loop exceeds 64 cycles, pipelining can be disabled by the compiler for
that loop. In this case, the AI Engine compiler reports the following message.

(algo 1a) -> # cycles: 167 (exceeds -k 64) -> no folding: 167
 -> HW do-loop #511 in "xxxx", line 794: (loop #8): 167 cycles

IMPORTANT! To generate the detailed report, it is important to enable verbose mode in Vitis IDE as
shown in the following image or enter the -v  option for the AI Engine compiler in the command line.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=61

Module scheduling report can be generated for module scheduled loops by specifying the option
-Xchess=main:backend.mist2.xargs=-ggraph for the AI Engine compiler. Module
scheduling report will be available for software pipelined loop with the name *_modulo.rpt
in Work/aie/core_ID/Release/chesswork/<mangled_function_name>/*.rpt,
where * is the block name. The module scheduling report also contains the information about
register live ranges for register files, which may be useful to find inefficiencies in register
assignment and can be improved by using chess_storage.

After compilation and linking is complete, Vitis Analyzer can be used to open the compile log for
an individual kernel. For more information about the Vitis Analyzer, see the Versal ACAP AI Engine
Programming Environment User Guide (UG1076).

Restrict Keyword
The C standard provides a specific pointer qualifier __restrict, intended to allow more
aggressive compiler optimization, by explicitly stating independence between data. The compiler,
by default, does not distinguish between different access of the same array. Thus, if an array is
accessed in the pipeline, it can hinder the pipeline from achieving higher interval between loops
with conservative assumption. This makes it is essential in some situations to use a __restrict
keyword to help guide the tool to achieve better performance. Care must be taken in using the
__restrict keyword because if the __restrict keyword is assigned to pointers in the same
scope, undefined behavior may be observed when the pointers are used. For detailed
information about the concept of the __restrict keyword, see Using the Restrict Keyword in
AI Engine Kernels in the AI Engine User Guide (UG1076).

Floating-Point Operations
The scalar unit floating-point hardware support includes square root, inverse square root, inverse,
absolute value, minimum, and maximum. It supports other floating-point operations through
emulation. The softfloat library must be linked in for test benches and kernel code using
emulation. For math library functions, the single precision float version must be used (for
example, use expf() instead of exp()).

The AI Engine vector unit provides eight lanes of single-precision floating-point multiplication
and accumulation. The unit reuses the vector register files and permute network of the fixed-
point data path. In general, only one vector instruction per cycle can be performed in fixed-point
or floating-point.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 62Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=jds1594304367008
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=jds1594304367008
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=62

Floating-point MACs have a latency of two-cycles, thus, using two accumulators in a ping-pong
manner helps performance by allowing the compiler to schedule a MAC on each clock cycle.

aie::accum<accfloat,8> acc1=aie::zeros<accfloat,8>();
aie::accum<accfloat,8> acc2=aie::zeros<accfloat,8>();
aie::vector<float,8> va,vb;
for(int i=0;i<32;i++)
chess_prepare_for_pipelining
{
 va=window_readincr_v<8>(data1);
 vb=window_readincr_v<8>(data2);
 acc1=aie::mac(acc1,va,vb);
 va=window_readincr_v<8>(data1);
 vb=window_readincr_v<8>(data2);
 acc2=aie::mac(acc2,va,vb);
}
aie::accum<accfloat,8> acc=aie::add(acc1,acc2.to_vector());
window_writeincr(out,acc);

There is a scalar float divide function aie::div,but there is no divide vector function at this
time. However, vector division can be implemented via an inverse and multiply as shown in the
following example.

aie::vector<float,8> vf_div,vf1,vf1_inv,vf2;
vf1_inv=aie::inv(vf1);
vf_div=aie::mul(vf1_inv,vf2);

The following API functions support operations on a scalar or all elements of a vector.

• aie::inv

• aie::sqrt

• aie::invsqrt

• aie::sin

• aie::cos

• aie::sincos: Same as sin and cos, but performs both operations and returns a std::pair
of vectors of result values. The first vector contains the sine values, the second contains the
cosine values

• aie::sincos_complex: Same as sincos, but returns both values as the real and imaginary
parts of a complex number (cos in the real part, sin in the imaginary part).

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=63

For aie::sin, aie::cos, and aie::sincos, the input can either be a float value in radians
or an integer. The floating-point range is [-Pi, Pi]. Integer values are handled as a fixed-point input
value in Q1.31 format scaled with 1/Pi (input value 2^31 corresponds to Pi). In this case, only the
upper 20-bit of the input value are used. According to input type, the returned value is either a
float or a signed Q.15 fixed-point format.

aie::vector<cint16,8> dds=aie::load_v<8>((cint16*)dds_stored);
phase_in += (phase_increment << 6);
auto [sin_,cos_] = aie::sincos(phase_in << 14) ;
cint16 scvalues={cos_,sin_};
dds.push(scvalues);
window_writeincr(owin, scvalues);

Using Vitis IDE and Reports
The Vitis IDE manages the system project with an AI Engine graph, PL kernels, and PS
application. Vitis IDE provides visual views for AI Engine kernel development and it is essential in
kernel, as well as PS application debugging.

The Vitis IDE provides a single node graph example that can be used as a starting point for single
kernel development. The Vitis IDE has a debug view which displays registers, variables, available
breakpoints, variables to register/memory mapping, internal/external memory contents,
disassembly view for instruction, and an instruction pipeline (pipeline view) for single AI Engine
kernel.

When launching the debug perspective, if Generate Profile is selected in debug configurations, it
will show the printf output in console and the Runtime Statistics window will show real-time
cycle count when stepping through instructions. The Generate Trace check box in debug
configurations is for generating event trace data which helps better understand when and how
events such as memory stall and stream stall have occurred. Event trace is helpful in performance
tuning.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=64

Figure 17: Debug Configurations

In debug perspective, debug commands resume, and step into, as well as step over are available.
The AI Engine source code is shown and it is possible to set breakpoint by double-clicking lines.
The windows Variables, Breakpoints, and Registers are available to look into data memory or
register status. The disassembly view is helpful in understanding how intrinsics are used,
especially how they are scheduled in pipeline. In the disassembly view, the button Open New
View can be used to open a new active window. Pipeline view allows you to correlate
instructions executed in a specific clock cycle with the labels in the microcode/disassembler
view.

Note: The pipeline view is only available for single AI Engine design and it is only enabled when the
Generate Profile check box is checked when debug is started.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=65

Figure 18: Debug Code

The generated code for an AI Engine (Col_Row.cc) includes the AI Engine kernels in the core
and wrapper code. From the AI Engine wrapper code, you can step into the AI Engine kernel code
by clicking multiple step-in buttons. Alternatively, you can also open the AI Engine kernel source
file from the design perspective and set breakpoints in the file. Multiple views, such as the
disassembly view, pipeline view, memory view, register view, and variables view can be used for
debug, as well as performance tuning.

Note: The number of breakpoints are limited to four for each tile. To set new breakpoints, beyond the
number allowed, you must clear existing breakpoints. The tool will issue error messages if you try and set
breakpoints beyond the number allowed.

The disassembly view displays the compiler generated microcode target to the hardware. C/C++
source code can also be embedded between the lines for source code referencing. The
microcode helps understand the compiled result, especially the loop pipelining result. The
following figure shows the microcode generated for a pipelined loop. By scrolling or stepping in
the disassembly view, the loop in the kernel can be found. The loop iterates from zero-overhead
loop start (ZLS) to zero-overhead loop end (ZLE). It can be seen how load instructions and MAC
instructions are placed to be pipelined. The preamble and postamble instructions are placed
before and after the zero-overhead loop body to fill and flush the pipeline stages.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=66

Figure 19: Disassembly View for Loop Pipelining

Linker memory map reports for AI Engines cores can be found in Work/aie/core_ID/
Release/core_id.map. It lists the locations of the program and data memories by functions,
static variables, and the software stack. From these reports, the stack size, program memory size,
and global buffers, as well as their sizes can be extracted. An xml version of the linker report
(core_id.map.xml) can be generated by specifying the option -Xchess=
\"main:bridge.xargs=-fB\" to the AI Engine compiler.

Work/<name>.aiecompile_summary is the compilation summary that can be opened by the
Vitis Analyzer. Work/reports contains multiple reports for the graph compilation result such as,
kernels and buffers mapping result. Refer to the Versal ACAP AI Engine Programming Environment
User Guide (UG1076) for additional information about AI Engine compiler outputs.

Chapter 4: Kernel Optimization

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 67Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=67

Chapter 5

Interface Considerations
While single kernel programming focuses on vectorization of algorithm in a single AI Engine,
multiple kernel programming considers several AI Engine kernels with data flowing between
them.

The ADF graph can contain a single kernel or multiple kernels interacting with PS, PL, and global
memory. Each AI Engine kernel has a runtime ratio. This number is computed as a ratio of the
number of cycles taken by one invocation of a kernel (processing one block of data) to the cycle
budget. The cycle budget for an application is typically fixed according to the expected data
throughput and the block size being processed. The runtime ratio is specified as a constraint for
every AI Engine kernel in the ADF graph.

The AI Engine compiler allocates multiple kernels into a single AI Engine if their combined total
runtime ratio is less than one and multiple kernels fit in the AI Engine program memory.
Alternatively, the compiler can allocate them into multiple AI Engines.

To optimally use hardware resources, it is critical to understand the different methods available
to transfer data between the ADF graph and PS, PL, and global memory, transfer data between
kernels, balance the data movement, and minimize memory or stream stalls as much as possible
which are covered in the following sections.

Data Movement Between AI Engines
Generally, there are two methods to transfer data between kernels–window or stream. When
using the window, data transfers can be realized as ping-pong buffers or optionally, using a single
buffer. AI Engine tools will take care of buffer synchronization between the kernels. Designers
need to decide the window size and buffer location between kernels through their partition of
the application. If an overlap is needed between different windows of the data, AI Engine tools
provide options for setting a margin for the window, that is, to copy the overlap of data by AI
Engine tools automatically.

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=68

When using the stream, the data movement involves two input as well as two output stream
ports, along with one dedicated cascade stream input port and output port. Stream ports can
provide 32-bit per cycle or, 128-bit per four cycles on each port. Stream interfaces are
bidirectional and can read or write neighboring or non-neighboring AI Engines by stream ports.
However, cascade stream ports are unidirectional and only provide a one-way access between
the neighboring AI Engines.

Data Communication via Shared Memory
In the case where multiple kernels fit in a single AI Engine, communication between two or more
consecutive kernels can be established using a common buffer in the shared memory. In this
case, only a single buffer is needed because the kernels are time-multiplexed.

For cases where the kernels are in separate but neighboring AI Engines, the communication can
be carried out through the shared memory module that use ping-pong buffers. These buffers are
on separate memory banks so access conflicts are avoided. The synchronization is done through
locks. The input and output buffers for the AI Engine kernel are ensured to be ready by the locks
associated with the buffers. In this type of communication, routing resources are saved and data
transferring latency is eliminated because DMA and AXI4-Stream interconnect are not needed.

Data Communication via Memory and DMA
For non-neighboring AI Engines, similar communication can be established using the DMA in the
memory module associated with each AI Engine. Ping-pong buffers in each memory module are
used and synchronization is carried out with locks. There is increased communication latency as
well as memory resources in comparison to shared memory communication.

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=69

Figure 20: Data Communication via Memory and DMA

DMA

Ping

Pong

Memory Banks

AI Engine
1

DMA

Ping

Pong

Memory Banks

AI Engine
2

X24971-122120

Data Communication via AXI4-Stream Interconnect
AI Engines can directly communicate through the AXI4-Stream interconnect without any DMA
and memory interaction. Data can be sent from one AI Engine to another or broadcast through
the streaming interface. The data bandwidth of a streaming connection is 32-bit per cycle and
built-in handshake and backpressure mechanisms are available.

For streaming input and output interfaces, when the performance is limited by the stream
number, the AI Engine is able to use two streaming inputs or two streaming outputs in parallel,
instead of one streaming input or output. To use two parallel streams, it is recommended to use
the following pairs of macros, where idx1 and idx2 are the two streams. Add the __restrict
keyword to stream ports to ensure they are optimized for parallel processing.

READINCR(SS_rsrc1, idx1) and READINCR(SS_rsrc2, idx2)
READINCRW(WSS_rsrc1, idx1) and READINCRW(WSS_rsrc2, idx2)
WRITEINCR(MS_rsrc1, idx1, val) and WRITEINCR(MS_rsrc2, idx2, val)
WRITEINCRW(WMS_rsrc1, idx1, val) and WRITEINCRW(WMS_rsrc2, idx2, val)

Following is a sample code to use two parallel input streams to achieve pipelining with interval 1.
Interval 1 means that two read, one write, and one add are in every cycle.

void simple(input_stream_int32 * __restrict data0,
 input_stream_int32 * __restrict data1,
 output_stream_int32 * __restrict out) {
 for(int i=0; i<1024; i++)
 chess_prepare_for_pipelining
 {

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=70

 int32_t d = READINCR(SS_rsrc1, data0) ;
 int32_t e = READINCR(SS_rsrc2, data1) ;
 WRITEINCR(MS_rsrc1,out,d+e);
 }
}

The stream connection can be unicast or multicast. Note that in the case of multicast
communication, the data is sent to all the destination ports at the same time and only when all
destinations are ready to receive data.

Window vs. Stream in Data Communication
AI Engine kernels in the data flow graph operate on data streams that are infinitely long
sequences of typed values. These data streams can be broken into separate blocks called
windows and processed by a kernel. Kernels consume input blocks of data and produce output
blocks of data. An initialization function can be specified to run before the kernel starts
processing input data. The kernel can read scalars or vectors from the memory, however, the
valid vector length for each read and write operation must be either 128 or 256 bits. Windows of
input data and output buffer are locked for kernels before they are executed. Because the input
data window needs to be filled with input data before kernel start, it increases latency compared
to stream interface. The kernel can perform random access within a window of data and there is
the ability to specify a window margin for algorithms that require some number of bytes from the
previous sample.

Kernels can also access the data streams in a sample-by-sample fashion. Streams are used for
continuous data and using blocking or non-blocking calls to read and write. Cascade stream only
supports blocking access. The AI Engine supports two 32-bit stream input ports and two 32-bit
stream output ports. Valid vector length for reading or writing data streams must be either 32 or
128 bits. Packet streams are useful when the number of independent data streams in the
program exceeds the number of hardware stream channels or ports available.

A PLIO port attribute is used to make external stream connections that cross the AI Engine to PL
boundary. The PLIO port can be connected to the AI Engine window buffer via DMA S2MM or
MM2S channels, or directly to AI Engine stream interfaces. Both of these connections (PL
from/to window or stream) are limited by the stream interface of AI Engine tiles, that has a
limit of 32-bit per cycle. However, for the window interface, the ping or pong buffer of the
window needs to be filled up before the kernel can start. Therefore, window interfaces from / to
PL usually have a larger latency than a stream interface when both fit into design architecture.

The following table summarizes the differences in window and stream connections between
kernels.

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=71

Table 8: Window vs. Stream Connections

Connection Margin Packet
Switching

Back
Pressure Lock Max throughput by

VLIW (per cycle)
Multicast

as a
Source

Window Yes Yes Yes1 Yes 2*256-bit load + 1*256-bit
store

No

Stream No Yes Yes No 2*32-bit read + 1*32-bit
write, or
1*32-bit read + 2*32-bit
write

Yes

Notes:
1. Window back pressure, acquired or not, occurs on the whole window of data.

Graph code is C++ and available in a separate file from kernel source files. The compiler places
the AI Engine kernels into the AI Engine array, taking care of the memory requirements and
making all the necessary connections for data flow. Multiple kernels with low core usage can be
placed into a single tile.

For a complete overview of graph programming with AI Engine tools, refer to the Versal ACAP AI
Engine Programming Environment User Guide (UG1076).

Free Running AI Engine Kernel
The AI Engine kernel can always be running using graph::run(-1). This way the kernel will
restart automatically after the last iteration is complete.

Note: graph::run() without an argument runs the AI Engine kernels for a previously specified number
of iterations (which is infinity by default if the graph is run without any arguments). If the graph is run with
a finite number of iterations, for example, mygraph.run(3); mygraph.run(); the second run call will
also run for three iterations.

However, it requires input buffers and output buffers to be ready before it can start. Thus, it has
a small overhead between kernel execution iterations. This section describes a method to
construct a type of kernel that has zero overhead and runs forever. It is called the free running AI
Engine kernel.

The free running kernels can only have streaming interfaces. Loops with infinite iterations can be
inside the kernel. For example:

void free_running_aie(input_stream_cint16 * in,
 output_stream_cint16 * out) {
 while(true){ //This can be syntax supported by C++, for example: for(;;)
 writeincr(out, readincr(in));
 }
}

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 72Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=72

The free running kernel must have its own graph defined. This graph must not have any other
non-free running kernels, because the graph never stops and non-free running kernels will lose
control after being started. The graph containing the free running kernel must be a top-level
graph that can be connected to other graphs, or it can be connected to PLIO or GMIO. A sample
connection between the free running graph and other graphs is shown as follows.

simpleGraph mygraph; //normal graph
freeGraph mygraph_free; //graph with free running kernel
simulation::platform<1,1> platform("data/input.txt", "data/output.txt");
connect<> net0(platform.src[0], mygraph.in);
connect<> net1(mygraph.sout,mygraph_free.in);
connect<> net2(mygraph_free.out,mygraph.sin);
connect<> net3(mygraph.out, platform.sink[0]);

Figure 21: Free Running Graph Connection

The free running graph can be started using mygraph_free.run(-1) or automatically started
after loading.

Run-Time Parameter Specification
Run-time parameters (RTP) is another way to pass data to the kernels. Two types of execution
model for run-time parameters are supported.

1. Asynchronous parameters can be changed at any time by either a controlling processor such
as the Arm®, or by another AI Engine. They are read each time a kernel is invoked. This
means that the update of parameters occurs between different executions of the kernel, but
it does not require the update to take place in a specific pattern. For example, these types of
parameters are used as filter coefficients that change infrequently.

2. Synchronous parameters (triggering parameters) block a kernel from execution until these
parameters are written by a controlling processor such as the Arm, or by another AI Engine.
Upon a write, the kernel reads the new updated value and executes once. After completion, it
is blocked from executing until the parameter is updated again. This allows a different type of
execution model from the normal streaming model, which can be useful for certain updating
operations where blocking synchronization is important.

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=73

The following figure shows how the AI Engine RTP is realized in hardware. The source of RTP can
be a port to be written by the controlling processor, or RTP output by an AI Engine kernel. The
destination of RTP can be an output to be read by controlling processor, or RTP input of an AI
Engine kernel. Source and destination will use ping-pong buffers for the RTP data transferring.
Both source and destination will read a selector value to determine if ping or pong of RTP value
must be written or read. Before write or read, source and destination will try to lock the buffers
before starting kernel executions.

Figure 22: AI Engine RTP

RTP Port /
AI Engine 1

AI Engine 2 /
RTP Port

RTP Data

PING

PONG
Never

release
Never
start

Selector

LockLock

X24813-111120

Cascade of RTP is supported as shown in the following figure. Only synchronous-to-synchronous
or asynchronous-to-asynchronous modes are allowed for the RTP connection. Async-to-sync or
sync-to-async modes are not allowed. RTP port is not allowed to broadcast to multiple
destinations.

Figure 23: RTP Cascade

RTP Port /
AI Engine 1 AI Engine 2 AI Engine 3 /

RTP Port

RTP Data RTP Data

RTP Cascade

PING

PONG

PING

PONG

X24814-111120

It is very important to understand that the RTP interaction between AI Engine kernels only
happens in kernel execution boundaries. This means that the RTP output of the source kernel can
only be read by destination kernel when the source kernel has completed its current iteration. If
the source and destination rely on each other before finishing or starting kernel executions, it
may cause deadlock. For example, if the source and destination are connected by cascade stream
besides the RTP connection, the cascade stream will stall the source AI Engine after it is full.
However, because the source kernel has not finished its execution, it will not release the RTP
data. Thus, the destination AI Engine will never get RTP data and will never start.

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=74

Figure 24: RTP Cascade Deadlock Example

AI Engine 1 AI Engine 2

RTP Data

PING

PONG

Cascade
Stream

Never
release

Never
start

Full stall
X24815-111120

Note: RTP ports of AI Engine kernels will need to be acquired lock and released lock before and after kernel
execution. This will cause a small overhead for each kernel iteration. When thinking of partitioning the data
into frames, the overhead must be taken into consideration according to system level performance
requirements.

For more information about run-time parameter usage, refer to the Versal ACAP AI Engine
Programming Environment User Guide (UG1076).

AI Engine and PL Kernels Data
Communication

The AI Engine array interface contains modules to communicate between AI Engines and PL
kernels using AXI4-Stream connections. Generally, PL interfaces produce or consume data
through stream interfaces. They connect through the AI Engine stream with AI Engine kernels.
Based on whether window or stream data is communicated by the AI Engine kernels, DMA and
ping-pong buffers could be involved.

Note that PL kernels run at a lower frequency than AI Engine kernels. Data must cross the clock
domains (CDC) between the AI Engine clock and PL clock. The Vitis™ environment handles the
CDC path automatically. It is recommended to run the PL kernel frequency as an integer factor of
the AI Engine frequency if possible. For instance, as ½ or ¼ of the AI Engine clock frequency.

For more information about AI Engine to PL rate matching considerations, refer to the Versal
ACAP AI Engine Programming Environment User Guide (UG1076).

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 75Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=75

DDR Memory Access through GMIO
The main data streams from and to the AI Engine are the AI Engine to PL streaming interface and
GMIO, which is used to make external memory-mapped connections to or from the global
memory. The interface between PS and AI Engine can target low throughput purposes such as,
configuration. The AI Engine-GMIO directly connects to the DDR memory through the AI
Engine-NoC master unit (NMU).

The bandwidth of AI Engine GMIO is affected by the number of NMUs and DDR memory
controllers used in the platform.

The benefits of AI Engine GMIO include that it can directly access DDR memory, and it is not
only a virtual platform for AI Engine simulator, but also can work in hardware without PL kernels.
For more information about the GMIO programming model, refer to the Versal ACAP AI Engine
Programming Environment User Guide (UG1076).

Chapter 5: Interface Considerations

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 76Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=76

Appendix A

Single Kernel Programming using
Intrinsics

CAUTION! It is strongly recommended that you use AI Engine APIs for your designs. Usage of intrinsics
must only be considered for situations where the stringent performance needs of the design require
capabilities that are not covered by the AI Engine API. For example, the AI Engine API does not currently
support functionality provided by some intrinsics such as, fft_data_incr  and cyclic_add . While
AI Engine APIs support and abstract the main permute use cases, not all permute capabilities are covered.
Using intrinsics may allow you to close the performance gap required by your design.

An AI Engine kernel is a C/C++ program which is written using native C/C++ language and
specialized intrinsic functions that target the VLIW scalar and vector processors. The AI Engine
kernel code is compiled using the AI Engine compiler (aiecompiler) that is included in the Vitis™
core development kit. The AI Engine compiler compiles the kernels to produce ELF files that are
run on the AI Engine processors.

For more information on intrinsic functions, see the Versal ACAP AI Engine Intrinsics
Documentation (UG1078). AI Engine compiler and simulator are covered in the first few sections
of this chapter.

AI Engine supports specialized data types and intrinsic functions for vector programming. By
restructuring the scalar application code with these intrinsic functions and vector data types as
needed, you can implement the vectorized application code. The AI Engine compiler takes care of
mapping intrinsic functions to operations, vector or scalar register allocation and data movement,
automatic scheduling, and generation of microcode that is efficiently packed in VLIW
instructions.

The following sections introduce the data types supported and registers available for use by the
AI Engine kernel. In addition, the vector intrinsic functions that initialize, load, and store, as well
as operate on the vector registers using the appropriate data types are also described.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=77

To achieve the highest performance on the AI Engine, the primary goal of single kernel
programming is to ensure that the usage of the vector processor approaches its theoretical
maximum. Vectorization of the algorithm is important, but managing the vector registers,
memory access, and software pipelining are also required. The programmer must strive to make
the data for the new operation available while the current operation is executing because the
vector processor is capable of an operation every clock cycle. Optimizations using software
pipelining in loops is available using pragmas. For instance, when the inner loop has sequential or
loop carried dependencies it might be possible to unroll an outer loop and compute multiple
values in parallel. The following sections go over these concepts as well.

Intrinsics
For intrinsic function documentation, see the Versal ACAP AI Engine Intrinsics Documentation
(UG1078).

The intrinsic function documentation is organized by the different types of operations and data
types. The function calls at the highest level are organized in the documentation as follows:

• Load /Store Operations: About pointer dereferencing and pointer arithmetic, as well as
operations on streams.

• Scalar Operations: Operations on integer and floating point scalar values, configuration,
conversions, addressing, locks and events.

• Vector Conversions: Handling of vectors with different sizes and precisions.

• Vector Operations: Arithmetic operations performed on vectors.

• Application Specific Intrinsics: Intrinsics assisting in the implementation of a specific
application.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 78Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=78

Figure 25: Intrinsic Function Documentation

It is also available through the Vitis™ IDE.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=79

Figure 26: Intrinsics Documentation through the Vitis IDE

Introduction to Scalar and Vector
Programming

This section provides an overview of the key elements of kernel programming for scalar and
vector processing elements. The details of each element and optimization skills will be seen in
following sections.

The following example uses only the scalar engine. It demonstrates a for loop iterating through
512 int32 elements. Each loop iteration performs a single multiply of int32 a and int32 b storing
the result in c and writing it to an output window. The scalar_mul kernel operates on two input
blocks (window) of data input_window_int32 and produces an output window of data
output_window_int32.

The APIs window_readincr and window_writeincr are used to read and write to the
circular buffers outside the kernel. For additional details on the window APIs, see Window and
Streaming Data API in the AI Engine User Guide (UG1076).

void scalar_mul(input_window_int32* data1,
 input_window_int32* data2,
 output_window_int32* out){
 for(int i=0;i<512;i++)
 {
 int32 a=window_readincr(data1);
 int32 b=window_readincr(data2);
 int32 c=a*b;
 window_writeincr(out,c);
 }
}

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 80Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=80

The following example is a vectorized version for the same kernel.

void vect_mul(input_window_int32* __restrict data1,
 input_window_int32* __restrict data2,
 output_window_int32* __restrict out){
 for(int i=0;i<64;i++)
 chess_prepare_for_pipelining
 {
 v8int32 va=window_readincr_v8(data1);
 v8int32 vb=window_readincr_v8(data2);
 v8acc80 vt=mul(va,vb);
 v8int32 vc=srs(vt,0);

 window_writeincr(out,vc);
 }
}

Note the data types v8int32 and v8acc80 used in the previous kernel code. The window API
window_readincr_v8 returns a vector of 8 int32s and stores them in variables named va and
vb. These two variables are vector type variables and they are passed to the intrinsic function
mul which outputs vt which is a v8acc80 data type. The v8acc80 type is reduced by a shift
round saturate function srs that allows a v8int32 type, variable vc, to be returned and then
written to the output window. Additional details on the data types supported by the AI Engine
are covered in the following sections.

The __restrict keyword used on the input and output parameters of the vect_mul function,
allows for more aggressive compiler optimization by explicitly stating independence between
data.

chess_prepare_for_pipelining is a compiler pragma that directs kernel compiler to
achieve optimized pipeline for the loop.

The scalar version of this example function takes 1055 cycles while the vectorized version takes
only 99 cycles. As you can see there is more than 10 times speedup for vectorized version of the
kernel. Vector processing itself would give 8x the throughput for int32 multiplication but has a
higher latency and would not get 8x the throughput overall. However, with the loop
optimizations done, it can get close to 10x. The sections that follow describe in detail the various
data types that can be used, registers available, and also the kinds of optimizations that can be
achieved on the AI Engine using concepts like software pipelining in loops and keywords like
__restrict.

AI Engine Data Types
The AI Engine scalar unit supports signed and unsigned integers in 8, 16, and 32-bit widths, along
with some single-precision floating-point for specific operations.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=81

The AI Engine vector unit supports integers and complex integers in 8, 16, and 32-bit widths,
along with real and complex single-precision floating-point numbers. It also supports accumulator
vector data types, with 48 and 80-bit wide elements. Intrinsic functions such as absolute value,
addition, subtraction, comparison, multiplication, and MAC operate using these vector data
types. Vector data types are named using a convention that includes the number of elements,
real or complex, vector type or accumulator type, and bit width as follows:

v{NumLanes}[c]{[u]int|float|acc}{SizeofElement}

Optional specifications include:

• NumLanes: Denotes the number of elements in the vector which can be 2, 4, 8, 16, 32, 64, or
128.

• c: Denotes complex data with real and imaginary parts packed together.

• int: denotes integer vector data values.

• float: Denotes single precision floating point values.

Note: There are no accumulator registers for floating-point vectors.

• acc: Denotes accumulator vector data values.

• u: Denotes unsigned. Unsigned only exists for int8 vectors.

• SizeofElement: Denotes the size of the vector data type element.

• 1024-bit integer vector types are vectors of 8-bit, 16-bit, or 32-bit vector elements. These
vectors have 16, 32, 64, or 128 lanes.

• 512-bit integer vector types are vectors of 8-bit, 16-bit, 32-bit, or 64-bit vector elements.
These vectors have 4, 8, 16, 32, or 64 lanes.

• 256-bit integer vector types are vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit vector
elements. These vectors have 1, 2, 4, 8, 16, or 32 lanes.

• 128-bit integer vector types are vectors of 8-bit, 16-bit, or 32-bit vector elements. These
vectors have 2, 4, 8, or 16 lanes.

• Accumulator data types are vectors of 80-bit or 48-bit elements These vectors have 2, 4, 8,
or 16 lanes.

The total data-width of the vector data-types can be 128-bit, 256-bit, 512-bit, or 1024-bit. The
total data-width of the accumulator data-types can be 320/384-bit or 640/768-bit.

For example, v16int32 is a sixteen element vector of integers with 32 bits. Each element of the
vector is referred to as a lane. Using the smallest bit width necessary can improve performance
by making good use of registers.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=82

Figure 27: v16int32

32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b 32b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X25021-011321

Vector Registers
All vector intrinsic functions require the operands to be present in the AI Engine vector registers.
The following table shows the set of vector registers and how smaller registers are combined to
form large registers.

Table 9: Vector Registers

128-bit 256-bit 512-bit 1024-bit
vrl0

wr0

xa

ya

N/A
vrh0

vrl1
wr1

vrh1

vrl2
wr2

xb yd (msbs)
vrh2

vrl3
wr3

vrh3

vcl0
wc0

xc N/A N/A
vch0

vcl1
wc1

vch1

vdl0
wd0

xd N/A yd (lsbs)
vdh0

vdl1
wd1

vdh1

The underlying basic hardware registers are 128-bit wide and prefixed with the letter v. Two v
registers can be grouped to form a 256-bit register prefixed with w. wr, wc, and wd registers are
grouped in pairs to form 512-bit registers (xa, xb, xc, and xd). xa and xb form the 1024-bit wide
ya register, while xd and xb form the 1024-bit wide yd register. This means the xb register is
shared between ya and yd registers. xb contains the most significant bits (MSBs) for both ya and
yd registers.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=83

The vector register name can be used with the chess_storage directive to force vector data
to be stored in a particular vector register. For example:

v8int32 chess_storage(wr0) bufA;
v8int32 chess_storage(WR) bufB;

When upper case is used in the chess_storage directive, it means register files (for example,
any of the four wr registers), whereas lower case in the directive means just a particular register
(for example, wr0 in the previous code example) will be chosen.

Vector registers are a valuable resource. If the compiler runs out of available vector registers
during code generation, then it generates code to spill the register contents into local memory
and read the contents back when needed. This consumes extra clock cycles.

The name of the vector register used by the kernel during its execution is shown for vector load/
store and other vector-based instructions in the kernel microcode. This microcode is available in
the disassembly view in Vitis IDE. For additional details on Vitis IDE usage, see Using Vitis IDE
and Reports.

Many intrinsic functions only accept specific vector data types but sometimes not all values from
the vector are required. For example, certain intrinsic functions only accept 512-bit vectors. If
the kernel code has smaller sized data, one technique that can help is to use the concat()
intrinsic to concatenate this smaller sized data with an undefined vector (a vector with its type
defined, but not initialized).

For example, the lmul8 intrinsic only accepts a v16int32 or v32int32 vector for its xbuff
parameter. The intrinsic prototype is:

v8acc80 lmul8 (v16int32 xbuff,
 int xstart,
 unsigned int xoffsets,
 v8int32 zbuff,
 int zstart,
 unsigned int zoffsets
)

The xbuff parameter expects a 16 element vector (v16int32). In the following example, there is
an eight element vector (v8int32) rva. The concat() intrinsic is used to upgrade it to a 16
element vector. After concatenation, the lower half of the 16 element vector has the contents of
rva. The upper half of the 16 element vector is uninitialized due to concatenation with the
undefined v8int32 vector.

int32 a[8] = {1, 2, 3, 4, 5, 6, 7, 8};
v8int32 rva = *((v8int32*)a);
acc = lmul8(concat(rva,undef_v8int32()),0,0x76543210,rvb,0,0x76543210);

For more information about how vector-based intrinsic functions work, refer to Vector Register
Lane Permutations.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=84

Accumulator Registers
The accumulation registers are 384 bits wide and can be viewed as eight vector lanes of 48 bits
each. The idea is to have 32-bit multiplication results and accumulate over those results without
bit overflows. The 16 guard bits allow up to 216 accumulations. The output of fixed-point vector
MAC and MUL intrinsic functions is stored in the accumulator registers. The following table
shows the set of accumulator registers and how smaller registers are combined to form large
registers.

Table 10: Accumulator Registers

384-bit 768-bit
aml0

bm0
amh0

aml1
bm1

amh1

aml2
bm2

amh2

aml3
bm3

amh3

The accumulator registers are prefixed with the letters 'am'. Two of them are aliased to form a
768-bit register that is prefixed with 'bm'.

The shift-round-saturate srs() intrinsic is used to move a value from an accumulator register to
a vector register with any required shifting and rounding.

v8int32 res = srs(acc, 8); // shift right 8 bits, from accumulator register
to vector register

The upshift ups() intrinsic is used to move a value from an vector register to an accumulator
register with upshifting:

v8acc48 acc = ups(v, 8); //shift left 8 bits, from vector register to
accumulator register

The set_rnd() and set_sat() instrinsics are used to set the rounding and saturation mode
of the accumulation result, while clr_rnd() and clr_sat() intrinsics are used to clear the
rounding and saturation mode, that is to truncate the accumulation result.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=85

Note that only when operations are going through the shift-round-saturate data path, the
shifting, rounding, or saturation mode will be effective. Some intrinsics only use the vector pre-
adder operations, where there will be no shifting, rounding, or saturation mode for configuration.
Such operations are adds, subs, abs, vector compares, or vector selections/shuffles. It is possible
to choose MAC intrinsics instead to do subtraction with shifting, rounding, or saturation mode
configuration. The following code performs subtraction between va and vb with mul instead of
sub intrinsics.

v16cint16 va, vb;
int32 zbuff[8]={1,1,1,1,1,1,1,1};
v8int32 coeff=*(v8int32*)zbuff;
v8acc48 acc = mul8_antisym(va, 0, 0x76543210, vb, 0, false, coeff, 0 ,
0x76543210);
v8int32 res = srs(acc,0);

Floating-point intrinsic functions do not have separate accumulation registers and instead return
their results in a vector register. The following streaming data APIs can be used to read and write
floating-point accumulator data from or to the cascade stream.

v8float readincr_v8(input_stream_accfloat * str);
v4cfloat readincr_v4(input_stream_caccfloat * str);
void writeincr_v8(output_stream_accfloat* str, v8float value);
void writeincr_v4(output_stream_caccfloat* str, v4cfloat value);

For more information about the window and streaming data APIs, refer to Window and
Streaming Data API in the AI Engine User Guide (UG1076).

The data size in memory is aligned to the next power of 2 (here 64b for acc48), hence it is best
to use sizeof to determine the position on the elements. The following code is an example to
print accumulator vector registers.

v8acc48 vacc; //cascade value
const int SIZE_ACC48=sizeof(v8acc48)/8;
for(int i=0;i<8;i++){//8 number
 int8 *p=(int8*)&vacc+SIZE_ACC48*i;//point to start of each acc48
 printf("acc value[%d]=0x",i);
 for(int j=5;j>=0;j--){//print each acc48 from higher byte to lower byte
 printf("%02x",*(p+j));
 }
 printf("\n");
}

The output is as follows.

acc value[0]=0x000000000000
acc value[1]=0x000000000001
acc value[2]=0x000000000002
acc value[3]=0x000000000003
acc value[4]=0x000000000004
acc value[5]=0x000000000005
acc value[6]=0x000000000006
acc value[7]=0x000000000007

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 86Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=86

Casting and Datatype Conversion
Casting intrinsic functions (as_[Type]()) allow casting between vector types or scalar types of
the same size. The casting can work on accumulator vector types too. Generally, using the
smallest data type possible will reduce register spillage and improve performance. For example, if
a 48-bit accumulator (acc48) can meet the design requirements then it is preferable to use that
instead of a larger 80-bit accumulator (acc80).

Note: The acc80 vector data type occupies two neighboring 48-bit lanes.

Standard C casts can be also used and works identically in almost all cases as shown in the
following example.

v8int16 iv;
v4cint16 cv=as_v4cint16(iv);
v4cint16 cv2=*(v4cint16*)&iv;
v8acc80 cas_iv;
v8cacc48 cas_cv=as_v8cacc48(cas_iv);

There is hardware support built-in for floating-point to fixed-point (float2fix()) and fixed-
point to floating-point (fix2float()) conversions. For example, the fixed-point square root,
inverse square root, and inverse are implemented with floating point precision and the
fix2float() and float2fix() conversions are used before and after the function.

Note: The AI Engine floating-point is not completely compliant with the IEEE standards. For more
information about the exceptions, see Versal ACAP AI Engine Architecture Manual (AM009).

The scalar engine is used in this example because the square root and inverse functions are not
vectorizable. This can be verified by looking at the function prototype's input data types:

float _sqrtf(float a) //scalar float operation
int sqrt(int a,...) //scalar integer operation

Note that the input data types are scalar types (int) and not vector types (vint).

The conversion functions (fix2float, float2fix) can be handled by either the vector or
scalar engines depending on the function called. Note the difference in data return type and data
argument types:

float fix2float(int n,...) //Uses the scalar engine
v8float fix2float(v8int32 ivec,...) //Uses the vector engine

Note: For float2fix, there are two types of implementations, float2fix_safe (default) and
float2fix_fast with the float2fix_safe implementation offering a more strict data type check.
You can define the macro FLOAT2FIX_FAST to make float2fix choose the float2fix_fast
implementation.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 87Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=87

Vector Initialization, Load, and Store
Vector registers can be initialized, loaded, and saved in a variety of ways. For optimal
performance, it is critical that the local memory that is used to load or save the vector registers
be aligned on 16-byte boundaries.

Alignment
The alignas standard C specifier can be used to ensure proper alignment of local memory. In
the following example, the reals is aligned to 16 byte boundary.

alignas(16) const int32 reals[8] =
 {32767, 23170, 0, -23170, -32768, -23170, 0, 23170};
 //align to 16 bytes boundary, equivalent to "alignas(v4int32)"

Initialization
The following functions can be used to initialize vector registers as undefined, all 0’s, with data
from local memory, or with part of the values set from another register and the remaining part
are undefined. Initialization using the undef_type() initializer ensures that the compiler can
optimize regardless of the undefined parts of the value.

v8int32 v;
v8int32 uv = undef_v8int32(); //undefined
v8int32 nv = null_v8int32(); //all 0's
v8int32 iv = *(v8int32 *) reals; //re-interpret "reals" as "v8int32"
pointer and load value from it
v16int32 sv = xset_w(0, iv); //create a new 512-bit vector with lower 256-
bit set with "iv"

In the previous example, vector set intrinsic functions [T]set_[R] allow creating a vector
where only one part is initialized and the other parts are undefined. Here [T] indicates the target
vector register to be set, w for W register (256-bit), x for X register (512-bit), and y for Y register
(1024-bit). [R] indicates where the source value comes from, v for V register (128-bit), w for W
register (256-bit), and x for X register (512-bit). Note that [R] width is smaller than [T] width. The
valid vector set intrinsic functions are, wset_v, xset_v, xset_w, yset_v, yset_w, and
yset_x.

The static keyword applies to the vector data type as well. The default value is zero when not
initialized and the value is kept between graph run iterations.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=88

Load and Store

Load and Store from Vector Registers

The compiler supports standard pointer de-referencing and pointer arithmetic for vectors. Post
increment of the pointer is the most efficient form for scheduling. No special intrinsic functions
are needed to load vector registers.

v8int32 * ptr_coeff_buffer = (v8int32 *)ptr_kernel_coeff;
v8int32 kernel_vec0 = *ptr_coeff_buffer++; // 1st 8 values (0 .. 7)
v8int32 kernel_vec1 = *ptr_coeff_buffer; // 2nd 8 values (8 .. 15)

Load and Store From Memory

AI Engine APIs provide access methods to read and write data from data memory, streaming data
ports, and cascade streaming ports which can be used by AI Engine kernels. For additional details
on the window and stream APIs, see Window and Streaming Data API in the AI Engine User Guide
(UG1076). In the following example, the window readincr (window_readincr_v8(din))
API is used to read a window of complex int16 data into the data vector. Similarly,
readincr_v8(cin) is used to read a sample of int16 data from the cin stream.
writeincr_v4 (cas_out, v) is used to write data to a cascade stream output.

void func(input_window_cint16 *din,
 input_stream_int16 *cin,
 output_stream_cacc48 *cas_out){
 v8cint16 data=window_readincr_v8(din);
 v8int16 coef=readincr_v8(cin);
 v4cacc48 v;
 …
 writeincr_v4(cas_out, v);
}

Load and Store Using Pointers

It is mandatory to use the window API in the kernel function prototype as inputs and outputs.
However, in the kernel code, it is possible to use a direct pointer reference to read/write data.

void func(input_window_int16 *w_input,
 output_window_cint16 *w_output){

 v16int16 *ptr_in = (v16int16 *)w_input->ptr;
 v8cint16 *ptr_out = (v8cint16 *)w_output->ptr;

}

The window structure is responsible for managing buffer locks tracking buffer type (ping/pong)
and this can add to the cycle count. This is especially true when load/store are out-of-order
(scatter-gather). Using pointers may help reduce the cycle count required for load and store.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 89Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=89

Note: If using pointers to load and store data, it is the designer’s responsibility to avoid out-of-bound
memory access.

Load and Store Using Streams

Vector data can also be loaded from or stored in streams as shown in the following example.

void func(input_stream_int32 *s0, input_stream_int32 *s1, …){
 for(…){
 data0=readincr(s0);
 data1=readincr(s1);
 …
 }
}

For more information about window and streaming data API usage, see Window and Streaming
Data API in the AI Engine User Guide (UG1076).

Load and Store with Virtual Resource Annotations

AI Engine is able to perform several vector load or store operations per cycle. However, in order
for the load or store operations to be executed in parallel, they must target different memory
banks. In general, the compiler tries to schedule many memory accesses in the same cycle when
possible, but there are some exceptions. Memory accesses coming from the same pointer are
scheduled on different cycles. If the compiler schedules the operations on multiple variables or
pointers in the same cycle, memory bank conflicts can occur.

To avoid concurrent access to a memory with multiple variables or pointers, the compiler
provides the following aie_dm_resource annotations to annotate different virtual resources.
Accesses using types that are associated with the same virtual resource are not scheduled to
access the resource at the same cycle.

__aie_dm_resource_a
__aie_dm_resource_b
__aie_dm_resource_c
__aie_dm_resource_d
__aie_dm_resource_stack

For example, the following code is to annotate two arrays to the same __aie_dm_resource_a
that guides the compiler to not access them in the same instruction.

v8int32 va[32];
v8int32 vb[32];
v8int32 __aie_dm_resource_a* restrict p_va = (v8int32
__aie_dm_resource_a*)va;
v8int32 __aie_dm_resource_a* restrict p_vb = (v8int32
__aie_dm_resource_a*)vb;
//access va, vb by p_va, p_vb
v8int32 vc;
vc=p_va[i]+p_vb[i];

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 90Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=efv1509388613160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=90

The following code is to annotate an array and a window buffer to the same
__aie_dm_resource_a that guides the compiler to not access them in the same instruction.

void func(input_window_int32 * __restrict wa,
 v8int32 coeff[32];
 input_window_int32 sa;
 v8int32 __aie_dm_resource_a* restrict p_coeff = (v8int32
__aie_dm_resource_a*)coeff;
 input_window_int32 __aie_dm_resource_a* restrict p_wa =
(input_window_int32 __aie_dm_resource_a*)&sa;
 window_copy(p_wa,wa);
 v8int32 va;
 va=window_readincr_v8(p_wa);//access wa by p_wa

Update, Extract, and Shift
To update portions of vector registers, the upd_v(), upd_w(), and upd_x() intrinsic functions
are provided for 128-bit (v), 256-bit (w), and 512-bit (x) updates.

Note: The updates overwrite a portion of the larger vector with the new data while keeping the other part
of the vector alive. This alive state of the larger vector persists through multiple updates. If too many
vectors are kept unnecessarily alive, register spillage can occur and impact performance.

Similarly, ext_v(), ext_w(), and ext_x() intrinsic functions are provided to extract portions
of the vector.

To update or extract individual elements, the upd_elem() and ext_elem() intrinsic functions
are provided. These must be used when loading or storing values that are not in contiguous
memory locations and require multiple clock cycles to load or store a vector. In the following
example, the 0th element of vector v1 is updated with the value of a - which is 100.

int a = 100;
v4int32 v1 = upd_elem(undef_v4int32(), 0, a);

Another important use is to move data to the scalar unit and do an inverse or sqrt. In the
following example, the 0th element of vector vf is extracted and stored in the scalar variable f.

v4float vf;
float f=ext_elem(vf,0);
float i_f=invsqrt(f);

The shft_elem() intrinsic function can be used to update a vector by inserting a new element
at the beginning of a vector and shifting the other elements by one.

Vector Register Lane Permutations
The AI Engine fixed point vector units datapath consists of the following three separate and
largely independently usable paths:

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=91

• Main MAC datapath

• Shift-round-saturate path

• Upshift path

The main multiplication path reads values from vector registers, permutes them in a user
controllable fashion, performs optional pre-adding, multiplies them, and after some post-adding
accumulates them to the previous value of the accumulator register.

While the main datapath stores to the accumulator, the shift-round-saturate path reads from the
accumulator registers and stores to the vector registers or the data memory. In parallel to the
main datapath runs the upshift path. It does not perform any multiplications but simply reads
vectors, upshifts them and feeds the result into the accumulators. For details on the Fixed point
and Floating point data paths refer to Versal ACAP AI Engine Architecture Manual (AM009). Details
on the intrinsic functions that can be used to exercise these data paths can be found in the Versal
ACAP AI Engine Intrinsics Documentation (UG1078).

As shown in the following figure, the basic functionality of MAC data path consists of vector
multiply and accumulate operations between data from the X and Z buffers. Other parameters
and options allow flexible data selection within the vectors and number of output lanes and
optional features allow different input data sizes and pre-adding. There is an additional input
buffer, the Y buffer, whose values can be pre-added with those from the X buffer before the
multiplication occurs. The result from the intrinsic is added to an accumulator.

Figure 28: Functional Overview of the MAC Data Path

Advanced
Vector
MAC

Z
Buffer

VC Registers

X and Y
Buffer

VA & VB Registers
Acc

AM Register

+
x +

Configuration

VAs &
VBs

VCs

Decoder

Pre-add

Permute Post-
add

Accumulation
Vector

Configuration from Intrinsic
Type and Parameters

e.g., Filter Delay Line

Load

Load

e.g., Coefficients

X25023-011521

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 92Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=92

The operation can be described using lanes and columns. The number of lanes corresponds to the
number of output values that will be generated from the intrinsic call. The number of columns is
the number of multiplications that will be performed per output lane, with each of the
multiplication results being added together. For example:

acc0 += z00*(x00+y00) + z01*(x01+y01) + z02*(x02+y02) + z03*(x03+y03)
acc1 += z10*(x10+y10) + z11*(x11+y11) + z12*(x12+y12) + z13*(x13+y13)
acc2 += z20*(x20+y20) + z21*(x21+y21) + z22*(x22+y22) + z23*(x23+y23)
acc3 += z30*(x30+y30) + z31*(x31+y31) + z32*(x32+y32) + z33*(x33+y33)

In this case, four outputs are being generated, so there are four lanes and four columns for each
of the outputs with pre-addition from the X and Y buffers.

The parameters of the intrinsics allow for flexible data selection from the different input buffers
for each lane and column, all following the same pattern of parameters. The following section
introduces the data selection (or data permute) schemes with detailed examples that include
shuffle and select intrinsics. Details around the mac intrinsic and its variants are also
discussed in the following sections.

Data Selection
AI Engine intrinsic functions support various types of data selection. The details around the
shuffle and select intrinsic are as follows.

Data Shuffle

The AI Engine shuffle intrinsic function selects data from a single input data buffer according to
the start and offset parameters. This allows for flexible permutations of the input vector values
without needing to rearrange the values. xbuff is the input data buffer, with xstart indicating
the starting position offset for each lane in the xbuff data buffer and xoffset indicating the
position offset applied to the data buffer. The shuffle intrinsic function is available in 8, 16, and
32 lane variants (shuffle8, shuffle16, and shuffle32). The main permute for data
(xoffsets) is at 32-bit granularity and xsquare allows a further 16-bit granularity mini
permute after main permute. Thus, the 8-bit and 16-bit vector intrinsic functions can have
additional square parameter- for more complex permutations.

For example, a shuffle16 intrinsic has the following function prototype.

v16int32 shuffle16 (v16int32 xbuff,
 int xstart,
 unsigned int xoffsets,
 unsigned int xoffsets_hi
)

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=93

The data permute performs in 32 bits granularity. When the data size is 32 bits or 64 bits, the
start and offsets are relative to the full data width, 32 bits or 64 bits. The lane selection follows
the regular lane selection scheme.

f: result [lane number] = (xstart + xbuff [lane number]) Mod input_samples

The following example shows how shuffle works on the v16int32 vector. xoffset and
xoffset_hi have 4 bits for each lane. This example moves the even and odd elements of the
buffer into lower and higher parts of the buffer.

Figure 29: Data Shuffle on int32 Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

xstart xoffset xoffset_hi

v16int32

xbuff

Result

shuffle16 (xbuff,0,0xECA86420,0x0xFDB97531)

(0+0)%16=0

result[0]=xbuff[(0+0)%16]

Resulting index is
xstart + Offset mod
length(xbuff)

result[1]=xbuff[(0+2)%16]

Low High

Each element is int32

v16int32 (v16int32 xbuff
 int xstart
 unsigned int xoffsets
 unsigned int xoffsets_hi
)

X24806-012021

When data permute is on 16 bits data, the intrinsic function includes another parameter,
xsquare, allowing flexibility to perform data selection in each 4 x 16 bits block of data. The
xoffset comes in pairs. The first hex value is an absolute 32 bits offset and picks up 2 x 16 bits
values (index, index+1). The second hex value is offset from first value + 1 (32 bits offset) and
picks up 2 x 16 bits values. For example, 0x00 selects index 0, 1, and index 2, 3. 0x24 selects
index 8, 9, and index 14, 15. Following is a shuffle example on the v32int16 vector.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=94

Figure 30: Data Shuffle on int16 Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xstart xoffset xoffset_hi

shuffle32 (xbuff,0,0x01020024,0x0E0C0A08, 0x2103)

square

start=0
xoffset=0x24 xoffset=0x00

v32int16 xbuff

Before
Square

Result

square=

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8 9 14 15 0 1 2 3 4 5 6 7 2 3 4 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

15 8 9 14 3 0 1 2 7 4 5 6 5 2 3 4 19 16 17 18 23 20 21 22 27 24 25 26 31 28 29 30

0 1 2 3 0 1 2 3

3 0 1 2 3 0 1 2

X24807-111120

Data Select

The select intrinsic selects between the first set of lanes or the second one according to the
value of the select parameter. If the lane corresponding bit in select is zero, it returns the
value in the first set of lanes. If the bit is one, it returns the value in the second set of lanes. For
example, a select16 intrinsic function has the following function prototype.

v16int32 select16 (unsigned int select,
 v16int32 xbuff,
 int xstart,
 unsigned int xoffsets,
 unsigned int xoffsets_hi,
 v16int32 ybuff,
 int ystart,
 unsigned int yoffsets,
 unsigned int yoffsets_hi
)

For each bit of select (from low to high), it will select a lane either from xbuff (if the select
parameter bit is 0) or from ybuff (if the select parameter bit is 1). Data permute on the
resulting lane of xbuff or ybuff is achieved by a shuffle with corresponding bits in
xoffsets or yoffsets. Following is the pseudo C-style code for select.

for (int i = 0; i < 16; i++){
 idx = f(xstart, xoffsets[i]); //i'th 4 bits of offsets
 idy = f(ystart, yoffsets[i]);
 o[i] = select[i] ? y[idy]:x[idx];
}

For information about how f works in previous code, refer to the regular lane selection scheme
equation listed at the beginning of this section.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=95

When working on the int16 data type, the select intrinsic has an additional xsquare
parameter which allows a further 16-bit granularity mini permute after main permute. For
example, a select32 intrinsic function has the following function prototype.

v32int16 select32 (unsigned int select,
 v64int16 xbuff,
 int xstart,
 unsigned int xoffsets,
 unsigned int xoffsets_hi,
 unsigned int xsquare,
 int ystart,
 unsigned int yoffsets,
 unsigned int yoffsets_hi,
 unsigned int ysquare
)

Following is the pseudo C-style code for select.

for (int i = 0; i < 32; i++){
 idx = f(xstart, xoffsets[i], xsquare);
 idy = f(ystart, yoffsets[i], ysquare);
 o[i] = select[i] ? y[idy]:x[idx];
}

The following example uses select32 to interleave first 16 elements of A and B (A first).

int16 A[32]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
};
int16 B[32]={32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63
};
v32int16 *pA=(v32int16*)A;
v32int16 *pB=(v32int16*)B;
v32int16 C = select32(0xAAAAAAAA, concat(*pA,*pB),
 0, 0x03020100, 0x07060504, 0x1100,
 32, 0x03020100, 0x07060504, 0x1100);

The output C for the previous code is as follows.

{0,32,1,33,2,34,3,35,4,36,5,37,6,38,7,39,8,40,9,41,10,42,11,43,12,44,13,45,1
4,46,15,47
}

This can also be done using the shuffle32 intrinsic.

v32int16 C = shuffle32(concat(*pA,*pB),
 0, 0xF3F2F1F0, 0xF7F6F5F4, 0x3120);

The following figure shows how the previous select32 intrinsic works.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=96

Figure 31: Data Select on int16 Type

0 1 2 3 2 3 4 5 4 5 6 7 6 7 8 9

select32 (0xAAAAAAAA, buf_v64int16, 0, 0x03020100, 0x07060504, 0x1100, 32, 0x03020100, 0x07060504, 0x1100)

Before xsquare
xsquare=0x1100

V64int16
Each element is int16

idx

idy

8 9 10 11 10 11 12 13 12 13 14 15 14 15 16 17

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15

32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47

Select[1] = 1

idx

xstart xoffset xoffset_hi xsquare ystart

After xsquare

After xsquare

0 1 2 3 4 ... 30 31 32 33 ... 59 60 61 62 63

Low High

Select[0] = 0

Select[3] = 1

Select[2] = 0

v32int16 select32 (

)

unsigned int
v64int16
int
unsigned int
unsigned int
unsigned int
int
unsigned int
unsigned int ,
unsigned int

select,
xbuff,
xstart,
xoffsets,
xoffsets_hi,
xsquare,
ystart,
yoffsets,
yoffsets_hi,
ysquare

X25031-012621

MAC Intrinsics
MAC intrinsics perform vector multiply and accumulate operations between data from two
buffers, the X and Z buffers, with the other parameters and options allowing flexibility (data
selection within the vectors, number of output lanes) and optional features (different input data
sizes, pre-adding, etc). There is an additional input buffer, the Y buffer, whose values can be pre-
added with those from the X buffer before the multiplication occurs. The result from the intrinsic
is added to an accumulator.

The parameters of the intrinsics allow for flexible data selection from the different input buffers
for each lane and column, all following the same pattern of parameters. A starting point in the
buffer is given by the (x/y/z) start parameter which selects the first element for the first row as
well as first column. To allow flexibility for each lane, (x/y/z) offsets provides an offset value for
each lane that will be added to the starting point. Finally, the (x/y/z) step parameter defines the
step in data selection between each column based on the previous position. It is worth noticing
that when the ystep is not specified in the intrinsic it will be the symmetric of the xstep.

Main permute granularity for x/y and z buffers is 32 bits and 16 bits, respectively. Complex
numbers are considered as one entity for the permute (for example, cint16 as 32 bits for
permute). Parameter zstart must be a compile time constant. 8-bit and 16-bit permute
granularity in x/y and 8-bit permute granularity in z have certain limitations as addressed towards
the end of this section. The following sections covers the different data widths and explains the
result of the MAC intrinsic on these data widths.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=97

MAC on 32x32 bits

The following figure shows how start, offsets, and step work on the cint16 data type.

Figure 32: MAC4 on cint16 x cint16 Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15xbuff(d)

0 1 2 3 4 5 6 7zbuff(c)

xstart xoffsets xstep

acc=mac4(acc,xbuff,2, 0x3210, 1,zbuff,0, 0x0000, 1)

zstart zoffset zstep

2+0x3210=0x5432 0+0x0000=0x0000

zstep

acc0 += c0d2 + c1d3
acc1 += c0d3 + c1d4
acc2 += c0d4 + c1d5
acc3 += c0d5 + c1d6

v4cacc48 mac4

xstep

(v4ccacc48
 v16cint16
 int
 unsigned int
 int
 v8cint16
 int
 unsigned int
 int
)

acc,
xbuff,
xstart
xoffsets,
xstep
zbuff,
zstart,
zoffsets,
zstep

X24808-012021

mac4 has four output lanes. The first column of data is selected by adding xstart to every 4
bits of xoffsets. The subsequent column of data is selected by adding xstep to its previous
column. In Table 2, it is seen that there are eight MACs per cycle for the cint16 * cint16
operation. This means that mac4 has two columns of multiplication.

The coefficients of mac4 are chosen similarly by zstart, zoffset, and zstep.

MAC on 32x16 bits

An example of MAC with pre-adding is as follows. With pre-adding, the data from X buffer can
be added by itself, or the data from X buffer and Y buffer can be added. The start, offsets,
and step parameters work similar as previous example. There is a ystart parameter for Y
buffer or another data from X buffer. The step parameter works reversely for Y or another data
from X buffer.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=98

Figure 33: LMAC8_SYM on int32 x int16 Type

v8acc80 Imac8_sym (v8acc80
v32int32
int
unsigned int
int
int
v16int16
int
unsigned int
int
)

acc,
xbuff,
xstart,
xoffsets,
xstep,
ystart,
zbuff,
zstart,
zoffsets,
zstep

acc0 += c0(d0 + d15)+ c1(d1 + d14)
acc1 += c0(d1 + d16)+ c1(d2 + d15)
acc2 += c0(d2 + d17)+ c1(d3 + d16)
acc3 += c0(d3 + d18)+ c1(d4 + d17)
acc4 += c0(d4 + d19)+ c1(d5 + d18)
acc5 += c0(d5 + d20)+ c1(d6 + d19)
acc6 += c0(d6 + d21)+ c1(d7 + d20)
acc7 += c0(d7 + d22)+ c1(d8 + d21)

xstart xoffsets xstep ystart

acc=1mac8_sym(acc,xbuff,0,0x76543210,1, 15,zbuff, 0,0x00000000,1)

zstart zoffsets zstep

0+0x76543210=0x76543210
xstep

0+0x00000000=0x00000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15xbuff(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15zbuff(c)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

X24809-012021

MAC on 16x16 bits

An example of MAC with int16 X buffer and int16 Z buffer is as follows. Note that the permute
granularity for X buffer is 32 bits. The start and step parameters are always in terms of data
type granularity. Therefore, a value of 2 for 16 bits data will choose 2 * 16 bits away. The
xoffsets parameter comes as a pair. The first hex value is an absolute 32 bits offset and picks
up 2 x 16 bits values (index, index+1) in the even row. The second hex value is offset from first
value + 1 (32 bits offset) and picks up 2 x 16 bits values in the odd row. So the hex value 0x24 in
xoffsets selects index 8, 9 for even row and index 14, 15 for odd row from xbuff and the hex
value 0x00 in xoffsets selects index 0, 1 for even row and index 2, 3 for odd row from xbuff.

There is another xsquare parameter to perform 16 bits granularity twiddling after the main
permute. For example, xsquare value 0x2103 (see from lower hex value to higher hex value)
puts index 3, 0 in the even row and index 1, 2 in the odd row. How the xsquare parameter
works can be seen in the center of the following figure.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=99

Figure 34: MAC8 on int16 x int16 Type

acc0 += c0d8 + c1d9 + c2d10 + c3d11
acc1 += c0d14 + c1d15 + c2d10 + c3d17
acc2 += c0d0 + c1d1 + c2d2 + c3d3
acc3 += c0d2 + c1d3 + c2d4 + c3d5
acc4 += c0d4 + c1d5 + c2d6 + c3d7
acc5 += c0d6 + c1d7 + c2d8 + c3d9
acc6 += c0d8 + c1d9 + c2d10 + c3d11
acc7 += c0d12 + c1d13 + c2d14 + c3d15

xstart xoffsets xstep xsquare zstart zoffsets zstep

xstep

acc0 += c0d15 + c1d8 + c2d17 + c3d10
acc1 += c0d9 + c1d14 + c2d11 + c3d16
acc2 += c0d3 + c1d0 + c2d5 + c3d2
acc3 += c0d1 + c1d2 + c2d3 + c3d4
acc4 += c0d7 + c1d4 + c2d9 + c3d6
acc5 += c0d5 + c1d6 + c2d7 + c3d8
acc6 += c0d13 + c1d8 + c2d15 + c3d10
acc7 += c0d9 + c1d12 + c2d11 + c3d14

0 1

2 3

8 9

14 15 0 1

2 3
3 0

1 2

0x2103

xsquare

Result

Before Square

v8acc48 mac8 (v8acc48
v32int16
int
unsigned int
int
int
v16int16
int
unsigned int
int
)

acc,
xbuff,
xstart,
xoffsets,
xstep,
xsquare,
zbuff,
zstart,
zoffsets,
zstep

acc=mac8(acc,xbuff,0,0x14020024,2,0x2103,zbuff, 0,0x00000000,1)

X24810-012021

The following figure is an example of mac16 intrinsic of int16 and int16.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=100

Figure 35: MAC16 on int16 x int16 Type

acc0 += c0d0 + c1d1
acc1 += c0d16 + c1d17
acc2 += c0d2 + c1d3
acc3 += c0d18 + c1d19
acc4 += c0d4 + c1d5
acc5 += c0d20 + c1d21
acc6 += c0d6 + c1d7
acc7 += c0d22 + c1d23
acc8 += c0d8 + c1d9
acc9 += c0d24 + c1d25
acc10 += c0d10 + c1d11
acc11 += c0d26 + c1d27
acc12 += c0d12 + c1d13
acc13 += c0d28 + c1d29
acc14 += c0d14 + c1d15
acc15 += c0d30 + c1d31

xstart xoffsets xoffsets_hi xsquare zstart zoffsets zoffset_hi zstep

0 1

16 17

8 9

24 25

0 1

2 3
0 0

1 3

xsquare=0x3120

xsquare=0x3120

Result

Before Square

v16acc48 mac16 (v16acc48
v32int16
int
unsigned int
unsigned int
unsigned int
v16int16
int
unsigned int
unsigned int
int
)

acc,
xbuff,
xstart,
xoffsets,
xoffsets_hi,
xsquare,
zbuff,
zstart,
zoffsets,
zoffsets_hi,
zstep

acc=mac16(acc,xbuff,0,0x73727170,0x77767574,0x3120,zbuff,0,0x0, 0x0, 1);

acc0 += c0d0 + c1d16
acc1 += c0d1 + c1d17
acc2 += c0d2 + c1d18
acc3 += c0d3 + c1d19
acc4 += c0d4 + c1d20
acc5 += c0d5 + c1d21
acc6 += c0d6 + c1d22
acc7 += c0d7 + c1d23
acc8 += c0d8 + c1d24
acc9 += c0d9 + c1d25
acc10 += c0d10 + c1d26
acc11 += c0d11 + c1d27
acc12 += c0d12 + c1d28
acc13 += c0d13 + c1d29
acc14 += c0d14 + c1d30
acc15 += c0d15 + c1d31

X25070-012821

MAC on 8x8 bits

The following figures show MAC with int8 X buffer and int8 Z buffer. The first figure shows how
data is permuted and the second figure shows how coefficients are permuted. Note that the
permute granularity for X buffer and Z buffer are 32 bits and 16 bits, respectively. The
xoffsets parameter comes in pair. The first hex value is an absolute 32 bits offset and pick up
4 x 8 bits values (index, index+1, index+2, index+3). The second hex value is offset from the first
value + 1 (32 bits offset) and picks up 4 x 8 bits values. For example, 0x00 selects index 0, 1, 2, 3
as well as 4, 5, 6, 7, and 0x24 selects index 16, 17, 18, 19 as well as 28, 29, 30, 31.

There is another xsquare parameter to do 8 bits granularity twiddling after main permute. How
xsquare parameter works in this example can be seen in the center of the following figure.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=101

The start (xstart, zstart) and step (xstep, zstep) parameters are always in terms of data
type granularity. Hence, a value of 2 for 16 bits is 2 * 16 bits away, while a value of 2 for 8 bits is
2 * 8 bits away. The step parameter applies to the next block of selected data. So, if a pair of
offset parameters select a 2 * 2 block, the step applies to the next 2 * 2 block. The step added
to the index value must be aligned to the permute granularity (32 bits for data, 16 bits for
coefficient). For example, when working with 8-bit data, xstep needs to be multiples of four.
When working with 8-bit coefficient, zstep needs to be multiples of two. The following two
figures show how step works for data and coefficients.

Note that for the coefficient in int8 * int8 types, the 2 * 2 index block is duplicated to construct a
4 * 2 block. See how index 0, 1, 2, and 3 are duplicated in Figure 37.

Figure 36: MAC8 on int8 x int8 Type (X Part)

v8acc48 mac8 (v8acc48
v64int16
int
unsigned int
int
int
v32int8
int
unsigned int
int
unsigned int
)

acc,
xbuff,
xstart,
xoffsets,
xstep,
xsquare,
zbuff,
zstart,
zoffsets,
zstep,
zsquare

acc0 += c0d16+c1d18 + c2d20+c3d22+c4d24+c5d26 +…
acc1 += c2d17+c3d19 + c4d21+c5d23+c6d25+c7d27 +…
acc2 += c0d28+c1d30 + c2d32+c3d34+c4d36+c5d38 +…
acc3 += c2d29+c3d31 + c4d33+c5d35+c6d37+c7d39 +…
acc4 += c2d0+c3d2 + c4d4+c5d6 +c6d8+c7d10 +…
acc5 += c4d1+c5d3 + c6d5+c7d7 +c8d9+c9d11 +…
acc6 += c2d4+c3d6 + c4d8+c5d10 +c6d12+c7d14 +…
acc7 += c4d5+c5d7 + c6d9+c7d11 +c8d13+c9d15 +…

xstart xoffsets xstep xsquare

acc=mac8(acc,xbuff,0, 0x0024,4,0x2103,zbuff, 0, 0x0100,2, 0x2103)

zstart zoffsets zstep zsquare

0 2

1 3

16 18

17 19 0 1

2 3
3 0

1 2

0x2103

xsquare

Result

Before Square

4 6

5 7

28 30

29 31

0 1

2 3

3 0

1 2

acc0 += c3d30+c0d16 + c5d34+c2d20+c7d38+c4d24 +…
acc1 += c1d31+c2d17 + c3d35+c4d21+c5d39+c6d25 +…
acc2 += c3d18+c0d28 + c5d22+c2d32+c7d26+c4d36 +…
acc3 += c1d19+c2d29 + c3d23+c4d33+c5d27+c6d37 +…
acc4 += c5d6 +c2d0 + c7d10+c4d4 +c9d14+c6d8 +…
acc5 += c3d7 +c4d1 + c5d11+c6d5 +c7d15+c8d9 +…
acc6 += c5d2 +c2d4 + c7d6+c4d8 +c9d10+c6d12 +…
acc7 += c3d3 +c4d5 + c5d7+c6d9 +c7d11+c8d13 +…

xstep=4 4/4=1 (4+4)/4=2

X24811-070821

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=102

Figure 37: MAC8 on int8 x int8 Type (Z Part)

v8acc48 mac8 (v8acc48
v64int8
int
unsigned int
int
int
v32int8
int
unsigned int
int
unsigned int
)

acc,
xbuff,
xstart,
xoffsets,
xstep,
xsquare,
zbuff,
zstart,
zoffsets,
zstep,
zsquare

acc0 += c0d16+c1d18 + c2d20+c3d22+c4d24+c5d26 +…
acc1 += c2d17+c3d19 + c4d21+c5d23+c6d25+c7d27 +…
acc2 += c0d28+c1d30 + c2d32+c3d34+c4d36+c5d38 +…
acc3 += c2d29+c3d31 + c4d33+c5d35+c6d37+c7d39 +…
acc4 += c2d0+c3d2 + c4d4+c5d6 +c6d8+c7d10 +…
acc5 += c4d1+c5d3 + c6d5+c7d7 +c8d9+c9d11 +…
acc6 += c2d4+c3d6 + c4d8+c5d10 +c6d12+c7d14 +…
acc7 += c4d5+c5d7 + c6d9+c7d11 +c8d13+c9d15 +…

xstart xoffsets xstep xsquare

acc=mac8(acc,xbuff,0, 0x0024,4,0x2103,zbuff, 0, 0x0100, 2, 0x2103)

zstart zoffsets zstep zsquare

0 1

2 3
3 0

1 2

0x2103

zsquare=
0x2103

Result

Before Square

acc0 += c3d30+c0d16 + c5d34+c2d20+c7d38+c4d24 +…
acc1 += c1d31+c2d17 + c3d35+c4d21+c5d39+c6d25 +…
acc2 += c3d18+c0d28 + c5d22+c2d32+c7d26+c4d36 +…
acc3 += c1d19+c2d29 + c3d23+c4d33+c5d27+c6d37 +…
acc4 += c5d6+c2d0 + c7d10+c4d4 +c9d14+c6d8 +…
acc5 += c3d7+c4d1 + c5d11+c6d5 +c7d15+c8d9 +…
acc6 += c5d2+c2d4 + c7d6+c4d8 +c9d10+c6d12 +…
acc7 += c3d3+c4d5 + c5d7+c6d9 +c7d11+c8d13 +…

ztep=2 2/2=1 (2+2)/2=2

3 0

0 1

2 3

1 2

X24812-070821

Options

There are rich sets of MAC intrinsic with additional operations like pre-adding, pre-subtraction,
and conjugation. The naming convention for the vector MAC intrinsics is as follows. Optional
characteristics are shown in [] and mandatory ones in {}.

[l]{mac|msc|mul|negmul}{2|4|8|16}[_abs|_max|_min|_maxdiff][_conj][{_sym|
_antisym}[_ct|_uct]][_c|_cc|_cn|_nc]

Every operation will either be a multiplication, initializing an accumulator, or a MAC operation
which accumulates to a running accumulator of 2, 4, 8, or 16 lanes.

• l: Denotes that an accumulator with 80-bit lanes is used for the operation.

• sym and antisym: Indicates the use of pre-adding and pre-subtraction respectively.

• max, min, and maxdiff: Indicates the pre-selection of lanes in the xbuff based on the
maximum, minimum, or maximum difference value.

• abs: Indicates the pre-computation of the absolute value in the xbuff.

• ct: Used for partial pre-adding and pre-subtraction (separate selection for the data input from
X for the final column).

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=103

• uct: Used for unit center optimization for certain types of FIR filters. Refer to the Versal ACAP
AI Engine Intrinsics Documentation (UG1078) for more information.

• n and c: Used to indicate that the complex conjugate will be used for one of the input buffers
with complex values:

• c: The only complex input buffer will be conjugated.

• cn: Complex conjugate of X (or XY if pre-adding is used) buffer.

• nc: Complex conjugate of Z buffer.

• cc: Complex conjugate of both X (or XY if pre-adding is used) and Z buffers.

• conj: Indicates that the complex conjugate of Z will be used when multiplying the data input
from Y.

Data Permute and MAC Examples
The following example takes two vectors with reals in rva and imaginary in rvb (with type
v8int32) and creates a new complex vector, using the offsets to interleave the values as
required.

v8cint32 cv = as_v8cint32(select16(0xaaaa, concat(rva, rvb),
 0, 0x03020100, 0x07060504, 8, 0x30201000, 0x70605040));

The following example shows how to extract real and imaginary portion of a vector cv with type
v8cint32.

v16int32 re_im = shuffle16(as_v16int32(cv), 0, 0xECA86420, 0xFDB97531);
v8int32 re = ext_w(re_im, 0);
v8int32 im = ext_w(re_im, 1);

Shuffle intrinsic functions can be used to reorder the elements in a vector or set all elements to
the same value. Some intrinsic functions operate only on larger registers but it is easy to use
them for smaller registers. The following example shows how to implement a function to set all
four elements in a vector to a constant value.

v4int32 v2 = ext_v(shuffle16(xset_v(0, v1), 0 ,0, 0), 0);

The following example shows how to multiply each element in rva by the first element in rvb.
This is efficient for a vector multiplied by constant value.

v8acc80 acc = lmul8(concat(rva,undef_v8int32()),0,0x76543210,rvb,0,0x00);

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 104Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=104

The following examples show how to multiply each element in rva by its corresponding element
in rvb.

acc = lmul8(concat(rva, undef_v8int32()),0,0x76543210,rvb,0,0x76543210);
acc = lmul8(upd_w(undef_v16int32(),0,rva),0,0x76543210,rvb,0,0x76543210);

The following examples show how to do matrix multiplication for int8 x int8 data types with mul
intrinsic, assuming that data storage is row based.

//Z_{2x8} * X_{8x8} = A_{2x8}
mul16(Xbuff, 0, 0x11101110, 16, 0x3120, Zbuff, 0, 0x44440000, 2, 0x3210);
//Z_{4x8} * X_{8x4} = A_{4x4}
mul16(Xbuff, 0, 0x00000000, 8, 0x3120, Zbuff, 0, 0xCC884400, 2, 0x3210);

If the kernel has multiple mul or mac intrinsics, try to keep the xoffsets and zoffsets
parameters constant across uses and vary the xtsart and zstart parameters. This will help
prevent configuration register spills on stack.

For more information about vector lane permutations, refer to the Versal ACAP AI Engine Intrinsics
Documentation (UG1078).

Loops
The AI Engine has a zero-overhead loop structure that does not incur any branch control
overhead for comparison and branching thus reducing the inner loop cycle count. Pipelining
allows the compiler to add pre-amble and post-amble so that the instruction pipeline is always
full during loop execution. With a pipelined loop, a new iteration can be started before the
previous one ends to achieve higher instruction level parallelism.

The following figure shows the assembly code of a zero-overhead loop. Note that two vector
loads, one vector store, one scalar instruction, two data moves, and one vector instruction are
shown in order in different slots.

Figure 38: Assembly Code of Zero-Overhead Loop

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 105Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=105

The following pragmas work together to direct the compiler to pipeline the loop and let it know
that the loop will always be executed at least three times.

for (int i=0; i<N; i+=2)
 chess_prepare_for_pipelining
 chess_loop_range(3,)

The chess_loop_range(<minimum>, <maximum>) tells the compiler that the
corresponding loop is executed at least <minimum> times, and at most <maximum> times,
where <minimum> and <maximum> are non-negative constant expressions, or can be omitted.
When omitted, <minimum> defaults to 0, and <maximum> defaults to the maximum preset in
the compiler. While <maximum> is not relevant for the pipeline implementation, <minimum>
guides the pipeline implementation.

The <minimum> number defines how many loop iterations are executed at a minimum each time
the loop is executed. The software pipeline is then tuned to allow at least that many iterations to
execute in parallel if possible. It also determines that checking the boundaries for the loop is not
necessary before the <minimum> number of iterations are executed.

The loop range pragma is not needed if the loop range is a compile time constant. In general, the
AI Engine compiler reports the theoretical number best suited for optimum pipelining of an
algorithm. If the range specification is not optimal, the compiler would issue a warning and
suggest the optimal range. Towards that end, it is okay to initially set the <minimum> to one
[chess_loop_range(1,)] and observe the theoretical best suited <minimum> being
reported by the compiler.

Warning in "matmul_vec16.cc", line 10: (loop #39)
further loop software pipelining (to 4 cycles) is feasible with
`chess_prepare_for_pipelining'
but requires a minimum loop count of 3
... consider annotating the loop with `chess_loop_range(3,)' if applicable,
... or remove the current `chess_loop_range(1,)` annotation

At this point, you can choose to update the <minimum> number to the reported optimum.

This second part of the pipeline implementation can be a reason for potential deadlocks in the AI
Engine kernels if the actual <minimum> number of iterations is not reached. For this reason, you
must ensure that the number of iterations is always at least the number specified in the
chess_loop_range directive.

Loop carried dependencies impact the vectorization of code. If an inner loop dependency cannot
be removed, a strategy to step out a level and manually unroll where there are (effectively)
multiple copies of the inner loop running in parallel.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=106

When looping though data, to increment or decrement by a specific offset, use the cyclic_add
intrinsic function for circular buffers. The fft_data_incr intrinsic function enables the
iteration of the pointer that is the current target of the butterfly operation. Using these functions
can save multiple clock cycles over coding the equivalent functionality in standard C. Depending
on the data types, you might need to cast parameters and return types.

The following example uses fft_data_incr intrinsic when operating on a matrix of real
numbers.

pC = (v8float*)fft_data_incr((v4cfloat*)pC, colB_tiled, pTarget);

Try to avoid sequential load operations to fill a vector register completely before use. It is best to
interleave loads with MAC intrinsic functions, where the current MAC and next load can be done
in the same cycle.

acc = mul4_sym(lbuff, 4, 0x3210, 1, rbuff, 11, coeff, 0, 0x0000, 1);
lbuff = upd_w(lbuff, 0, *left);
acc = mac4_sym(acc, lbuff, 8, 0x3210, 1, rbuff, 7, coeff, 4, 0x0000, 1);

In certain use cases loop rotation, which rotates the instructions inside the loop, can be
beneficial. Instead of loading data into a vector at the start of a loop, consider loading a block of
data for the first iteration before the loop, and then for the next iteration near the end of the
loop. This will add additional instructions but shorten the dependency length of the loop which
helps to achieve an ideal loop with a potentially lower loop range.

// Load starting data for first iteration
sbuff = upd_w(sbuff, 0, window_readincr_v8(cb_input)); // 0..7

for (int l=0; l<LSIZE; ++l)
chess_loop_range(5,)
chess_prepare_for_pipelining
{
 sbuff = upd_w(sbuff, 1, window_readincr_v8(cb_input)); // 8..15
 acc0 = mul4_sym(sbuff,5 ,0x3210,1 ,12 ,coe,4,0x0000,1);

 sbuff = upd_w(sbuff, 2, window_readdecr_v8(cb_input)); // 16..23
 acc0 = mac4_sym(acc0,sbuff,1 ,0x3210,1 ,16,coe,0,0x0000,1);
 acc1 = mul4_sym(sbuff,5 ,0x3210,1 ,20,coe,0,0x0000,1);
 window_writeincr(cb_output, srs(acc0, shift));
 // Load data for next iteration
 sbuff = upd_w(sbuff, 0, window_readincr_v8(cb_input)); // 0..7
 acc1 = mac4_sym(acc1,sbuff,9,0x3210,1,16,coe,4,0x0000,1);
 window_writeincr(cb_output, srs(acc1, shift));
}

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=107

Floating-Point Operations
The scalar unit floating-point hardware support includes square root, inverse square root, inverse,
absolute value, minimum, and maximum. It supports other floating-point operations through
emulation. The softfloat library must be linked in for test benches and kernel code using
emulation. For math library functions, the single precision float version must be used (for
example, use expf() instead of exp()).

The AI Engine vector unit provides eight lanes of single-precision floating-point multiplication
and accumulation. The unit reuses the vector register files and permute network of the fixed-
point data path. In general, only one vector instruction per cycle can be performed in fixed-point
or floating-point.

Floating-point MACs have a latency of two-cycles, thus, using two accumulators in a ping-pong
manner helps performance by allowing the compiler to schedule a MAC on each clock cycle.

acc0 = fpmac(acc0, abuff, 1, 0x0, bbuff, 0, 0x76543210);
acc1 = fpmac(acc1, abuff, 9, 0x0, bbuff, 0, 0x76543210);

There are no divide scalar or vector intrinsic functions at this time. However, vector division can
be implemented via an inverse and multiply as shown in the following example.

invpi = upd_elem(invpi, 0, inv(pi));
acc = fpmul(concat(acc, undef_v8float()), 0, 0x76543210, invpi, 0, 0);

A similar implementation can be done for the vectors sqrt, invsqrt, and sincos.

Appendix A: Single Kernel Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=108

Appendix B

Design Analysis and Programming
using Intrinsics

CAUTION! It is strongly recommended that you use AI Engine APIs for your designs. Usage of intrinsics
must only be considered for situations where the stringent performance needs of the design require
capabilities that are not covered by the AI Engine API. For example, the AI Engine API does not currently
support functionality provided by some intrinsics such as, fft_data_incr  and cyclic_add . While
AI Engine APIs support and abstract the main permute use cases, not all permute capabilities are covered.
Using intrinsics may allow you to close the performance gap required by your design.

AI Engines provide high compute density through large amount of VLIW and SIMD compute
units by connecting with each other through innovative memory and AXI4-Stream networks.
When targeting an application on AI Engine, it is important to evaluate the compute needs of the
AI Engine and data throughput requirements. For example, how the AI Engine interacts with PL
kernels and external DDR memory. After the compute and data throughput requirements can be
met for AI Engine, the next step involves divide and conquer methods to map the algorithm into
the AI Engine array. In the divide and conquer step, it is necessary to understand vector
processor architecture, memory structure, AXI4-Stream, and cascade stream interfaces. This step
is usually iterated multiple times. At the same time, each single AI Engine kernel is optimized and
the graph is constructed and optimized iteratively. AI Engine tools are used to simulate and
debug AI Engine kernels and the graph. The graph is then integrated with PL kernels, GMIO, and
PS to perform system level verification and performance tuning.

In this chapter, the divide and conquer method to map the algorithm into data flow diagrams
(DFD) is briefly introduced. Single kernel programming and multiple kernels programming
examples are provided to illustrate how to do kernel partitioning by the compute and memory
bound, single kernel vectorization and optimization, and streaming balancing between different
kernels.

Matrix Vector Multiplication
The following matrix vector multiplication example focuses on a single AI Engine kernel
vectorization. It implements the following matrix vector multiplication equation.

C (64 x 1) = A (64 x 16) * B(16 x 1)

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=109

The example assumes that the data for the matrices is stored in column based form and data
type for the matrices A and B is int16.

c0 = a0*b0 + a64*b1 + a128*b2 + a192*b3 + a256*b4 + a320*b5 + a384*b6 +
a448*b7 + …
c1 = a1*b0 + a65*b1 + a129*b2 + a193*b3 + a257*b4 + a321*b5 + a385*b6 +
a449*b7 + …
c2 = a2*b0 + a66*b1 + a130*b2 + a194*b3 + a258*b4 + a322*b5 + a386*b6 +
a450*b7 + …
c3 = a3*b0 + a67*b1 + a131*b2 + a195*b3 + a259*b4 + a323*b5 + a387*b6 +
a451*b7 + …
 …
c60 = a60*b0 + a124*b1 + a188*b2 + a252*b3 + a316*b4 + a380*b5 + a444*b6 +
a508*b7 + …
c61 = a61*b0 + a125*b1 + a189*b2 + a253*b3 + a317*b4 + a381*b5 + a445*b6 +
a509*b7 + …
c62 = a62*b0 + a126*b1 + a190*b2 + a254*b3 + a318*b4 + a382*b5 + a446*b6 +
a510*b7 + …
c63 = a63*b0 + a127*b1 + a191*b2 + a255*b3 + a319*b4 + a383*b5 + a447*b6 +
a5111*b7 + …

Kernel Coding Bounds
In this example, a total of 16 int16 x int16 multiplications are required per output value. As the
matrix C consists of 64 values, a total of 16 * 64 = 1024 multiplications is required to complete
one matrix multiplication. Given that 32 16-bit multiplications can be performed per cycle in an
AI Engine, the minimum number of cycles required for the matrix multiplication is 1024/32 = 32.
The summation of the individual terms comes without additional cycle requirements because the
addition can be performed together with the multiplication in a MAC operation. Hence the
compute bound for the kernel is:

Compute bound = 32 cycles / invocation

Next, analyze the memory accesses bound for the kernel. If it is going to fully use the vector unit
MAC performance, 32 16-bit multiplications are performed per cycle. Vector b can be stored in
the vector register because it is only 16*16-bit =256 bits. It does not need to be fetched from
the AI Engine data memory or tile interface for each MAC operation. Considering data “a”
needed for computation, it needs 32*16-bit = 512 bits data per cycle. The stream interface only
supports 2*32 bit per cycle and hence fetching data from memory can be considered. It allows
two 256 bits loads per cycle which matches the MAC performance. Thus, if two 256 bits loads
are performed each cycle, the memory bound for the kernel is:

Memory bound = 32 cycles / invocation

Note that compute bound and memory bound are the theoretical limits of the kernel realization.
It does not take into account the function overhead outside the main computation loop. When
the kernel is only part of the graph, it might be relieved due to bandwidth limitation of other
kernels or lower system performance requirements.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=110

Vectorization
For a complicated vector processing algorithm, starting with a scalar version is recommended
because it is also helpful as a golden reference for verifying the accuracy. The scalar version for
matrix multiplication is shown as follows.

void matmul_scalar(input_window_int16* matA,
 input_window_int16* matB,
 output_window_int16* matC){ //A[M,N], B[N,1], C[M,1]. M=64, N=16
 for(int i=0; i<M; i++){
 int temp = 0 ;
 for(int j=0; j<N; j++){
 temp += window_read(matA)*window_readincr(matB) ;
 window_incr(matA,64); //Jump of 64 elements to access the next
element of the same row
 }
 window_writeincr(matC,(int16_t)(temp>>15)) ;
 window_incr(matA,1); //Jump of one element for moving to the next
row.
 }
}

Note that in the previously shown code, matA is stored in the column base and matB is a circular
buffer to the kernel. It can be read continuously by window_readincr for computing different
rows of output because it will loop back to the start of the buffer.

There are total 64 outputs (M=64), and each output needs 16 (N=16) multiplications. When
choosing MAC intrinsics to do vector processing, for the data type int16 * int16, select lane 4, 8,
16 to do the equation. These are illustrated in following figure.

Figure 39: Lane Selection

Note that the main difference between 4, 8, and 16 lanes MAC is how the data is consumed. If
you assume that the data is stored by column, then 16 lanes MAC may be the best choice,
because only two parts of continuous data needs to be loaded for the MAC operation, – a0 to a15
and a64 to a79. a0 to a15 are 256 bits, which allows one load to load the value into vector register.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=111

To allow two loads to occur at the same cycle, a0 to a15 and a64 to a79 are required to be in
separate data banks. The data needs to be divided column by column into two separate buffers
to the kernel. That is to say, a0 to a63 are in the first buffer, a64 to a127 are in the second buffer,
a128 to a191 are in the first buffer again, and so on.

By vectorization, the matrix multiplication can have a loop with 64/16=4 iterations and each
iteration of the loop contains eight MAC operations. Every iteration of the loop produces 16
output data. This is illustrated in the following figure.

Figure 40: Vectorization

The mac16() intrinsic function to be used has the following interface.

v16acc48 mac16(v16acc48 acc,
 v32int16 xbuff,
 int xstart,
 unsigned int xoffsets,
 unsigned int xoffsets_hi,
 unsigned int xsquare,
 v16int16 zbuff,
 int zstart,
 unsigned int zoffsets,
 unsigned int zoffsets_hi,
 int zstep
)

The buffers contain parameters (start, offsets, square, and step) to compute the indexing into the
buffers (vector registers). For details about the lane addressing scheme with these parameters,
see MAC Intrinsics.

Coding with MAC intrinsics can be seen in the following section.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=112

Coding with Intrinsics
You have analyzed how the function will be mapped into the AI Engine vector processor. Now
have a look at the first version of the vectorized code.

inline void mac16_sub(input_window_int16* matA, v16int16 &buf_matB,
v16acc48 &acc, int i){
 v32int16 buf_matA = undef_v32int16(); // holds 32 elements of matA
 buf_matA=upd_w(buf_matA, 0, window_read_v16(matA));
 window_incr(matA,64);
 buf_matA = upd_w(buf_matA, 1, window_read_v16(matA));
 window_incr(matA,64);
 acc =
mac16(acc,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,i,0x0,0x0,1);
}

void matmul_vec16(input_window_int16* matA,
 input_window_int16* matB,
 output_window_int16* matC){

 v16int16 buf_matB = window_read_v16(matB); // holds 16 elements of matB
 v16acc48 acc = null_v16acc48(); // holds acc value of Row * column dot
product

 for (unsigned int i=0;i<M/16;i++) //M=64, Each iteration computes 16
outputs
 {
 acc=null_v16acc48();
 for(int j=0;j<16;j+=2){
 mac16_sub(matA,buf_matB,acc,j);
 }
 window_writeincr(matC,srs(acc,15));
 window_incr(matA,16);
 }
}

In the main function matmul_vec16, the loop produces 16 output data per iteration. In the
outer loop body, there is an inner loop with eight iterations. In each iteration of the inner loop, an
inline function mac16_sub is called. In the inline function, there is a mac16 operation, with two
loads of data for the MAC operation.

Inside mac16_sub(), buf_matA is declared as local variable and buf_matB and acc are
declared as local variables in the main function. They are passed between functions by reference
(or pointer). This ensures that only one identical vector exists for each variable. The function has
one parameter that is used in the mac16() intrinsic as follows and this specific intrinsic (i=0) has
been introduced in MAC Intrinsics.

acc =
mac16(acc,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,i,0x0,0x0,1);

At the end of each iteration of the loop, window pointer for the data is incremented by 16 (that is
16 rows for the matrix).

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=113

Note: While in the example, inline is used to guide the tool to remove the boundary of a function and
inline __attribute__((always_inline)) can be used to force removal of the boundary of the
function, sometimes it is helpful to retain the boundary of a function using __attribute__
((noinline)) void func(...). Note that inlining or not can affect program memory usage and
program optimization.

The compiled code for the kernel can be found in the disassembly view in the debug perspective
of the Vitis™ IDE. Note that a graph is needed for compiling the kernel with AI Engine tools. For
more understanding about the assembly code in disassembly view, refer to Using Vitis IDE and
Reports. For additional details on graph coding and Vitis IDE usage, refer to the Versal ACAP AI
Engine Programming Environment User Guide (UG1076).

Figure 41: Assembly Code for the Loop

Note that the compiler automatically unrolls the inner loop and pipelines the outer loop. From
the previous assembly code for the loop, each iteration requires 19 cycles. However, with one
window interface of data (matA), the minimum cycle number required for eight MACs must be 16
(two loads of data per MAC). This degradation of performance is caused by unbalanced window
pointer increment at the end of the loop. This can be resolved by pairing the last increment with
the last MAC operation. The optimized code is as follows.

inline void mac16_sub(input_window_int16* matA, v16int16 &buf_matB,
v16acc48 &acc, int i,int incr_num){
 v32int16 buf_matA = undef_v32int16(); // holds 32 elements of matA
 buf_matA=upd_w(buf_matA, 0, window_read_v16(matA));
 window_incr(matA,64);
 buf_matA = upd_w(buf_matA, 1, window_read_v16(matA));
 window_incr(matA,incr_num);
 acc =
mac16(acc,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,i,0x0,0x0,1);
}

void matmul_vec16(input_window_int16* matA,
 input_window_int16* matB,
 output_window_int16* matC){

 v16int16 buf_matB = window_read_v16(matB); // holds 16 elements of matB
 v16acc48 acc = null_v16acc48(); // holds acc value of Row * column dot
product

 for (unsigned int i=0;i<M/16;i++) //M=64, Each iteration computes 16
outputs
 {
 acc=null_v16acc48();
 for(int j=0;j<16;j+=2){
 int incr_num=(j==14)?80:64;

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 114Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=114

 mac16_sub(matA,buf_matB,acc,j,incr_num);
 }
 window_writeincr(matC,srs(acc,15));
 }
}

Note that the function mac16_sub has a new parameter incr_num. This parameter is for the
pointer increment, which is different for the last function call in the inner loop. This increment
number 80 for the last function call is to ensure that data in the next 16 rows is selected in the
next iteration of the outer loop. Now the assembled code for the loop is as shown in following
figure.

Figure 42: Optimized Assembly Code for the Loop

An iteration of the loop requires 16 cycles. This means that the compute bound for this kernel is
16*4=64 cycles per invocation. As seen in the previous section, the theoretical limit is 32 cycles
per invocation. That is eight cycles for an iteration of the loop, which means that eight MAC
operations must be compacted into eight cycles. Depending on the system performance
requirements, this can be achieved by splitting the data input column by column into two window
buffers, matA_0 and matA_1. The data of the two windows is first to be read into two v16int16
vectors and concatenated into one v32int16 vector to be used in the mac16 intrinsic. The code
for the kernel is as follows.

inline void mac16_sub_loads(input_window_int16* matA_0, input_window_int16*
matA_1, v16int16 &buf_matB, v16acc48 &acc, int i, int incr_num){
 v16int16 buf_matA0 = window_read_v16(matA_0);
 window_incr(matA_0,incr_num);
 v16int16 buf_matA1 = window_read_v16(matA_1);
 window_incr(matA_1,incr_num);
 acc =
mac16(acc,concat(buf_matA0,buf_matA1),0,0x73727170,0x77767574,0x3120,buf_mat
B,i,0x0,0x0,1);
}

void matmul_vec16(input_window_int16* __restrict matA_0,
 input_window_int16* __restrict matA_1,
 input_window_int16* __restrict matB,
 output_window_int16* __restrict matC){
 v16int16 buf_matB = window_read_v16(matB);
 for (unsigned int i=0;i<M/16;i++) //M=64, Each iteration computes 16
outputs
 chess_prepare_for_pipelining
 {
 v16acc48 acc=null_v16acc48();
 for(int j=0;j<16;j+=2){
 int incr_num=(j==14)?80:64;

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=115

 mac16_sub_loads(matA_0,matA_1,buf_matB,acc,j,incr_num);
 }
 window_writeincr(matC,srs(acc,15));
 }
}

Note that two v16int16 vectors, buf_matA0 and buf_matA1, are defined and concatenated
for the mac16 intrinsic. Also note that chess_prepare_for_pipelining is added for the
loop and __restrict keyword for the window interfaces to ensure that the loop is pipelined
and window operations can be well optimized.

IMPORTANT! The __restrict  keyword cannot be used freely. Before using it, refer to Using the
Restrict Keyword in AI Engine Kernels in the AI Engine User Guide (UG1076).

The assembly code for the version of two window loads in a cycle is as follows.

Figure 43: Assembly Code for Two Window Loads a Cycle

Matrix Multiplication
The following matrix multiplication example implements the equation:

C (64 x 2) = A (64 x 8) * B(8 x 2)

The example assumes that the data for the matrices is stored in column major form and the data
type for the matrices A and B is int16.

The first output column is computed as follows.

c0 = a0*b0 + a64*b1 + a128*b2 + a192*b3 + a256*b4 + a320*b5 + a384*b6 +
a448*b7
c1 = a1*b0 + a65*b1 + a129*b2 + a193*b3 + a257*b4 + a321*b5 + a385*b6 +
a449*b7
c2 = a2*b0 + a66*b1 + a130*b2 + a194*b3 + a258*b4 + a322*b5 + a386*b6 +
a450*b7
c3 = a3*b0 + a67*b1 + a131*b2 + a195*b3 + a259*b4 + a323*b5 + a387*b6 +
a451*b7
 …
c60 = a60*b0 + a124*b1 + a188*b2 + a252*b3 + a316*b4 + a380*b5 + a444*b6 +
a508*b7
c61 = a61*b0 + a125*b1 + a189*b2 + a253*b3 + a317*b4 + a381*b5 + a445*b6 +
a509*b7
c62 = a62*b0 + a126*b1 + a190*b2 + a254*b3 + a318*b4 + a382*b5 + a446*b6 +
a510*b7
c63 = a63*b0 + a127*b1 + a191*b2 + a255*b3 + a319*b4 + a383*b5 + a447*b6 +
a5111*b7

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 116Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=jds1594304367008
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=jds1594304367008
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=116

The second output column is computed as follows.

c64 = a0*b8 + a64*b9 + a128*b10 + a192*b11 + a256*b12 + a320*b13 + a384*b14
+ a448*b15
c65 = a1*b8 + a65*b9 + a129*b10 + a193*b11 + a257*b12 + a321*b13 + a385*b14
+ a449*b15
c66 = a2*b8 + a66*b9 + a130*b10 + a194*b11 + a258*b12 + a322*b13 + a386*b14
+ a450*b15
c67 = a3*b8 + a67*b9 + a131*b10 + a195*b11 + a259*b12 + a323*b13 + a387*b14
+ a451*b15
 …
c124 = a60*b8 + a124*b9 + a188*b10 + a252*b11 + a316*b12 + a380*b13 +
a444*b14 + a508*b15
c125 = a61*b8 + a125*b9 + a189*b10 + a253*b11 + a317*b12 + a381*b13 +
a445*b14 + a509*b15
c126 = a62*b8 + a126*b9 + a190*b10 + a254*b11 + a318*b12 + a382*b13 +
a446*b14 + a510*b15
c127 = a63*b8 + a127*b9 + a191*b10 + a255*b11 + a319*b12 + a383*b13 +
a447*b14 + a5111*b15

Kernel Coding Bounds
In this example, a total of 1024 int16 x int16 multiplications are required for computing 128
output value. Given that 32 16-bit multiplications can be performed per cycle in an AI Engine,
the compute bound for the kernel is as follows.

Compute bound = 32 cycles / invocation

Matrix B can be stored in the vector register because it is only 16*16-bit =256 bits. It does not
need to be fetched from the AI Engine data memory or tile interface for each MAC operation.
Considering the data “a” needed for computation, there are total 64*8*2=1024 bytes to be
fetched from memory. Given that AI Engine allows two 256 bits (32 bytes) loads per cycle, the
memory bound for the kernel is as follows.

Memory bound = 1024 / (2*32) = 16 cycles / invocation

It is seen that the compute bound is larger than the memory bound. Hence the purpose of
vectorization can be to achieve the theoretical limit of MAC operations in the vector processor.

Vectorization
The scalar reference code for this matrix multiplication example is shown as follows. Note that
the data is stored in columns.

void matmul_mat8_scalar(input_window_int16* matA,
 input_window_int16* matB,
 output_window_int16* matC){

 for(int i=0; i<M; i++){//M=64
 for(int j=0;j<L;j++){//L=2
 int temp = 0 ;
 for(int k=0; k<N; k++){//N=8

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=117

 temp += window_read(matA)*window_readincr(matB);//B is
circular buffer, size N*L
 window_incr(matA,64); //Jump of 64 elements to access the
next element of the same row
 }
 window_write(matC,(int16_t)(temp>>15)) ;
 window_incr(matC,64); //Jump to the next column
 }
 window_incr(matA,1); //Jump of one element for moving to the next
row.
 window_incr(matC,1); //Jump to the next row
 }
}

As analyzed in the previous example, mac16 intrinsic is the best choice for computing 16 lanes
together because 16 int16 from a column can be loaded at once. To compute 16 output data in a
column, four mac16 operations are needed. The same data in vector "a" is used twice to compute
the data for two output columns. Thus, two columns of data can be loaded and two mac16 used
for accumulations to the two output columns. These two loads and two MACs are repeated four
times to get the results of two output columns. This method is shown in the following pseudo-
code.

C_[0:15,0] = A_[0:15,0:1]*B_[0:1,0]
C_[0:15,1] = A_[0:15,0:1]*B_[0:1,1]

C_[0:15,0]+= A_[0:15,2:3]*B_[2:3,0]
C_[0:15,1]+= A_[0:15,2:3]*B_[2:3,1]

C_[0:15,0]+= A_[0:15,4:5]*B_[4:5,0]
C_[0:15,1]+= A_[0:15,4:5]*B_[4:5,1]

C_[0:15,0]+= A_[0:15,6:7]*B_[6:7,0]
C_[0:15,1]+= A_[0:15,6:7]*B_[6:7,1]

In the previous code, each "*" denotes a MAC operation. C_[0:15,0] and C_[0:15,1] denote
two output columns that are accumulated separately. A_[0:15,0:1] denotes the column 0 and
1, and each column has 16 elements. B_[0:1,0] denotes column 0 with 2 elements. There will
be a loop for the code in the real vectorized code because there are 64 output rows. The mac16
intrinsic function to be used has the following interface.

v16acc48 mac16 (v16acc48 acc,
 v64int16 xbuff,
 int xstart,
 unsigned int xoffsets,
 unsigned int xoffsets_hi,
 unsigned int xsquare,
 v16int16 zbuff,
 int zstart,
 unsigned int zoffsets,
 unsigned int zoffsets_hi,
 int zstep
)

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=118

The buffers contain parameters (start, offsets, square, and step) to compute the indexing into
buffers (vector registers). For details about the lane addressing scheme with these parameters,
see MAC Intrinsics.

Note that the mac16 intrinsic function prototype is different with the one introduced in the
previous matrix vector multiplication example. The xbuff here is v64int16 which allows two
sets of data to be stored and used in an interleaved way.

Coding with MAC intrinsics can be seen in the following section.

Coding with Intrinsics
You have analyzed how the function will be mapped into the AI Engine vector processor. Now
have a look at the vectorized code.

void matmul_mat8(input_window_int16* matA,
 input_window_int16* matB,
 output_window_int16* matC){

 v16int16 buf_matB = window_read_v16(matB);

 v64int16 buf_matA = undef_v64int16();
 buf_matA=upd_w(buf_matA,0,window_read_v16(matA));
 window_incr(matA,64);
 buf_matA=upd_w(buf_matA,1,window_read_v16(matA));
 window_incr(matA,64);

 for (unsigned int i=0;i<M/16;i++) //M=64, Each iteration computes 16
outputs
 chess_prepare_for_pipelining
 chess_loop_range(4,)
 {
 v16acc48 acc0=null_v16acc48();//For first output column
 v16acc48 acc1=null_v16acc48();//For second output column

 acc0 =
mac16(acc0,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,0,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,2,window_read_v16(matA));
 window_incr(matA,64);
 acc1 =
mac16(acc1,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,8,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,3,window_read_v16(matA));
 window_incr(matA,64);

 acc0 =
mac16(acc0,buf_matA,32,0x73727170,0x77767574,0x3120,buf_matB,2,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,0,window_read_v16(matA));
 window_incr(matA,64);
 acc1 =
mac16(acc1,buf_matA,32,0x73727170,0x77767574,0x3120,buf_matB,10,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,1,window_read_v16(matA));
 window_incr(matA,64);

 acc0 =
mac16(acc0,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,4,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,2,window_read_v16(matA));
 window_incr(matA,64);

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=119

 acc1 =
mac16(acc1,buf_matA,0,0x73727170,0x77767574,0x3120,buf_matB,12,0x0,0x0,1);
 buf_matA=upd_w(buf_matA,3,window_read_v16(matA));
 window_incr(matA,80);//point to next 16 rows

 acc0 =
mac16(acc0,buf_matA,32,0x73727170,0x77767574,0x3120,buf_matB,6,0x0,0x0,1);
 window_write(matC,srs(acc0,15));
 window_incr(matC,64);
 buf_matA=upd_w(buf_matA,0,window_read_v16(matA));
 window_incr(matA,64);
 acc1 =
mac16(acc1,buf_matA,32,0x73727170,0x77767574,0x3120,buf_matB,14,0x0,0x0,1);
 window_write(matC,srs(acc1,15));
 window_incr(matC,80);//point to next 16 rows
 buf_matA=upd_w(buf_matA,1,window_read_v16(matA));
 window_incr(matA,64);
 }
}

In the previous code, buf_matB is for matrix B and it is loaded outside the loop. buf_matA is
for matrix A and two sets of A are stored in lower and higher parts. When mac16 has the value
"0" for xstart, the lower part of buf_matA is used. When mac16 has the value "32" for
xstart, the higher part of buf_matA is used. acc0 and acc1 are the accumulated values for
two output columns.

Note that buf_matA is preloaded before the loop. In the loop, the loads with window buffer
pointer increment, MAC operations and the stores are interleaved. To understand how the
mac16() intrinsic works, refer to MAC Intrinsics. The assembled code for the loop is as shown in
following figure.

Figure 44: Assembly Code for the Loop

From the previously assembled code, it is seen that there is a MAC operation and a load
operation in every cycle of the loop. Wide registers wr0, wr1, wr2, and wr3 are used for
buf_matA. Accumulator registers bm0 and bm1 are used for the two accumulated results.

Keys to make the loop be well pipelined are as follows:

• Preload the data into vector registers before the loop start.

• Interleave data loads, MAC operations, data stores in the loop body.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=120

• Use wide input data vector register (v64int16 in the example) to make data load and MAC
operation perform on different parts of the vector register.

• Use multiple accumulator registers and reuse input data for multiple outputs.

• Data load and buffer pointer increment come in pairs. This applies for data store and buffer
pointer increments as well.

Multiple Kernels Coding Example: FIR Filter
In this section, the filter design is used to demonstrate how to split the application into multiple
AI Engines when an application exceeds the computational capacity of a single AI Engine. A finite
impulse response (FIR) filter is a filter whose impulse response (or response to any finite length
input) is of finite duration.

yn = ∑
k = 0

N - 1
Ck, xn + k

Note: Mathematically, this equation is a correlation instead of a convolution. This is the way computation is
organized within the AI Engine. For this to become a convolution (FIR filtering), the coefficients have to be
stored in vector CK in the reverse order. This is not a problem for symmetric filters.

In the previous equation, N denotes the taps to be used to calculate each output. The calculation
process when a 32 taps filter is used as an example is shown in the following figure. int16
complex types for data and coefficient are also used as an example.

Figure 45: FIR Filter

1 Gsps Implementation with Cascade Stream
The AI Engine vector unit supports 8 MACs per cycle for cint16 multiply-accumulate cint16
types. If a four lane implementation of mul4/mac4 intrinsics is adopted, then there will be two
complex operations on each lane.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=121

16 mac4() are needed for computing four outputs because each output requires 32 complex
MACs. This means, to compute four outputs, 16 cycles using an AI Engine are required. So the
sample rate of an AI Engine (assuming it runs at 1 GHz) would be as follows.

4 Gsps/16 = 0.25 Gsps = 250 Msps

This calculates the compute bound of an AI Engine. However, the memory bound to see if that
sample rate can be met still needs to be considered. Assume that only one stream input and one
stream output are used for data transfer and the coefficients are stored in the AI Engine internal
memory. The stream interface of an AI Engine supports 32 bits per cycle. It is capable of
transferring one sample of data every cycle. Thus, the sample rate from the data transferring
view is as follows.

1 sample/cycle *1 GHz = 1 Gsps

It is larger than compute bound, which is 250 Msps. So an AI Engine implementation will operate
at 250 Msps.

Figure 46: One AI Engine FIR Filter Realization

AI Engine
8 GMACs

16 bits Complex

250 MSPS
Stream In

250 MSPS
Stream Out

X24972-122120

Based on the calculations, it is possible to achieve 1 Gsps via a stream input and output stream
interface. If the MAC operations of a single kernel implementation are split into four kernels,
4*250Msps = 1 Gsps, compute throughput can be achieved. Those four kernels are connected
through cascade streaming. Therefore, the AI Engine compute bound matches AI Engine
interface throughput.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=122

Figure 47: 1 Gsps Implementation with Four Cascaded Kernels

AI Engine
8 GMACs

16 bits
Complex

1 GSPS
AI Engine
8 GMACs

16 bits
Complex

AI Engine
8 GMACs

16 bits
Complex

AI Engine
8 GMACs

16 bits
Complex

Cascade
Stream

Cascade
Stream

Cascade
Stream

1
G

SP
S

St
re

am
 In

Stream
Out

X24973-122120

Coding with Intrinsics
The four kernels in the 1 Gsps implementation can have different sets of coefficients and cascade
streams between them. An implementation is shown in the following figure.

Figure 48: Four Kernels with Split Coefficient and Cascade Stream

Input data flows from stream to these four kernels. However, the second kernel will discard the
first eight input data. The third kernel will discard the first 16 input data. Similarly, the fourth
kernel will discard the first 24 input data.

The code for the first kernel is as follows.

#include <adf.h>
#include "fir_32tap.h"
// buffer to keep state
static v16cint16 delay_line;

void fir_32tap_core0(
 input_stream_cint16 * sig_in,
 output_stream_cacc48 * cascadeout)
{
 const cint16_t * __restrict coeff = eq_coef0;
 const v8cint16 *coef_ = (v8cint16 const*)coeff;
 const v8cint16 coe = *coef_;

 v16cint16 buff = delay_line;
 v4cacc48 acc;

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=123

 const unsigned LSIZE = (samples/4/4); // assuming samples is integer
power of 2 and greater than 16

 for (unsigned int i = 0; i < LSIZE; ++i)
 chess_prepare_for_pipelining
 chess_loop_range(4,)
 {
 acc = mul4(buff, 0 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 2, readincr_v4(sig_in));
 acc = mac4(acc, buff, 4 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = mul4(buff, 4 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 3, readincr_v4(sig_in));
 acc = mac4(acc, buff, 8 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 10, 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = mul4(buff, 8 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 10 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 0, readincr_v4(sig_in));
 acc = mac4(acc, buff, 12 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = mul4(buff, 12 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 1, readincr_v4(sig_in));
 acc = mac4(acc, buff, 0 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);
 }
 delay_line = buff;
}

void fir_32tap_core0_init()
{
 // Drop samples if not first block
 int const Delay = 0;
 for (int i = 0; i < Delay; ++i)
 {
 get_ss(0);
 }

};

Note that the function, fir_32tap_core0_init, is going to be the initialization function for
the AI Engine kernel, fir_32tap_core0, which is only executed once at the kernel start. The
purpose of this initialization function is to discard the unnecessary samples to align the input
stream.

Similarly, the function, fir_32tap_core1_init, is going to be the initialization function for
the AI Engine kernel, fir_32tap_core1, in the following codes. Same applies for the
initialization functions, fir_32tap_core2_init and fir_32tap_core3_init.

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=124

The second kernel code is as follows.

#include <adf.h>
#include "fir_32tap.h"
// buffer to keep state
static v16cint16 delay_line;

void fir_32tap_core1(
 input_stream_cint16 * sig_in,
 input_stream_cacc48 * cascadein,
 output_stream_cacc48 * cascadeout)
{
 const cint16_t * __restrict coeff = eq_coef1;
 const v8cint16 *coef_ = (v8cint16 const*)coeff;
 const v8cint16 coe = *coef_;

 v16cint16 buff = delay_line;
 v4cacc48 acc;
 const unsigned LSIZE = (samples/4/4); // assuming samples is integer
power of 2 and greater than 16

 for (unsigned int i = 0; i < LSIZE; ++i)
 chess_prepare_for_pipelining
 chess_loop_range(4,)
 {
 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 0 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 2, readincr_v4(sig_in));
 acc = mac4(acc, buff, 4 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 4 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 3, readincr_v4(sig_in));
 acc = mac4(acc, buff, 8 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 10, 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 8 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 10 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 0, readincr_v4(sig_in));
 acc = mac4(acc, buff, 12 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 12 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 1, readincr_v4(sig_in));
 acc = mac4(acc, buff, 0 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(cascadeout,acc);
 }
 delay_line = buff;
}

void fir_32tap_core1_init()
{
 // Drop samples if not first block

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=125

 int const Delay = 8;
 for (int i = 0; i < Delay; ++i)
 {
 get_ss(0);
 }
};

The third kernel is similar to the second one. The last kernel is as follows.

#include <adf.h>
#include "fir_32tap.h"
// buffer to keep state
static v16cint16 delay_line;

void fir_32tap_core3(
 input_stream_cint16 * sig_in,
 input_stream_cacc48 * cascadein,
 output_stream_cint16 * data_out)
{
 const cint16_t * __restrict coeff = eq_coef3;
 const v8cint16 *coef_ = (v8cint16 const*)coeff;
 const v8cint16 coe = *coef_;

 v16cint16 buff = delay_line;

 v4cacc48 acc;

 set_rnd(rnd_pos_inf);
 set_sat();
 const unsigned LSIZE = (samples/4/4); // assuming samples is integer
power of 2 and greater than 16

 for (unsigned int i = 0; i < LSIZE; ++i)
 chess_prepare_for_pipelining
 chess_loop_range(4,)
 {
 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 0 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 2, readincr_v4(sig_in));
 acc = mac4(acc, buff, 4 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(data_out,srs(acc,shift));

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 4 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 6 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 3, readincr_v4(sig_in));
 acc = mac4(acc, buff, 8 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 10, 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(data_out,srs(acc,shift));

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 8 , 0x3210, 1, coe, 0, 0x0000, 1);
 acc = mac4(acc, buff, 10 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 0, readincr_v4(sig_in));
 acc = mac4(acc, buff, 12 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(data_out,srs(acc,shift));

 acc = readincr_v4(cascadein);
 acc = mac4(acc, buff, 12 , 0x3210, 1, coe, 0, 0x0000, 1);

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=126

 acc = mac4(acc, buff, 14 , 0x3210, 1, coe, 2, 0x0000, 1);
 buff = upd_v(buff, 1, readincr_v4(sig_in));
 acc = mac4(acc, buff, 0 , 0x3210, 1, coe, 4, 0x0000, 1);
 acc = mac4(acc, buff, 2 , 0x3210, 1, coe, 6, 0x0000, 1);
 writeincr_v4(data_out,srs(acc,shift));
 }
 delay_line = buff;
}

void fir_32tap_core3_init()
{
 // Drop samples if not first block
 int const Delay = 24;
 for (int i = 0; i < Delay; ++i)
 {
 get_ss(0);
 }
};

The graph code is as follows.

#include <adf.h>
#include "kernels.h"
using namespace adf;
class firGraph : public graph {
 public:
 kernel k0,k1,k2,k3;
 input_port in0123;
 output_port out;
 firGraph()
 {
 k0 = kernel::create(fir_32tap_core0);
 runtime<ratio>(k0) = 0.9;
 source(k0) = "fir_32tap_core0.cpp";
 connect<stream> n0(in0123,k0.in[0]);

 k1 = kernel::create(fir_32tap_core1);
 runtime<ratio>(k1) = 0.9;
 source(k1) = "fir_32tap_core1.cpp";
 connect<stream> n1(in0123,k1.in[0]);
 connect<cascade> (k0.out[0],k1.in[1]);

 k2 = kernel::create(fir_32tap_core2);
 runtime<ratio>(k2) = 0.9;
 source(k2) = "fir_32tap_core2.cpp";
 connect<stream> n2(in0123,k2.in[0]);
 connect<cascade> (k1.out[0],k2.in[1]);

 k3 = kernel::create(fir_32tap_core3);
 runtime<ratio>(k3) = 0.9;
 source(k3) = "fir_32tap_core3.cpp";
 connect<stream> n3(in0123,k3.in[0]);
 connect<cascade> (k2.out[0],k3.in[1]);
 connect<stream> (k3.out[0],out);

 initialization_function(k0) = "fir_32tap_core0_init";
 initialization_function(k1) = "fir_32tap_core1_init";
 initialization_function(k2) = "fir_32tap_core2_init";
 initialization_function(k3) = "fir_32tap_core3_init";
 };
};

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=127

The kernels connected through cascade streams are expected to operate synchronously.
Conflicts in cascade streams can stall the kernels. Loops in the kernels must have input data
available to run smoothly. Hence it is important that the input stream arrives at the appropriate
time for each kernel. The input stream stall (if any) can be resolved by adding a large enough
FIFO to the net connecting to the AI Engine kernels. For example:

fifo_depth(n0)=175;
fifo_depth(n1)=150;
fifo_depth(n2)=125;
fifo_depth(n3)=100;

Note that different FIFO depths are specified in the previous example to prevent auto FIFO
merge which can occur when a common FIFO depth is used for all nets.

For the purpose of saving FIFO resources, individual FIFO depths can be set by looking at when
the event CORE_INSTREAM_WIDE occurs for each kernel. The earlier the event occurs, the
deeper the FIFO needs to be. For example:

fifo_depth(n0)=45;
fifo_depth(n1)=33;
fifo_depth(n2)=23;
fifo_depth(n3)=10;

For additional details about coding on graph, refer to the Versal ACAP AI Engine Programming
Environment User Guide (UG1076).

Appendix B: Design Analysis and Programming using Intrinsics

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 128Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=128

Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix C: Additional Resources and Legal Notices

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 129Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=129

1. Versal ACAP AI Engine Architecture Manual (AM009)

2. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

3. Versal ACAP AI Engine Intrinsics Documentation (UG1078)

4. AI Engine API User Guide (UG1529)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
11/10/2021 Version 2021.2

Scalar Processing Unit Updated for AI Engine API.

AI Engine Memory Added information about heap and stack size.

AI Engine API New section.

Chapter 3: Introduction to Scalar and Vector Programming Updated for AI Engine API.

AI Engine API Overview

New section.

Vector Arithmetic Operations

Vector Reduction

Bit-wise Operations

Data Comparison

Data Reshaping

Iterators

Operator Overloading

Multiple Lanes Multiplications - sliding_mul

Matrix Multiplications - mmul

API Operation Examples

Loops Updated information.

Floating-Point Operations Updated for AI Engine API.

Appendix A: Single Kernel Programming using Intrinsics Appendix describing programming using intrinsics.

Appendix B: Design Analysis and Programming using
Intrinsics

Appendix describing design analysis and programming
using intrinsics.

07/19/2021 Version 2021.1

Accumulator Registers Added information about print acc value, as well as
streaming data APIs.

Casting and Datatype Conversion Added a note about the AI Engine floating-point.

Initialization Added information about the static keyword.

Load and Store with Virtual Resource Annotations Added new section.

Window vs. Stream in Data Communication Added information.

DDR Memory Access through GMIO Removed information related to PL GMIO.

Appendix C: Additional Resources and Legal Notices

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1076-ai-engine-environment
https://www.xilinx.com/cgi-bin/docs/rdoc?t=aiengine+intrinsics;v=2021.2;d=index.html
https://www.xilinx.com/html_docs/xilinx2021_2/aiengine_api/aie_api/doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=130

Section Revision Summary
Mapping Algorithm onto the AI Engine Clarified description.

Coding with Intrinsics Added information about the (always_inline) attribute.

02/04/2021 Version 2020.2

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix C: Additional Resources and Legal Notices

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 131Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=131

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal,
Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix C: Additional Resources and Legal Notices

UG1079 (v2021.2) November 10, 2021 www.xilinx.com
AI Engine Kernel Coding Best Practices 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1079&Title=%20AI%20Engine%20Kernel%20Coding&releaseVersion=2021.2&docPage=132

	 AI Engine Kernel Coding
	Table of Contents
	Ch. 1: Overview
	Navigating Content by Design Process
	AI Engine Architecture Overview
	Scalar Processing Unit
	Vector Processing Unit
	AI Engine Memory
	AI Engine Tile Interface
	Tools

	Ch. 2: Single Kernel Programming
	AI Engine API
	Kernel Pragmas
	Kernel Compiler
	Kernel Simulation
	Kernel Inputs and Outputs

	Ch. 3: Introduction to Scalar and Vector Programming
	AI Engine API Overview
	AI Engine Data Types
	Vector Registers
	Accumulator Registers
	Casting and Datatype Conversion
	Vector Initialization, Load, and Store
	Alignment
	Initialization
	Load and Store
	Load and Store From Window Buffer
	Load and Store Using Pointers
	Load and Store Using Streams
	Load and Store with Virtual Resource Annotations

	Update, Extract, and Shift

	Vector Arithmetic Operations
	Pre-Multiplication Operations

	Vector Reduction
	Bit-wise Operations
	Data Comparison
	Data Reshaping
	Iterators
	Operator Overloading
	Multiple Lanes Multiplications - sliding_mul
	Matrix Multiplications - mmul
	API Operation Examples

	Ch. 4: Kernel Optimization
	Loops
	Software Pipelining of Loops
	Restrict Keyword
	Floating-Point Operations
	Using Vitis IDE and Reports

	Ch. 5: Interface Considerations
	Data Movement Between AI Engines
	Data Communication via Shared Memory
	Data Communication via Memory and DMA
	Data Communication via AXI4-Stream Interconnect

	Window vs. Stream in Data Communication
	Free Running AI Engine Kernel
	Run-Time Parameter Specification
	AI Engine and PL Kernels Data Communication
	DDR Memory Access through GMIO

	Appx. A: Single Kernel Programming using Intrinsics
	Intrinsics
	Introduction to Scalar and Vector Programming
	AI Engine Data Types
	Vector Registers
	Accumulator Registers
	Casting and Datatype Conversion
	Vector Initialization, Load, and Store
	Alignment
	Initialization
	Load and Store
	Load and Store from Vector Registers
	Load and Store From Memory
	Load and Store Using Pointers
	Load and Store Using Streams
	Load and Store with Virtual Resource Annotations

	Update, Extract, and Shift

	Vector Register Lane Permutations
	Data Selection
	Data Shuffle
	Data Select

	MAC Intrinsics
	MAC on 32x32 bits
	MAC on 32x16 bits
	MAC on 16x16 bits
	MAC on 8x8 bits
	Options

	Data Permute and MAC Examples

	Loops
	Floating-Point Operations

	Appx. B: Design Analysis and Programming using Intrinsics
	Matrix Vector Multiplication
	Kernel Coding Bounds
	Vectorization
	Coding with Intrinsics

	Matrix Multiplication
	Kernel Coding Bounds
	Vectorization
	Coding with Intrinsics

	Multiple Kernels Coding Example: FIR Filter
	1 Gsps Implementation with Cascade Stream
	Coding with Intrinsics

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

